
Supplementary Note 1. Thermodynamically motivated derivation of permeability equations 

Here we derive equations of solute and solvent flow between connected solutions, as per the work of 

Kedem et al. (1958)1. As highlighted by Kedem et al., entropy production is the starting point of any 

thermodynamic description of non-equilibrium systems. Initially considering a 2-cell system in which 

solutions are separated by a membrane, entropy production ���/�� is given by 

����� = 1� 	
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where � is the absolute temperature, 
� (
�) denotes the chemical potential of the solvent (solute), and ��/�� is associated number of moles passing into cell � per unit time. The dissipation (per unit area) 

may then be written as 
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where �� � = �1/������ /�� and �� � = �1/������/��. With an approximation that the chemical 

potentials for ideal solutions are appropriate, the chemical potential difference is given by 


�� − 
� = � Δ" + #�Δ ln�&� , ��3� 

such that �  is the partial molar volume, Δ" is the hydrostatic pressure difference between the cells, & 

is the molar fraction of the constituent, and # is the gas constant. In a dilute solution, where the volume 

fraction of the solute is relatively small (i.e. (�� � ≪ 1), Eqn S3 can be rewritten as 


��� − 
�� = � *Δ" + #�Δ ln�(�� = � *Δ" + #� Δ(�(�∗ , ��4� 

where (�∗ is the mean solute concentration across both cells and Δ(�/(�∗ = ln(c*��/c*�) if Δ(�/(�� ≪ 1. 

Similarly, the chemical potential difference for the solvent is 


��� − 
�� = � *Δ" + #� Δ(�(� . ��5� 

where to good approximation, (� = 1/� �. We can thus modify our dissipation function such that 

Φ = ��� �� � + �� �� ��Δ" + 0�� �(�∗ − �� �(� 1 ΔΠ, ��6� 

whereby the osmotic pressure difference ΔΠ = #�Δc* via van’t Hoffs relation. Considering this 

function represents a special case of the general expression Φ = ∑ 5�6�� , where 5� denotes a flow and 6� is the generalized conjugated force, the forces 67 = Δ" and 68 = ΔΠ identify the conjugate flows 57 = �� �� � + �� �� � and 58 = �� �/(�∗ − �� �/(�. Following the general theory of irreversible 

thermodynamics and Onsagar reciprocal relations2, the flows may also be expressed as: 

57 = 9:Δ" + 9:8ΔΠ ��7� 

58 = 98:Δ" + 98ΔΠ,  
where the 9’s are phenomenological coefficients that govern the membrane permeability and  98: =9:8. Kedem et al1 further highlighted that these coefficients could be related through the Staverman 

reflection coefficient3, <=, leading to 9:8 = −<=9:. This coefficient indicates the level of membrane 

selectivity, with <= = 1 denoting an ideally selective (channels non-permeable to solutes) membrane 



and <= = 0 a fully non-selective membrane. We note the reflection coefficient is typically denoted by ? but is instead here represented by <= to avoid confusion with the standard notation for stress. They 

proposed that the flow equations can thus be rearranged such that 

57 = 9:�Δ" − <=ΔΠ�   and �S8� 

�� � = (�∗9:�1 − <=�Δ" + DE − (�∗9:�1 − <=�<=FΔΠ, ��9� 

where E is a coefficient that relates to solute permeability.  

 

Supplementary Note 2. Gap junction mediated solvent and ion transport between cells 

To approach the problem of multicellular volume regulation, we consider two cells held together via 

cadherin and catenin mediated complexes. As these complexes stabilize on the membrane, connexin 

structures also assemble and couple with identical units on the neighbouring cell to form gap junctions 

(GJs). These channels connect the cytoplasm of both cells, permitting passive transport of solvent, ions, 

and small molecules4. GJs typically remain open during their lifecycle, though may close in response 

to high Ca2+ concentrations or low pH which serves to protect the cell from dying neighbors5. With a 

diameter in the range of 1.5 − 2 �H, GJs may be approximated as fully non-selective to water 

molecules (diameter ≈ 0.275 �H) and ions (diameters ≈ 0.1 − 0.2 �H) such that <= = 0 6. Eqns S8 

and S9 then reduce to  57,J,� = −9:,J�"� − "���   and �S10� 

��J,� = −(�∗9:,J�"� − "��� − EJ�Π� − Π���. ��11� 

The change in cellular volume associated with fluid flow through GJs may then be written as ��K,��� =  �J57,J,� = −�J9:,J�"� − "���, �S12� 

where �J is the surface area of the connected membrane. Similarly the rate of change in the total 

number of ions in a cell is then given by ����� = �J��J,� = −�J L(�∗9:,J�"� − "��� + EJ�Π� − Π���M , ��13� 

where the first bracketed term accounts for advective ion flow and the second term describes diffusive 

transport. 

 

Supplementary Note 3. Fluid and ion exchange with the extracellular environment 

In addition to diffusion across gap junctions, water molecules can move through the semi-

permeable cell membrane from the external media, enhanced by the presence of aquaporins7. As 

these pathways do not permit the diffusion of ions we can consider them to be fully selective (i.e. <= = 1). We assume that the ion concentration in the external media is uniform, such that the 

external osmotic pressure at any point is given by ΠNOP. From Eqn S8 the solvent volume flux 

through the membrane is then given by 57,Q,� = −9:,Q�Δ"� − ΔΠ��, where Δ"� = "� − "NOP and ΔΠ� = Π� − ΠNOP. 9:,Q is the permeability coefficient associated with solvent flow through the 

membrane. Evidently, this flux depends on the difference in osmotic and hydrostatic pressure 



between the cell and the extracellular environment. We can extend Eqn S12 to consider this 

additional water flux such that ��K,�/�� =  �J 57,J,� + ��  57,Q,�. Note that with our assumption of 

uniform external hydrostatic and osmotic pressures (e.g. "�NOP = "��NOP = "NOP) we can also state the 

gap junction flux as a function of pressure differences, such that 57,J,� = −9:,J�Δ"� − Δ"�R�. 

