
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The study by Sparks and colleagues aims understanding the network mechanisms, which may give 

rise to interictal epileptiform discharges (IEDs) in the mouse dentate gyrus. By applying a genetic 

labeling method which allows the differentiation of adult-born and mature granule cells (abGCs, 

mGCs, respectively) and chronic 2-Photon imaging of the neuronal population in the dentate 

gyrus, they obtain activity of abGCs and mGCs. Moreover, they developed a generative model 

motivated by Bayesian topic models to make predictions on the ensemble structure and GC 

identities underlying the IEDs. They conclude from the model that 

 

(1) IEDs are driven by multiple ensembles with different cellular components (mGCs, abGCs) and 

different ensembles are associated with different LFPs with distinct signal structure. 

 

(2) abGCs dominate ensembles despite their numeric minority in the dentate gyrus network. 

 

(3) some mGCs are coupled to abGCs and somehow seem to propagate mGCs’ activity within the 

network. 

 

(4) epileptic animals organize ensembles with quite similar statistical properties. 

 

(5) the reorganization of the network upon temporal lobe epilepsy produces functionally distinct 

ensembles of GCs with specific pathophysiological characteristics. 

 

The manuscript is very well written and very clear in its messages and modeling procedures. It 

nicely combines in vivo characterization of neuronal activity with functional organization of the 

microcircuitry and macrocircuit LFP signals. I have therefore only few comments. 

 

Major comments: 

One of the main findings is that abGCs are significantly more responsive to the IED than mGCs and 

refer in this context to figure S1A, in which z-scores of responsiveness are plotted. It would be of 

general interest to mention mean activities as dF/F for both populations to be able to compare 

them with WT controls. The responsiveness is close to ‘0’ in both populations, which makes it hard 

to understand how a significant difference of p < 0.001 can emerge, particularly when only 5 mice 

were tested per group. Moreover, since only mild changes in the activity were observed (pre- vs 

post IED), how reliable are the detected differences in the responsiveness in dependence on 

thresholding of signal detection? 

From the surgical procedure (aspiration until stratum lacunosmum moleculare in Methods and 

reference to Danielson et al., 2016a) it remains unclear, whether CA1 was damaged in the here 

imaged mice. If so, experiments should be confirmed in mice with CA1 intact. 

 

Minor comments: 

Figure 1: Please mention whether 1B refers to single frame image or to an average image. Include 

in (D) the label ‘LFP’ to the LFP trace and include arrows pointing to IEDs. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

Sparks and Liao et al. investigate the ensemble activity structure of the dentate gyrus (DG) in an 

epileptic mouse model. By crossing different transgenic mouse lines, the authors are able to 

genetically identify adult-born granule cells (abGCs) in the DG in-vivo. Combining 2-photon 

calcium imaging, local field potential recordings, and a model of chronic temporal lobe epilepsy, 

the authors record the activity of both abGCs and mature GCs (mGCs) during interictal 



epileptiform discharges (IEDs). They use statistical models to analyze the involvement of different 

populations during IEDs and find that the more abGCs-matching ensembles are more prominently 

recruited by IEDs. The topic of the research is interesting in that it studies the contribution of 

distinct populations of granule cells in the DG to epilepsy, of which the cellular level mechanisms 

are unclear; the specific roles of abGCs are important to understand but these have been difficult 

to dissect previously due to lack of proper tools. However, the analysis is preliminary and there are 

several major issues with the paper as is, mostly pertaining to the interpretation of the results, 

statistical analysis, and missing critical details. Please find below detailed comments: 

 

1. AAV2/1:hSyn-GCaMP6f labels not only granule cells but also interneurons in the DG. They would 

be difficult to be differentiated from cellular calcium signals but may be involved in distinct 

network activity thus may form distinct ensembles; the ensemble structure could be picked up by 

the statistical analysis shown Fig. 4. The authors would need to discuss how this may influence the 

interpretation of Fig. 4. More specifically, is it possible that one of the major ensembles shown in 

Fig. 4C is mainly comprised of interneurons? This would have important implications on the overall 

interpretation of the DG GC network (instead of the entire network) during IEDs. Related to this, 

the labelled abGCs are >5 weeks old at the time of data acquisition, is it possible that the more 

newly-born GCs actually do not express tdTomato but GCaMP6f thus contaminate the ‘mGCs’ 

population? 

 

2. Fig. S1A: the correct test to use is Wilcoxon signed-rank test because it’s the same mice and 

should not be treated as two independent samples. 

 

3. Does the average spectrum shown in Fig. 2B correspond to only the interictal spikes as the ones 

shown in Fig. 2A upper right? What do the error bars indicate? Why does the spectrum peak 

around 250-400 Hz (does not seem to correspond to the example shown in Fig. 2A upper right)? 

 

4. In Fig. 3, the logistic regression without regularization is not blind to cell identity because the 

weight of each individual IED is assigned based on its recruitment of either more mGCs or more 

abGCs (Fig. 3A&B). The regression with L1 regularization should be blind to cell identity, is that the 

case? Otherwise, the analysis & interpretation is circular. The authors also use L2 regularization 

penalty (Fig. 3C) but the results are not mentioned in the main text. Are raw calcium time courses 

used throughout the paper? Is it possible that the ramping shown in dF/F in Fig. 3D is an artifact 

of the long time scale of calcium signals? Specifically, using deconvolved dF/F would be more 

rational to show the more precise time-locked transient responses. Also, plotting the PSTH for a 

time window of [-5 5] s seems too large considering that the IED rate is about 1.13/s. Moreover, 

the detailed methods on the linear classifier are completely missing from the Methods section. 

 

5. In the caption of Fig. S2D: it’s written “suggesting that certain mGCs are highly coupled to 

abGCs and may propagate abGC activity through the network”. What is the logic in saying that? 

Please elaborate. 

 

6. The correlation matrices shown in Fig. S2E are problematic. The correlations are based on the 

fraction of abGCs in each ensemble and these fractions are sorted from low to high. The 

correlation will be inherently high by construction once you sort them and then obtain the 

correlation coefficient. Therefore, the main claim of this figure that “the statistics of this ensemble 

structure are highly conserved across animals” does not hold. 

 

7. Terminology in Fig. 3C caption: 100-fold cross-validation on an 80-20 train-test split. Do the 

authors mean “100 times 5-fold cross-validation”? 100-fold would imply splitting data into 99% for 

training and 1% for test. 

 

8. The mice are head-fixed and free to run on a treadmill belt. How is the animal’s behavior 

related to the heterogeneity in the responses of abGCs and mGCs to individual IEDs? It is possible 

that certain degree of the observed heterogeneity arises from different behavioral states. For 



example, the responses of some abGCs or mGCs to IEDs may depend on if the animal is running 

or still, how fast the animals is running, etc. This is corroborated by that the most active ensemble 

can be decoded from the IED power spectrum (both could be influenced by animal’s behavior) for 

small ensemble number. Unfortunately, this aspect is not analyzed at all. This is minor but the 

authors also implant an EMG electrode in the mice. How the EMG signal, which may reflect the 

animal’s behavioral state, may explain the heterogeneity is not analyzed. It is also useful to check 

the relationship between the EMG signals and IEDs; is it possible that some of the IEDs and certain 

ensembles are correlated with EMG fluctuations? These control analyses would be helpful to 

exclude possibilities which could otherwise undermine the main conclusions. 

 

9. In Table S1, please double check if the numbers are correct. The “Mean Total” seems wrong. 

 

10. It is problematic that several of the conclusions are made on statistics from only one example 

animal (e.g. Fig. 2C, Fig. 3D) without analyzing the population statistics (all mice). 

 

11. Although the ratio between abGC-dominated and mGC-dominated ensembles are ~4:6 and the 

percentage of abGCs is only ~11% in the DG, this does not necessarily imply that the abGC-

dominated ensembles contribute to the generation of IEDs more than mGC ensembles. It is 

possible that abGCs are simply more heterogeneous (therefore more distinguishable ensembles), 

or the majority of IEDs-related mGCs occupy a small number of ensembles; consequently, the 

total fraction of neurons involved in IEDs could be higher in mGCs than abGCs, disproving that 

abGC ensembles drive IEDs more prominently than mGC ensembles. Also, without further 

experiments, one could only say how GCs activity is correlated with but not how they could ‘drive’ 

IEDs. 

 

12. How is the bootstrapped, binarized matrix z’ constructed? Does it solely depend on other 

synchronous network activity excluding IEDs? This seems to be the case as in the caption of Fig. 

4B. Then the ensemble structure is estimated from this matrix and the results are used for the 

analysis of IEDs events. Does it not depend heavily on the hypothesis that the same ensemble 

structure is preserved across other synchronous network activity and IEDs? 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The manuscript by Sparks et al., describes the relative contribution of the activity of adult born 

dentate granule cells and mature granule cells to interictal epileptiform discharges in the 

hippocampus. The authors use several novel techniques to classify which populations of cells are 

activated in response to any given IED, and compare ensemble activity across animals. The 

authors find a set of latent ensembles of DGs involved in IED activity and these ensembles are 

disproportionately dominated by activity of abGCs. Comments are below: 

 

1. My biggest concern with the manuscript is that it is unclear what these results mean for our 

understanding of epilepsy in general. For the composition of these ensembles to relate to epilepsy 

more broadly, it would be good to show that some result correlates with an epileptic phenotype. 

For example, the number of IEDs with pure abGC ensembles or the pureness of the ensembles in 

any given animal would relate to seizure frequency or duration on an animal-by-animal basis, or 

perhaps more tractably the ensemble composition could relate to the ability of the IED to 

generalize on an IED-by-IED basis. The assertion that the findings are an epilepsy-specific 

phenomenon and is not a function of how DG neurons behave in ensembles more broadly is also 

questionable. I do not see any effort made to distinguish DG ensemble activity in IEDs from 

activity in normal ongoing function or evoked stimulation. However, the technique used to 

characterize latent ensemble recruitment is interesting and novel. 

 

2. Have the authors used the classifier on snips of control LFP to see if it catches sharp waves? 



Can the authors use the movement information to inform whether they are capturing IEDs vs 

sharp waves? 

 

3. The authors should include a figure showing the LFP classifier feature space. 

 

4. How are the authors binning to classify a cell as responsive or non-responsive to an IED event, 

e.g. what is the time window for calcium changes in a cell in relation to an identified LFP IED that 

would classify that cell as “responsive”? How was this chosen? Over what period of time was 

activity averaged? Have the authors done a robustness analysis to validate their binning choice? 

 

5. How are you determining the 0.1 cutoff for the IED mGC-ness score? What proportion of the 

IEDs have a sameness score between -0.1 and +0.1 (or is the histogram in 3B all the data from 

that animal)? Does the bi-modality hold for all animals? 

 

6. The L1 regularization analysis seems tautological and difficult to cross validate. Can the authors 

show a scatterplot of responsive cells to each spike by cell type? 

 

7. Is there some feature of the IED that can be mapped on to whether the ensemble is a mCG-/ 

abGC-selective or a mixed ensemble? 

 

8. Are data in figure 4A-F for one recording session in one animal? Do these results hold up across 

animals? 

 

9. 4E, left is never described in the text 

 

10. What’s the cut off for an abGC- or mGC- “dominated” ensemble? Does this vary across 

animals? Does it vary as a function of the frequency of IEDs even within animal? 

 

11. Are data displayed in 4H from all IEDs in all animals? Most example traces show 4 or 6 

ensembles and text states that K=6 is validated across animals, but the accuracy of decoding the 

IED is at chance for those ensemble sizes. Could the authors please discuss? 

 

Minor 

All animals are presumably recorded for multiple test sessions but overall, the reader has to work 

pretty hard to determine which figures are from one recording vs one animal vs pooled over the 

entire cohort. It is unclear why more pooled data are not shown, unless the results do not 

generalize? 

Red and blue are not labeled in Figure 3D 

The organization on Figure 3 makes it hard to read 

4H is cited before 4G 

4G orange and blue are not labeled 

Figures 4A, B, D and S2A are so small, they’re almost impossible to see 

Was the location of the LFP recording electrode in the CA1 cell layer verified? 



We thank all our Reviewers for their enthusiasm for our work and for their constructive comments. 
Suggestions from the Reviewers greatly helped to improve the manuscript. Our point-by-point 
responses to their specific concerns are noted below with the Reviewers’ comments retained in 
blue. 
 
Reviewer #1 (Remarks to the Author): 
 
The manuscript is very well written and very clear in its messages and modeling procedures. It 
nicely combines in vivo characterization of neuronal activity with functional organization of the 
microcircuitry and macrocircuit LFP signals. I have therefore only few comments. 
 We would like to thank the Reviewer for the positive commendation of our manuscript. 
 
Major comments: 
One of the main findings is that abGCs are significantly more responsive to the IED than mGCs 
and refer in this context to figure S1A, in which z-scores of responsiveness are plotted. It would 
be of general interest to mention mean activities as dF/F for both populations to be able to 
compare them with WT controls. The responsiveness is close to ‘0’ in both populations, which 
makes it hard to understand how a significant difference of p < 0.001 can emerge, particularly 
when only 5 mice were tested per group.Moreover, since only mild changes in the activity were 
observed (pre- vs post IED), how reliable are the detected differences in the responsiveness in 
dependence on thresholding of signal detection?   
Thank you for these insightful comments. The mean responsiveness is close to 0 as we expect, 
as IED recruitment is sparse in cells and in time (i.e., each IED only recruits a few cells, if any, 
and each cell is only recruited by a few IEDs, if any). The smaller p value occurs if the two groups 
of cells are pooled and tested against each other. We have revised this to more appropriately use 
a Wilcoxon signed-rank test on population means paired by mouse instead, which still yields a 
significant difference of p < 0.05. 
In addition, we have clarified the thresholding procedure for binarizing cell responsiveness in 
Methods (page 29) 
“The responsiveness was binarized to an “activation” variable z’, using the following bootstrapping 
procedure: a bootstrap responsiveness distribution was calculated by drawing 10,000 random 
trigger frames with replacement from the ∆F/F trace of each cell, excluding IEDs and seizures, 
and then used to construct a 95% confidence interval. A cell was determined to be “activated” by 
an IED if its responsiveness to that IED exceeded the 95th percentile of the bootstrapped 
responsiveness distribution.” 
 
From the surgical procedure (aspiration until stratum lacunosmum moleculare in Methods and 
reference to Danielson et al., 2016a) it remains unclear, whether CA1 was damaged in the here 
imaged mice. If so, experiments should be confirmed in mice with CA1 intact. 
Thank you for valuable input. The aspiration into CA1 is indeed a limitation of all existing 
approaches to cellular resolution two-photon imaging of the dentate gyrus. Unfortunately, while 
some preliminary evidence suggests that it may be possible in the future to image DG without 
aspiration using 3-photon calcium imaging, there currently do not exist standard, published 
techniques which allow the DG to be imaged without aspirating CA1. 
We have added the following to the discussion (page 16). 



“While our method required ipsilateral partial aspiration of dorsal CA1 to gain high-resolution 
optical access to DG, normal DG neural dynamics has been demonstrated using similar methods 
in non-epileptic mice (Danielson et al., 2016, Hainmueller and Bartos, 2018, Woods et al., 2020).  
While normal levels of neurogenesis and general abGC morphology is not altered following 
aspiration (Danielson et al., 2016), we cannot rule out the possibility that the damage caused by 
the implant contributed to the microcircuit reorganization and functional pathogenesis produced 
by the TLE model. This is an important question, and we expect that advances in three-photon 
(Weisenburger et al., 2019) imaging will permit dissection of DG circuits with CA1 intact in the 
near future.” 
 
Minor comments: 
Figure 1: Please mention whether 1B refers to single frame image or to an average image. Include 
in (D) the label ‘LFP’ to the LFP trace and include arrows pointing to IEDs.  
Thank you. We have added this information to Figure 1 and caption.  
 
Reviewer #2 (Remarks to the Author): 
 
Sparks and Liao et al. investigate the ensemble activity structure of the dentate gyrus (DG) in an 
epileptic mouse model. By crossing different transgenic mouse lines, the authors are able to 
genetically identify adult-born granule cells (abGCs) in the DG in-vivo. Combining 2-photon 
calcium imaging, local field potential recordings, and a model of chronic temporal lobe epilepsy, 
the authors record the activity of both abGCs and mature GCs (mGCs) during interictal 
epileptiform discharges (IEDs). They use statistical models to analyze the involvement of different 
populations during IEDs and find that the more abGCs-matching ensembles are more prominently 
recruited by IEDs. The topic of the research is interesting in that it studies the contribution of 
distinct populations of granule cells in the DG to epilepsy, of which the cellular level mechanisms 
are unclear; the specific roles of abGCs are important to understand but these have been difficult 
to dissect previously due to lack of 
proper tools. However, the analysis is preliminary and there are several major issues with the 
paper as is, mostly pertaining to the interpretation of the results, statistical analysis, and missing 
critical details. Please find below detailed comments: 
 
1. AAV2/1:hSyn-GCaMP6f labels not only granule cells but also interneurons in the DG. 
They would be difficult to be differentiated from cellular calcium signals but may be involved in 
distinct network activity thus may form distinct ensembles; the ensemble structure could be picked 
up by the statistical analysis shown Fig. 4. The authors would need to discuss how this may 
influence the interpretation of Fig. 4. More specifically, is it possible that one of the major 
ensembles shown in Fig. 4C is mainly comprised of interneurons? This would have important 
implications on the overall interpretation of the DG GC network (instead of the entire network) 
during IEDs.  



Thank you for the valuable input. It is true that GCaMP expression via synapsin promoter-driven 
rAAV labels all populations of DG neurons. Given the low abundance of interneurons compared 
to granule cells, it is unlikely that interneurons would significantly contaminate the mature granule 
cell population (note that abGCs are positively identified by the  Nestin-Cre x tdTomato approach). 
In order to assess the potential impact of interneurons in DG mixed in with mGCs, we now 
performed a control experiment in which we imaged the GCL in a VGAT-cre x Ai9 mouse 
(interneurons express tdTomato) that was injected with KA. The time average field-of-view shown 
below (Rebuttal Figure 1, interneurons are in red), illustrating that while a few interneurons are 
present, they form only a small proportion of the cells recorded. Therefore, we do not anticipate 
that the analysis was meaningfully affected by the presence of interneurons. We have added the 

following discussion (page 17) as well as an additional 
Supplementary Figure: 
 
“Although a rAAV-driven expression of GCaMP labels 
both excitatory and inhibitory populations in the DG, 
excitatory neurons form the overwhelming majority of 
the imaged population in this study. To quantify the 
potential impact of GABAergic neurons labeled 
among the DG granule cells in the KA model, we 
imaged GCL in a VGAT-cre x Ai9-tdTomato mouse 
line, finding that GABAergic neurons only constitute a 
small fraction (~2%) of the neurons in a typical FOV 
(Figure S3). Therefore, while there may be a small 
number of unidentified interneurons in the extracted 
GC population, we assume that their impact on the 
results presented here is negligible.“ 
 

Related to this, the labelled abGCs are >5 weeks old at the time of data acquisition, is it possible 
that the more newly-born GCs actually do not express tdTomato but GCaMP6f thus contaminate 
the ‘mGCs’ population? 
Thank you for this valuable comment. We have previously characterized the labeling efficacy of 
the  transgenic method (Danielson et al., 2016) based on NestinCreERT2 mice were crossed with 
a conditional tdTomato reporter line and pulsed with tamoxifen. We found  that labeling efficacy 
of the method is high: approximately 90% of the doublecortin population of immature GCs are 
labeled, indicating 10% of abGCs were not labeled and thus were not characterized as abGCs. 
Because of the irreversible nature of Cre-recombination in stem cell, we expect that the labeling 
is permanent and indelible after induction in the lineage. 
 
 
2. Fig. S1A: the correct test to use is Wilcoxon signed-rank test because it’s the same mice 
and should not be treated as two independent samples. 
Thank you, it is fixed. 
 

Rebuttal Figure 1 (Figure S3).  



3. Does the average spectrum shown in Fig. 2B correspond to only the interictal spikes as 
the ones shown in Fig. 2A upper right? What do the error bars indicate? Why does the spectrum 
peak around 250-400 Hz (does not seem to correspond to the example shown in Fig. 2A upper 
right)? 
Thank you for the comment. We have revised the figure legend. The average spectrum 
corresponds to the average of all the interictal spikes recorded from this animal, with error bars 
showing the SEM. The peak is likely to reflect the timescale of positive and negative deflections 
(on the order of 10 ms in an event lasting ~50 ms), including multiple deflections in the case of 
multiphasic IEDs. In the raw magnitude spectrum, this peak is very small, and is emphasized by 
the 1/f correction. 
 
4. In Fig. 3, the logistic regression without regularization is not blind to cell identity because the 
weight of each individual IED is assigned based on its recruitment of either more mGCs or more 
abGCs (Fig. 3A&B). The regression with L1 regularization should be blind to cell identity, is that 
the case? Otherwise, the analysis & interpretation is circular.  
Thank you for the comment. If we understand the Reviewer’s comment correctly, the Reviewer is 
concerned that the regression depends on the cell identity indirectly through the biases of the 
IEDs. We used logistic regression to ask the question of whether abGCs vs mGCs exhibited 
different IED response profiles - it is possible (and indeed we demonstrate) that e.g. mGC identity 
can be decoded from participation in events that other mGCs are known to participate in. The L1 
regularization sharpens this argument by selecting for those events which are highly predictive. 
In this case, there is dependence on cell identity, but it is indirect and decoded via the IED 
responses - which was the goal of the analysis.  
 
We have reorganized this section to emphasize this point: 
We use L1 and L2 regularization of the classifier in order to further probe how cell identity 
influences participation in IEDs. The regularized classifier could find that participation in a 
particular sequence of mixed events is predictive of abGC identity, which would indicate that 
abGCs and mGCs are internally coherent and respond to IEDs through population-specific 
patterns. A second possibility is that the regularized classifier may find individual “pure” or near-
pure mGC-associated IEDs, which would indicate that some IEDs are attributable almost 
exclusively to one population. Finally, a third possibility is that the regularization penalty results in 
a much worse test accuracy, which would indicate that the entire profile of a cell’s response to 
IEDs is necessary to classify the cells accurately. 
 

Based on the cells’ IED responses, an L2-regularized logistic regression classifier achieved 
85±5% accuracy on a test set, balanced to remove the effect of population size, cross-validated 
over 100 random 80-20 train-test splits (Figure 3C, left; Figure S1E). Subsequently, we use a 
sparsifying (L1)  regularization penalty in order to concurrently identify the subset of IEDs which 
are “most informative” about cell identity, in the sense that knowing a cell’s response to those 
events is almost as predictive of identity as knowing the cell’s complete response profile (Figure 
3C right; see Methods). The L1 regularization penalty resulted in a slight reduction in test set 
accuracy (81±5% accuracy using the same procedure), but identified IEDs with highly population-
specific recruitment profiles and disregarded the majority which exhibited mixed activation, 
suggesting the second hypothesis above holds true, i.e., cell identity can be decoded from 



participation in events that other cells of the same type are known to participate in (Figure 3C; 
see Methods). 
 
The authors also use L2 regularization penalty (Fig. 3C) but the results are not mentioned in the 
main text.  
Thank you for the comment. Discussion of the L2 penalty has been added (page 9):  
Based on the cells’ IED responses, an L2-regularized logistic regression classifier achieved 
85±5% accuracy on a test set, balanced to remove the effect of population size, cross-validated 
over 100 random 80-20 train-test splits 
 
The following clarification has also been added to Methods (page 29): 
To assess the data for linear separability and examine the learned weights, logistic regression 
was first trained on the entire dataset using an L2 regularization penalty to avoid overfitting (Fig 
3A and B). To evaluate the generalization of the model, the dataset was split by cell into 80-20 
training and test sets, and test accuracies were computed. The model was trained with L2 
regularization to establish an accuracy baseline to compare with L1 accuracy. 
 
Are raw calcium time courses used throughout the paper? Is it possible that the ramping shown 
in dF/F in Fig. 3D is an artifact of the long time scale of calcium signals? Specifically, using 
deconvolved dF/F would be more rational to show the more precise time-locked transient 
responses. Also, plotting the PSTH for a time window of [-5 5] s seems too large considering that 
the IED rate is about 1.13/s.  
Thank you. DF/Fs are used throughout the paper. We have added the following Discussion: 
While our work is, to our knowledge, the first to combine multipopulation two-photon calcium 
imaging and LFP recording in vivo, the difference in temporal resolution between LFP events (ms) 
and calcium signals (100s of ms) is an important limitation, meaning unambiguous attribution of 
LFP events to calcium events is not always possible. We opted not to use spike deconvolution 
because spike deconvolution has not been validated for dentate granule cells, and there remain 
a number of unresolved questions surrounding the approach, especially on non-pyramidal 
populations (Evans et al., 2019). To circumvent this problem, we average the calcium traces of 
many cells and IEDs in order to isolate the cellular IED response by the law of large numbers. 
 
Moreover, the detailed methods on the linear classifier are completely missing from the Methods 
section. 
We apologize for the omission. This has been now added (page 29): 
Responsiveness of cells to IEDs 
A scalar responsiveness ∆ of a cell to an event was calculated as the cell’s mean activity in a 
fixed window post-event minus the cell’s mean activity in the same window pre-event. The 
analyses shown use a window size of 3 seconds, though the results do not change appreciably 
for window sizes between 1 second and 5 seconds (data not shown). An Ncells x Nevents data 
matrix was constructed in this manner, and a Ncells x 1 vector of labels was constructed from the 
red channel, with tdTomato-tagged cells labeled as “abGC” and all others labeled as “mGC”. 
 
Linear classification of abGCs and mGCs based on IED response profiles 



A logistic regression linear classifier was trained to classify abGCs and mGCs based on their IED 
response profiles. Training and testing were performed using the scikit-learn package version 
0.23.1 (Pedregosa et al., 2011).  
 
To assess the data for linear separability and examine the learned weights, logistic regression 
was first trained on the entire dataset using an L2 regularization penalty to avoid overfitting (Fig 
3A and B). To evaluate the generalization of the model, the dataset was split by cell into 80-20 
training and test sets, and test accuracies were computed. The model was trained with L2 
regularization to establish an accuracy baseline to compare with L1 accuracy. 
 
5. In the caption of Fig. S2D: it’s written “suggesting that certain mGCs are highly coupled to 
abGCs and may propagate abGC activity through the network”. What is the logic in saying that? 
Please elaborate. 
Thank you for this comment. We find certain mGCs which seem coupled to abGC ensembles. It 
is surprising that the “purest” abGC ensemble still contains a fair number of mGCs - if we believe 
that newborn cells have a more active and independent role in the network, as shown by us and 
others (Danielson et al., 2016, Sahay et al., 2011, Ikrar et al., 2013, Nakashiba et al., 2012), then 
one possible explanation of this phenomenon is that this abGC ensemble is feeding input to these 
mGCs, which, being more integrated into the circuit, propagates this activity downstream.  
We have reworded this statement and moved it to the Discussion section (page 14).  
Our modeling approach revealed that IED-associated variance in network activity in the epileptic 
DG is disproportionately correlated with the activity of abGC-dominated ensembles. This 
observation is consistent with the hypothesis that abGC-dominated ensembles drive IED-
associated network activity. However, the experiments performed here cannot definitively exclude 
alternative hypotheses, such as the possibility that IED and ensemble heterogeneity are driven 
by variance in the origin of IEDs; testing such hypotheses could form the basis of future 
experiments.  
 
6. The correlation matrices shown in Fig. S2E are problematic. The correlations are based 
on the fraction of abGCs in each ensemble and these fractions are sorted from low to high. The 
correlation will be inherently high by construction once you sort them and then obtain the 
correlation coefficient. Therefore, the main claim of this figure that “the statistics of this ensemble 
structure are highly conserved across animals” does not hold. 
Thank you for this comment. Indeed, this is a limitation of the metric used, arising from the fact 
that there is no obvious way to establish correspondence of ensembles between animals other 
than by relative proportions of each population. We deliberately chose Pearson’s correlation 
coefficient in order to attempt to measure excess correlation ascribable to shared structure 
beyond the sort itself, but the correlation that arises as a result of the matching procedure is 
indeed problematic. In light of these concerns, we have elected to remove this figure. However, 
this does not affect the other evidence for this claim, i.e., the consistency we see in other statistics 
of ensemble structure between animals, such as the fraction of abGC dominated ensembles, the 
“purity” of the purest abGC ensemble vs mGC ensemble, and the mean off diagonal correlations. 
Therefore, we believe that the claim still holds. 
 



7. Terminology in Fig. 3C caption: 100-fold cross-validation on an 80-20 train-test split. Do 
the authors mean “100 times 5-fold cross-validation”? 100-fold would imply splitting data into 99% 
for training and 1% for test. 
Thank you. We have fixed this caption.  
Left: 100 times cross-validation on an 80-20 train-test split shows 85±5% classification accuracy 
on the test set under standard L2 regularization and 81±5% classification accuracy under L1 
regularization 
 
8. The mice are head-fixed and free to run on a treadmill belt. How is the animal’s behavior 
related to the heterogeneity in the responses of abGCs and mGCs to individual IEDs? It is 
possible that certain degree of the observed heterogeneity arises from different behavioral states. 
For example, the responses of some abGCs or mGCs to IEDs may depend on if the animal is 
running or still, how fast the animals is running, etc. This is corroborated by that the most active 
ensemble can be decoded from the IED power spectrum (both could be influenced by animal’s 
behavior) for small ensemble number. Unfortunately, this aspect is not analyzed at all.  
Thank you for this comment. Behavior state modulation is indeed an important point to consider. 
For the purposes of this experiment, the animals were not trained to run. Therefore, there is 
relatively little behavior state heterogeneity. We do not find population-level differences in 
responsiveness to onset and offset of locomotion (Fig. S1A). Furthermore, the following plot 
(Rebuttal Figure 2) shows the raster of Figure 4B with running bouts highlighted in orange: 
running intervals account for less than 5% of the session.   
 

 
Rebuttal Figure 2. 

This is minor but the authors also implant an EMG electrode in the mice. How the EMG signal, 
which may reflect the animal’s behavioral state, may explain the heterogeneity is not analyzed. It 
is also useful to check the relationship between the EMG signals and IEDs; is it possible that 
some of the IEDs and certain ensembles are correlated with EMG fluctuations? These control 
analyses would be helpful to exclude possibilities which could otherwise undermine the main 
conclusions. 
Thank you. Unfortunately, while the EMG probe was implanted and is included in the Method for 
completeness, the signals recorded were not dynamic and were of low quality. As a result, these 
data were not used in the analysis. 
 



9. In Table S1, please double check if the numbers are correct. The “Mean Total” seems 
wrong. 
Thank you for pointing out this typo, the Table S1 has been revised. 
 
10. It is problematic that several of the conclusions are made on statistics from only one 
example animal (e.g. Fig. 2C, Fig. 3D) without analyzing the population statistics (all mice). 
Thank you for the valuable feedback. We have now better integrated more population statistics 
into our results: we have replaced Figure 2C with the mean PSTH averaged across animals in 
the main text. In addition, we have added a further supplementary figure panel (Figure S1E) 
analyzing the population statistics of classification under the two penalties (Rebuttal Figure 3).  

 
 

 
 

11. Although the ratio between abGC-dominated and mGC-dominated ensembles are ~4:6 
and the percentage of abGCs is only ~11% in the DG, this does not necessarily imply that the 
abGC-dominated ensembles contribute to the generation of IEDs more than mGC ensembles. It 
is possible that abGCs are simply more heterogeneous (therefore more distinguishable 
ensembles), or the majority of IEDs-related mGCs occupy a small number of ensembles; 
consequently, the total fraction of neurons involved in IEDs could be higher in mGCs than abGCs, 
disproving that abGC ensembles drive IEDs more prominently than mGC ensembles. Also, 
without further experiments, one could only say how GCs activity is correlated with but not how 
they could ‘drive’ IEDs. 
Thank you for these important alternative hypotheses. It was not our intention to claim that more 
abGCs are involved in IEDs compared to mGCs in absolute terms. Indeed, statistically it is 
inevitable that more mGCs are involved in each IED, as mGCs far outnumber abGCs. However, 
we do make the claim that IED heterogeneity is reflected in abGC ensemble heterogeneity, as 
there are more abGC-dominated ensembles than one would expect by random sampling. We 
have addressed this important caveat and alternative hypotheses in the Discussion.  
 
Our modeling approach revealed that, IED-associated variance in network activity in the epileptic 
DG is disproportionately correlated with the activity of abGC-dominated ensembles. This 
observation is consistent with the hypothesis that abGC-dominated ensembles drive IED-

Rebuttal Figure 3 (Figures 2C and S1E).  



associated network activity. However, the experiments performed here cannot definitively exclude 
alternative hypotheses, such as the possibility that IED and ensemble heterogeneity are driven 
by variance in the origin of IEDs; testing such hypotheses could form the basis of future 
experiments. 
 
Furthermore, we have replaced this analysis with a more rigorous procedure for determining the 
number of abGC and mGC-dominated ensembles. This has been added to the Methods (page 
30) as follows: 
 
We identified “abGC dominated” and “mGC dominated” ensembles by sampling from a shuffle 
distribution as follows: The number and sizes of ensembles were fixed from the ensembles 
identified in real data. The cell type labels were then randomly permuted while preserving the 
overall number of abGCs and mGCs in the entire population. This procedure was repeated for 
10,000 iterations to construct null distributions for the number of abGCs and mGCs expected in 
each ensemble based on its size. Ensembles which contained more abGCs or mGCs than the 
95th percentile of its size-matched shuffle ensemble were termed abGC- or mGC-”dominated”, 
respectively.  
 
12. How is the bootstrapped, binarized matrix z’ constructed? Does it solely depend on other 
synchronous network activity excluding IEDs? This seems to be the case as in the caption of Fig. 
4B. Then the ensemble structure is estimated from this matrix and the results are used for the 
analysis of IEDs events. Does it not depend heavily on the hypothesis that the same ensemble 
structure is preserved across other synchronous network activity and IEDs? 
We do not see significant synchronous network activity outside of IEDs. However, we do verify 
that the ensemble structure is conserved across IEDs, as cells which are co-active in one IED 
tend to be co-active in other IEDs. In Figure 4F, we sort the cells according to ensemble, and find 
that cells within an ensemble are highly correlated to each other compared to cells outside that 
ensemble. 
 
We have clarified the construction of the binarized matrix in the revised Methods section (page 
29): 
The responsiveness was binarized to an “activation” variable z’, using the following bootstrapping 
procedure: a bootstrap responsiveness distribution was calculated by drawing 10,000 random 
trigger frames with replacement from the ∆F/F trace of each cell, excluding IEDs and seizures. A 
cell was determined to be “activated” by an IED if its responsiveness to that IED exceeded the 
95th percentile of the bootstrapped responsiveness distribution. 
 
 
Reviewer #3 (Remarks to the Author): 
The manuscript by Sparks et al., describes the relative contribution of the activity of adult born 
dentate granule cells and mature granule cells to interictal epileptiform discharges in the 
hippocampus. The authors use several novel techniques to classify which populations of cells are 
activated in response to any given IED, and compare ensemble activity across animals. The 



authors find a set of latent ensembles of DGs involved in IED activity and these ensembles are 
disproportionately dominated by activity of abGCs. Comments are below: 
 
1. My biggest concern with the manuscript is that it is unclear what these results mean for 
our understanding of epilepsy in general. For the composition of these ensembles to relate to 
epilepsy more broadly, it would be good to show that some result correlates with an epileptic 
phenotype. For example, the number of IEDs with pure abGC ensembles or the pureness of the 
ensembles in any given animal would relate to seizure frequency or duration on an animal-by-
animal basis, or perhaps more tractably the ensemble composition could relate to the ability of 
the IED to generalize on an IED-by-IED basis. The assertion that the findings are an epilepsy-
specific phenomenon and is not a function of how DG neurons behave in ensembles more broadly 
is also questionable. I do not see any effort made to distinguish DG ensemble activity in IEDs 
from activity in normal ongoing function or evoked stimulation. However, the technique used to 
characterize latent ensemble recruitment is interesting and novel.  
Thank you for the insightful and helpful comments. The presence of IEDs is inherently 
pathological; therefore, we believe that any response of GCs to these pathological events is 
interesting for our understanding of epilepsy. By focusing on IEDs and GC activity, and building 
on earlier 2P imaging studies in vitro (Feldt Muldoon et al., 2013), we aimed to advance our 
understanding of how macroscopic events, as observed with LFP/EEG electrodes, relate to 
microscopic, cellular-level patterns of activity in chronically epileptic neuronal networks, which is 
considered to be a critically important outstanding problem of epilepsy research (reviewed in 
Farrell et al., 2019). As the reviewer points out, the technique used to characterize latent 
ensemble recruitment is novel, and it seems reasonable to expect that it will also be useful to 
investigate in future studies on the involvement of distinct DG ensembles in normal DG functions.  
 
2. Have the authors used the classifier on snips of control LFP to see if it catches sharp 
waves? Can the authors use the movement information to inform whether they are capturing IEDs 
vs sharp waves? 
Thank you for this comment. This is an important question but beyond the scope of the study, 
especially since the relationship between sharp waves in the CA1 and dentate GC ensemble 
activity appears to be a complex one, based on the few studies that have begun to address this 
interesting question (Penttonen et al., 1997; Headley et al., 2007; Pofahl et al., 2020, Dvorak et 
al., 2020).  We did not aim to capture or image sharp wave events in control animals and 
recordings were restricted in TLE animals.  Furthermore, while IEDs are readily detectable using 
a single-channel electrode (as in our study), reliable detection of sharp wave ripples would require 
multi-channel probes.  
 
3. The authors should include a figure showing the LFP classifier feature space.  
Thank you for the comment. We show the LFP classifier feature space schematically in Figure 
2A. However, due to kernelization, the effective space in which classification occurs is infinite 
dimensional. The features that the kernel classifier receives are simply a magnitude spectrum, 
which we show in Figure 2. 
 



4. How are the authors binning to classify a cell as responsive or non-responsive to an IED 
event, e.g. what is the time window for calcium changes in a cell in relation to an identified LFP 
IED that would classify that cell as “responsive”? How was this chosen? Over what period of time 
was activity averaged? Have the authors done a robustness analysis to validate their binning 
choice? 
Thank you. We choose a time window of 3 seconds pre and post IED in order to capture fast and 
slow-timescale responses evoked in the slow calcium signal. We have performed a robustness 
analysis comparing this choice to 1 s of activity pre/post vs 5 s of activity pre/post, yielding a highly 
similar bootstrapped activation matrix z’ compared to 3 s (Rebuttal Figure 4). Narrower windows 
consisting of only a few frames are likely to be less useful due to the slow sampling rate of the 
calcium, while wider windows are unlikely to be useful due to the decay time constant of calcium 
responses. 

The following text has been added to Methods (page 
29):  
A scalar responsiveness ∆ of a cell to an event was 
calculated as the cell’s mean activity in a fixed 
window pre-event subtracted from the cell’s mean 
activity in the same window post-event. The 
analyses shown use a window size of 3 seconds, 
though the results do not change appreciably for 
window sizes between 1 second and 5 seconds 
(data not shown) 
[ … ] 
The responsiveness was binarized to an “activation” 
variable z’, using the following bootstrapping 
procedure: a bootstrap responsiveness distribution 
was calculated by drawing 10,000 random trigger 
frames with replacement from the ∆F/F trace of each 
cell, excluding IEDs and seizures, and then used to 
construct a 95% confidence interval. A cell was 
determined to be “activated” by an IED if its 
responsiveness to that IED exceeded the 95th 
percentile of the bootstrapped responsiveness 

distribution.  
 
5. How are you determining the 0.1 cutoff for the IED mGC-ness score? What proportion of 
the IEDs have a sameness score between -0.1 and +0.1 (or is the histogram in 3B all the data 
from that animal)? Does the bi-modality hold for all animals?  
Thank you. The intercept (0.1) is determined as part of the logistic regression fitting process. The 
histogram in Figure 3B represents all data from this animal. The bimodality holds for all animals. 
We have added a further pooled supplemental figure (Fig S1E) emphasizing the consistency of 
classification across animals.  
 

Rebuttal Figure 4. 



6. The L1 regularization analysis seems tautological and difficult to cross validate. Can the 
authors show a scatterplot of responsive cells to each spike by cell type?  
Thank you for the valuable comment. Each session may have several hundred spikes, and each 
cell’s spike responsiveness profile is a vector of the same length. Due to random recruitment and 
the presence of mixed ensembles, there is high variability in cells’ responsiveness to any 
individual spike. However, we can perform dimensionality reduction on the multi-hundred-
dimensional cell responsiveness vectors using UMAP in order to visualize the responses of the 
populations to spikes (Rebuttal Figure 5, Figure S1D). 

  
 
 
 

 

 
Rebuttal Figure 5 (Figure S1D). 

We have also added the following section to Methods (page 29): 
UMAP dimensionality reduction 
We use supervised UMAP to perform dimensionality reduction in order to visualize the cell IED 
response profiles in high dimensional space. Dimensionality reduction was performed using the 
UMAP-learn package. The UMAP embedding was cross-validated in a similar manner to the 
logistic regression: UMAP was trained on a random 80% of the cells and the learned embedding 
was applied to a held-out on 20% of the cells. 
 
7. Is there some feature of the IED that can be mapped on to whether the ensemble is a 
mCG-/ abGC-selective or a mixed ensemble? 
Thank you for the insightful comment. In this work, we primarily focus on whether features of the 
low-dimensional global LFP signal can be decoded from the activities of individual cells and 
ensembles. The question of whether the (high-dimensional) population activity can be predicted 
from the one-dimensional global LFP signal, which is the “critical inverse problem” that we allude 
to, is a very scientifically interesting question which could form the basis of future work in this 
area, but is mostly outside the scope of this work. However, we show in Figure 4 H that indeed 
there is some information about the recruitment profile of an event in its LFP spectrum which is 



decodable using Random Forests, a highly nonlinear “black box” decoding algorithm. All of the 
linear decoders we tried performed no better than chance. 
We have expanded upon the Discussion in this regard (page 15): 
In this work, we primarily investigated whether features of the low-dimensional global LFP signal 
can be decoded from the activities of individual cells and ensembles. The critical inverse problem 
of whether the (high-dimensional) population activity can be predicted from the one-dimensional 
global LFP signal is of great interest, though more difficult as it requires predicting a nonlinear 
statistic of high-dimensional data from a one-dimensional LFP signal. Our finding that, for small 
ensemble numbers, the most active ensemble in each IED could be decoded significantly above 
chance from the power spectrum of the IED alone suggests that specific GC ensembles do have 
distinct LFP signatures (see Valero et al., 2017 for another example). While there is no obvious 
way to equate ensembles across animals, whether these LFP signatures are conserved across 
animals poses an interesting open question for future work 
 
8. Are data in figure 4A-F for one recording session in one animal? Do these results hold up 
across animals?  
Thank you for the comment. We have clarified that the data in Figure 4A-F are examples from 
one animal. However, summary statistics of these results across animals are shown in Figure 
S2.  
 
9. 4E, left is never described in the text 
Thank you, we have moved this panel to supplement and we reference it in the main text  (page 
12) 
 
10. What’s the cut off for an abGC- or mGC- “dominated” ensemble? Does this vary across 
animals? Does it vary as a function of the frequency of IEDs even within animal?  
Thank you for the comment. We term an ensemble “dominated” by a certain cell type if that cell 
type is overrepresented in that ensemble compared to chance sampling. We have replaced this 
analysis with a more rigorous procedure for determining the number of abGC and mGC-
dominated ensembles. This has been added to the Methods (page 30) as follows: 
 
We identified “abGC dominated” and “mGC dominated” ensembles by sampling from a shuffle 
distribution as follows: The number and sizes of ensembles were fixed from the ensembles 
identified in real data. The cell type labels were then randomly permuted while preserving the 
overall number of abGCs and mGCs in the entire population. This procedure was repeated for 
10,000 iterations to construct null distributions for the number of abGCs and mGCs expected in 
each ensemble based on its size. Ensembles which contained more abGCs or mGCs than the 
95th percentile of its size-matched shuffle ensemble were termed abGC- or mGC-”dominated”, 
respectively.  
 
11. Are data displayed in 4H from all IEDs in all animals? Most example traces show 4 or 6 
ensembles and text states that K=6 is validated across animals, but the accuracy of decoding the 
IED is at chance for those ensemble sizes. Could the authors please discuss? 



While the focus of this work is decoding in the “forward” direction (using cell activities to decode 
IED), we find that some level of decoding in the “inverse” direction is possible. Practically, the 
inverse problem is much more difficult to solve, as it entails predicting a nonlinear statistic of high 
dimensional data (namely, the cells active) from low-dimensional data (the global LFP signature). 
As the number of ensembles to be decoded in this way increases, the problem is compounded. 
We believe decoding of larger ensemble numbers would improve with more training data, though 
this is outside the scope of this current work. 
We have added the following text to the Discussion (page 15): 
 
In this work, we primarily investigated whether features of the low-dimensional global LFP signal 
can be decoded from the activities of individual cells and ensembles. The critical inverse problem 
of whether the (high-dimensional) population activity can be predicted from the one-dimensional 
global LFP signal is of great interest, though much more difficult as it requires predicting a 
nonlinear statistic of high-dimensional data from a one-dimensional LFP signal.  Our finding that, 
for small ensemble numbers, the most active ensemble in each IED could be decoded 
significantly above chance from the power spectrum of the IED alone suggests that specific GC 
ensembles do have distinct LFP signatures (see Valero et al., 2017 for another example). The 
number of ensembles decodable from this low-dimensional signal does not necessarily reflect the 
number of ensembles in the network; rather, the complexity of decoding increases combinatorially 
with the number of ensembles to be decoded. We believe decoding of larger ensemble numbers 
would improve with more training data, though this is outside the scope of this current work. While 
there is no obvious way to equate ensembles across animals, whether these LFP signatures are 
conserved across animals poses an interesting open question for future work. 
 
Minor  
All animals are presumably recorded for multiple test sessions but overall, the reader has to work 
pretty hard to determine which figures are from one recording vs one animal vs pooled over the 
entire cohort. It is unclear why more pooled data are not shown, unless the results do not 
generalize? 
Thank you for your helpful comments on the presentation of our results. The principal innovations 
presented in this work are conceptual, relating the activity of individual events to individual cells 
and ensembles. We feel that it is important to illustrate these results for the reader by example 
first before presenting extensive second-order statistics. However, we have supplemented 
Figures 2-4 with pooled data as follows: We have replaced Figure 2C with a pooled figure from 
5 animals. We have also supplemented Figure 3 with panel Figure S1E showing that the 
classifiability of abGCs and mGCs by IED-responses generalizes across 5 animals. Figure S2 
shows summary statistics for the modeling procedure depicted in Figure 4 across animals.  
 
Red and blue are not labeled in Figure 3D 
Thank you. Corrected 
 
The organization on Figure 3 makes it hard to read 
 



Thank you, we hope that with the reorganization of other figures, the presentation has now been 
improved. 
 
4H is cited before 4G 
Thank you. Corrected 
 
4G orange and blue are not labeled  
Thank you. Corrected 
 
Figures 4A, B, D and S2A are so small, they’re almost impossible to see 
Enlarged, reorganized. 
Thank you. Corrected 
 
Was the location of the LFP recording electrode in the CA1 cell layer verified? 
Thank you. Our electrode placement in the CA1 was based on stereotactic coordinates.  Accurate 
placement of the single wire electrode was not restricted to the pyramidal cell layer, as detection 
of the macroscale IED events is not dependent on the electrode being in this layer (indeed, IEDs 
may be detected using surface EEG electrodes alone, Javidan, 2012). Therefore, we did not 
design the experiments in a way that required histological verification of precise electrode 
placement within CA1. Future studies will be able to use the analytical techniques presented in 
this paper to ask DG-related questions that do require the placement of LFP electrodes in the 
CA1 cell layer, e.g., regarding the precise relationship between replay of specific episodic memory 
sequences during ripples in the CA1 and the recruitment of DG GC ensembles in both control 
and chronically epileptic animals. 
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

I have no further comments to the authors. All questions/criticism were sufficiently addressed. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The authors have addressed most of my concerns. I have a few remaining comments: 

1. The authors could use some better organization of the figures. 

2. A couple of the responses to my previous comments are not reflected in the manuscript, e.g. 

Figure S2E, which is potentially misleading due to the way of sorting, is still mentioned in the main 

text. 

3. Figures S1D&E,2F are missing. 

4. Line 289: reference to Figure 3D instead of Figure 3C; missing statistics when claiming 

‘significant’ vs. ‘not significantly’. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The authors have addressed many of my comments. Changes to the figures and additions to the 

discussion have greatly improved the manuscript overall. However, my main concern still remains: 

 

While I agree that the presence of IEDs is inherently pathological, SPW-Rs coexist with IEDs in the 

epileptic brain and IEDs can overlap with normal SPW-Rs in amplitude and duration (Buzsaki 

2015). These may therefore be picked up by their IED algorithm, especially given that the IEDs in 

the kainite model can be heterogeneous (Chauviere et al., 2012) and that the method was not 

tested for “false-positives” with control LFPs. In light of this and the fact that there is no control 

DG network comparator in the study, in order to suggest that this is a pathological rather than a 

physiological feature of the DG network, it is important that some aspect of the observed DG cell 

networks relate to some feature of the epilepsy. 

 

The authors should attempt to correlate any of the features of the functional organization of the 

DGC networks within each animal to the severity of the animal’s pathology (e.g. seizure frequency, 

duration, etc.) or correlate the composition of the networks on an IED-by-IED basis to the 

“severity” of the IED (e.g. the duration the individual IED or its ability to generalize into a seizure.) 

The authors state in the methods that they have information on seizure frequency and duration 

and have information on every IED, so I believe both of these analyses should be possible with 

their current data set and would greatly strengthen statements about "pathological ensembles." 

Without these analyses, while I still remain enthusiastic about the latent ensemble recruitment 

method, it is extremely difficult for me to be enthusiastic about the biological results of the paper 

and feel it would be more appropriate for a methods journal. 

 

 

 



Once again, we thank our Reviewers for considering the initial revisions that we made to the 
manuscript, and for further highly constructive comments that remained to be addressed. Our 
point-by-point responses to the remaining specific concerns are noted below with the Reviewers’ 
comments retained in blue. 
 
Reviewer #1 (Remarks to the Author): 

 
I have no further comments to the authors. All questions/criticism were sufficiently 
addressed. 
We thank the Reviewer for their efforts in assessing our manuscript and providing 
invaluable feedback which has improved the paper. 

 
Reviewer #2 (Remarks to the Author): 

 
The authors have addressed most of my concerns.  
We thank the Reviewer for their efforts in assessing our manuscript and providing 
invaluable feedback which has improved the paper. 
 
I have a few remaining comments: 
1. The authors could use some better organization of the figures. 
Thank you for this comment. To improve readability and flow, we have reorganized Figures 
1, 2, and 3.  
 
2. A couple of the responses to my previous comments are not reflected in the manuscript, 
e.g. Figure S2E, which is potentially misleading due to the way of sorting, is still mentioned 
in the main text. 
3. Figures S1D&E,2F are missing. 
An intermediate version of the revised supplementary figures was mistakenly included 
when the submission was uploaded. We sincerely apologize for this error. The correct 
versions should reflect these changes. 
 
4. Line 289: reference to Figure 3D instead of Figure 3C; missing statistics when claiming 
‘significant’ vs. ‘not significantly’. 
Thank you for the comment. The figure reference has been corrected. Statistics have been 
added to verify the effectiveness of the classification procedure. The revised text reads as 
follows: 
 
“A two-way analysis of variance yielded a main effect for IED class (pro-mGC vs anti-mGC, F(3,54) 
= 14.11, p=6x10-7), such that pro-mGC IEDs significantly positively modulated mGCs compared to 
anti-mGC IEDs. The main effect of population was non-significant (F(3,54)=0.13, p=0.71), which 
suggests that our observations cannot be explained by intrinsic differences in responsiveness 
between the two populations independent of the type of IED. However, the interaction effect was 
significant (F(3,54) = 10.29, p=0.002), indicating a crossing over effect, i.e., that pro-mGC IEDs 
significantly positively modulated mGCs over abGCs. This verifies that single cell responses to the 



“most informative” IEDs identified by this procedure showed high within-population heterogeneity but 
striking between-population differences [...]” 
 
Reviewer #3 (Remarks to the Author): 

 
The authors have addressed many of my comments. Changes to the figures and additions 
to the discussion have greatly improved the manuscript overall. However, my main concern 
still remains:  

 
While I agree that the presence of IEDs is inherently pathological, SPW-Rs coexist with 
IEDs in the epileptic brain and IEDs can overlap with normal SPW-Rs in amplitude and 
duration (Buzsaki 2015). These may therefore be picked up by their IED algorithm, 
especially given that the IEDs in the kainite model can be heterogeneous (Chauviere et al., 
2012) and that the method was not tested for “false-positives” with control LFPs. In light of 
this and the fact that there is no control DG network comparator in the study, in order to 
suggest that this is a pathological rather than a physiological feature of the DG network, it 
is important that some aspect of the observed DG cell networks relate to some feature of 
the epilepsy.   
 
Thank you for reinforcing the importance of adding this control to the manuscript, it not only 
strengthens the paper but increases the biological relevance. In response, we have now 
added an additional control experiment in which we specifically targeted hippocampal area 
CA1 with multisite silicone probe LFP monitoring and detection of sharp wave ripples (SPW-
Rs) and concurrently imaged DG in the healthy brain in two animals. These population 
events serve as a control DG network comparator, and we find that the abGC and mGC 
population responses are synchronous during these events and comparatively 
desynchronized during IEDs in TLE. We have added these findings to the Results Section 
(page 13), and Supplementary Figure 4. The new text describing these results reads as 
follows: 
 
“Sharp-wave ripples recruit synchronized mixed ensembles of abGCs and mGCs 
To verify that these observations about ensemble structure are a feature of TLE rather than a 
physiological feature of the DG network in response to any electrophysiological event, we imaged 
DG while recording sharp-wave ripples (SPW-Rs) in stratum pyramidale of CA1 in non-epileptic mice 
(Figure S4A). We then used the LDA/LER model to examine the ensemble structure underlying 
SPW-Rs in the control DG. As in Figure 4, we compute a binarized “recruitment” matrix of cell activity 
that is significantly positively modulated within SPW-Rs compared to non-SPW-R epochs (see 
Methods). From the recruitment matrices, we observe qualitatively that the abGC and mGC 
populations appear to be activated more sparsely and more synchronously than in IEDs in TLE 
(Figure S4B). As before, we train the model on the binarized recruitment matrix (Figure S4C,D). 
We find that the non-epileptic DG does not segregate into abGC and mGC ensembles; instead, all 
inferred ensembles are mixed. Nonetheless, we do confirm that the learned ensembles correspond 
to real correlation structure in the underlying cells (Figure S4E). To quantify this desynchronization 
across animals, we calculated Kendall’s tau correlation between the median event responsiveness 
vectors of the two populations in each recording session, and find that abGCs are significantly less 
synchronous with mGCs in IEDs in TLE compared to in SPW-Rs in control (p = 0.017, Mann-Whitney 



U-test on NTLE=17 IED recording sessions from 5 mice, NCTRL=8 SPW-R recording sessions from 2 
mice; Figure S4F).  
 
In addition, we have added the following text to the Discussion (page 16):  
We also explored the implications of this model in the context of SPW-R related ensemble recruitment. We 
find that the abGC and mGC populations are more synchronous in SPW-Rs and organize into more 
sparsely activated mixed ensembles compared to IEDs. These observations suggest that physiological DG 
microcircuits use these two populations in conjunction to perform ripple-associated computations; in 
contrast, the emergence of desynchronized population-specific ensembles in TLE suggests that abGCs 
decoupling from mGCs and becoming coupled to each other may be one of the pathomechanisms of TLE.  
These observations are consistent with the hypothesis that abGC-dominated ensembles drive pathological 
IED-associated network activity. However, the experiments performed here cannot definitively exclude 
alternative hypotheses, such as the possibility that IED and ensemble heterogeneity are driven by variability 
in the origin of IEDs; testing such hypotheses could form the basis of future experiments.  
 

 
 
Figure S4: Ensemble recruitment by sharp wave ripples in control animals. A. Schematic of 
simultaneous 2p imaging and SPW-R recording. B. Binarized activation matrix with respect to SPW-
Rs, using the same binarization procedure as in Figure 4B. C. Ensemble activity matrix shows sparse 
activation of ensembles. D. Learned ensembles in the network as in Figure 4D. The non-epileptic 



DG does not segregate into abGC and mGC ensembles; instead, all inferred ensembles are mixed, 
suggesting that physiological microcircuits use the two populations to perform ripple-associated 
computations in a synchronized manner, which is disrupted in IEDs in TLE. E. Cell-cell correlation 
matrix, sorted by ensemble ID. Cells tend to be correlated with other cells in the same ensemble, 
while having low correlation with cells in different ensembles. F. abGC event responses are 
significantly desynchronized from mGCs event responses in TLE. Synchrony is defined as the 
Kendall tau correlation between event-triggered activations in each population (Mann-Whitney U-
test on NTLE=17 IED recording sessions from 5 mice, NCTRL=8 SPW-R recording sessions from 2 
mice, p = 0.017).  
 
In addition, we have added related text to the Methods Section (pp. 27, 29): 
 
“Detection of sharp wave ripple events 
LFP signals were calculated from the wide-band 25 kHz signal by down-sampling to 1250 Hz. From the 4 
channels on the probe, the wire within the pyramidal layer was identified as showing the greatest ripple-
band Gabor wavelet power (100 to 225 Hz). After the removal of noisy LFP epochs, SWR events were 
detected using a custom Matlab supervised algorithm based on a template hand-labeled ground-truth data 
set of SWR events from 4 mice (separate from those recorded in this study) using k-nearest-neighbor 
embedding based on wavelet-derived SWR features. Candidate events identified using the supervised 
template matching procedure, were considered SWR-events if their within-event ripple-band wavelet power 
was at least 12 median absolute deviations (m.a.d.) above the median for the session. SWR-event detection 
was visually verified. Only SWR-events occurring during periods of immobility lasting at least 3 seconds 
were included in the analysis. For calculations requiring point time estimates, the within-SWR ripple-power 
peak was used. 
 
Synchrony 
The “synchrony” of abGCs and mGCs is defined as the Kendall tau correlation between the median 
event-activation vector of each population. Kendall’s tau was chosen as a “soft” correlation able to 
tolerate small displacements in time, meaning desynchronization in time is penalized on a continuous 
basis rather than as an all-or-nothing correlation as with e.g. Pearson’s r.  

 
The authors should attempt to correlate any of the features of the functional organization of 
the DGC networks within each animal to the severity of the animal’s pathology (e.g. seizure 
frequency, duration, etc.) or correlate the composition of the networks on an IED-by-IED 
basis to the “severity” of the IED (e.g. the duration the individual IED or its ability to 
generalize into a seizure.) The authors state in the methods that they have information on 
seizure frequency and duration and have information on every IED, so I believe both of 
these analyses should be possible with their current data set and would greatly strengthen 
statements about "pathological ensembles." Without these analyses, while I still remain 
enthusiastic about the latent ensemble recruitment method, it is extremely difficult for me 
to be enthusiastic about the biological results of the paper and feel it would be more 
appropriate for a methods journal. 
 
Thank you for this insightful comment. We confirm that our observations about ensemble 
structure represent a pathological rather than a physiological feature of the DG network by 
comparing the ensemble structure within IEDs to the ensembles recruited by SPW-Rs, and 
find significantly reduced event-associated synchrony between the abGC and mGC 



populations in TLE, as above. Furthermore, we have now also attempted to correlate this 
abGC-mGC desynchronization with a chronic disease phenotype, namely, seizure AUC (an 
electrographic measure of seizure severity) (Rebuttal Figure 1).  
 
Regression lines fit to either IED synchrony or “event synchrony” (also including non-
epileptic mice) vs seizure area-under-curve (AUC) in home-cage vEEG recordings suggest 
an inverse relationship between abGC-mGC event synchrony and severity of the epileptic 
phenotype. The inverse relationship we find between seizure AUC and abGC-mGC 
synchrony is consistent with our finding that the two populations are significantly 
desynchronized in IEDs in TLE compared to in SPW-Rs in the nonepileptic animal. Two 
drawbacks of the requested analysis should be noted: First, the correlation of an imaging-
associated metric and a chronic vEEG metric can only be performed on a per-animal basis. 
Second, the goal of 24 hour vEEG monitoring described was to verify that animals had 
entered the chronic phase of TLE, which occurred approximately 10 days prior to the 
imaging sessions described in the study, and was halted once this occurred. Consequently, 
the true association between gold-standard chronic measures of disease severity and the 
correlation structure of the network may be higher, but we do not have more proximal data 
available in this dataset. Nevertheless, if the Reviewer considers that it is relevant and 
informative, we would be happy to add this panel as Figure S4G.  
 
 
Rebuttal Figure 1 

 
Rebuttal Figure 1. Seizure AUC, area-under-curve, was taken as the integral of an indicator variable 
representing seizure occurrence over the most proximal 24 hour period to the imaging session (10 



days prior to imaging), which corresponds to the seizure frequency weighted by seizure duration in 
home cage in the 24 hours at that time point. 
Relationship between abGC-mGC synchrony and seizure AUC in the most recent 24 hours of video 
EEG recorded prior to imaging, 1 point = 1 animal (orange points, Δt = 10 days). Synchrony for 
control animals (green) also plotted for comparison (AUC = 0). Regression lines fit to either IED 
synchrony only (orange dashed line, y = -0.07 x + 0.66, r^2=0.32, p=0.32) or “event” (IED or SPW-
R) synchrony (blue dashed line, also including non-epileptic mice, y=-0.07 x + 0.65, r^2=0.43, 
p=0.11) suggest an inverse relationship between abGC-mGC event synchrony and severity of the 
epileptic phenotype.  
 



Reviewers' Comments: 

 

Reviewer #3: 

Remarks to the Author: 

The authors, Sparks et al., have addressed most of my comments. The inclusion of controls is 

appreciated; this very much strengthens the idea that these DG ensembles are a feature of a 

pathological network. If possible, please include this information in one of the highlights (e.g. 

“AbGC-dominated ensembles are disproportionately represented among the inferred ensembles 

during IED but not SW-R events”) 

 

Minor changes: 

 

Please show the distribution of the synchrony data in S4D, rather than just a bar chart. 

 

I believe there is utility to figure S4G and it is worth including in the final manuscript. It appears 

that, while synchrony is somewhat related to the seizure severity on a per-animal basis, it 

certainly does not explain a lot of the variability. This could very well be due to the caveats the 

authors listed in the rebuttal letter. 



Reviewer #3 

The authors, Sparks et al., have addressed most of my comments. The inclusion of controls is 
appreciated; this very much strengthens the idea that these DG ensembles are a feature of a 
pathological network. If possible, please include this information in one of the highlights (e.g. 
“AbGC-dominated ensembles are disproportionately represented among the inferred ensembles 
during IED but not SW-R events”) 

We thank the Reviewer for their diligence in reviewing our manuscript. We believe the manuscript 
has been significantly improved as a result. We are advised by the Editors that it is not possible 
to include Highlights, but we have added similar language to the Abstract.  

 

Minor changes: 

Please show the distribution of the synchrony data in S4D, rather than just a bar chart. 

We now show the distribution in a box and whisker plot. 

 

I believe there is utility to figure S4G and it is worth including in the final manuscript. It appears 
that, while synchrony is somewhat related to the seizure severity on a per-animal basis, it certainly 
does not explain a lot of the variability. This could very well be due to the caveats the authors 
listed in the rebuttal letter. 

Thank you for your recommendation. We have included Figure S4G. 

 