Assuming the cells can be approximated to retain a spherical shape with radius SK,�, we achieve 

the following expanded form for cellular volume change: 

��K,��� = −�J9:,J�Δ"� − Δ"���−��9:,Q�Δ"� − ΔΠ��, ��14� 

where �� = 4TSK,�U  is the cell surface area. The cytosolic ion concentration also depends on exchange 

with the extracellular environment through selective ion channels. As these channels do not facilitate 

solvent flow the associated fluxes assume the general form �� � = EΔΠ�. Mechanosensitive (MS) 

channels are proteins in the cell membrane that open under a tensile membrane stress8 to allow flow of 

ions from regions where the concentration is high to regions where it is low. In response to hypotonic 

shock they release ions from the cell to mitigate an influx of water. The probability of channel opening 

has been reported to follow a Boltzmann function9, and consistent with previous work10, we adopt a 

piecewise linear expression (Fig 1, yellow curve) to describe the ion flux associated with MS channel 

permeability �� Q�,� = −EQ��?��ΔΠ�, such that 

EQ��?�� = V 0W�?� − ?K�W�?� − ?K�    
�X ?� ≤ ?K�X ?K < ?� < ?��X ?� ≥ ?�  , ��15� 

where ?� is the computed cortical stress (detailed in Section S4), ?K is the threshold stress, below which �� Q�,� = 0, ?� is the saturating stress, above which the channels are fully open, and W is a rate constant. 

In addition to these force sensitive channels, there are a number of leak channels (which are always 

operative) on the membrane11 for which we consider an further transmembrane ion flux �� \,� = −E\ΔΠ�, 
where E\ is the associated permeability coefficient. While the channels described thus far permit passive 

ion diffusion, there are additional membrane proteins present that actively transport ions against the 

concentration gradient. These ion pumps require an energy input, such as from ATP hydrolysis, to 

overcome the energetic barrier associated with moving ions against the concentration gradient. 

Following Jiang and Sun (2013)10, the free energy change associated with pumping action can be 

expressed as Δ] = #� log �(�/(NOP� − Δ]`, where Δ]` is an energy input is associated with hydrolysis 

of ATP. The ion flux associated with active pumping can then be written as �� :,� = a′Δ], where a′ is a 

permeation constant. Maintaining our dilute assumption, Δ] can be linearized as Δ] = #� �Π� −ΠNOP�/ΠNOP − Δ]`. We can therefore identify a critical osmotic pressure difference ΔΠK, determined 

when Δ] = 0, such that ΔΠK = ΠNOPΔ]`/#�  (noting that when Δ] > 0 active pumping is no longer 

energetically favorable and the pumping direction will reverse12). Thus the ion flux generated by active 

pumping by ion transporters can be expressed as �� :,� = a�ΔΠK − ΔΠ��, where a is a rate constant. 

Taking these pumps and channels into consideration, we can extend Eqn S13 for a more detailed 

description of the number of ions within the cell whereby ���/�� = �J��J,� + ����� Q�,� + �� \,� + �� :,��  

such that 

����� = −�J L(�∗9:,J�Δ"� − Δ"��� + EJ�ΔΠ� − ΔΠ���M−��	�EQ��?�� + E\ + a�ΔΠ� − aΔΠK�. ��16� 



Clearly the mean ion concentration between two connected cells, (�∗, can be expressed in terms of 

osmotic pressure as (�∗ = �(� + (���/2 = �Π� + Π���/�2 #��. Based on our established terminology 

whereby ΔΠ� = Π� − ΠNOP, this can be rephrased such that (�∗ = �ΔΠ� + ΔΠ�� + 2ΠNOP�/�2 #��. 

Assuming that ΔΠd/ΠNOP ≪ 1, for the calculation of solute flow we can therefore approximate (�∗ ≈ΠNOP/�#�� and Eqn S16 can be rephrased as 

����� = −�J eΠNOP#� 9:,J�Δ"� − Δ"��� + EJ�ΔΠ� − ΔΠ���f
−��	�EQ��?�� + E\ + a�ΔΠ� − aΔΠK�. ��17� 

Material parameters for all simulations are summarized in Supplementary Table 1. 

 

Supplementary Note 4. Motivations for mechanical model of cell cortex 

As water enters a cell, driven by hydrostatic and osmotic pressure gradients, the increase in fluid 

volume stretches the cell membrane. The mechanical tension in the membrane is complex, 

controlled by membrane-cytoskeleton adhesion, cortical stiffness, and active myosin 

contractility13,14. We treat the membrane and cortex as a single mechanical structure10, neglecting 

the possibility of cortical detachment and blebbing. The constitutive law of the cortical structure 

can be written as ?� = ?:,� + ?`,�, where ?`,�  is the active stress associated with myosin contractility 

and ?:,� is the passive stress predominantly associated with deformation of the actin network (as 

the actin cortex is much stiffer than the plasma membrane13,15). As per previous cortex 
models10,16,17, we begin with the consideration of a general viscoelastic model such that the passive 

stress may be expressed by ?:,� = g���/�h − 1�/2 + i�1/�������/���, where g is the effective 

cortical stiffness, i is the effective viscosity of the cell cortex, and �h is a reference surface area. 

The apparent cortex viscosity has been reported to lie in the range of 10U − 10j "k. l 18,19, and 

under loading the cell radius has been reported to change by ~10% in several minutes20. As such, 

the viscous stress i�2/S���S/��� ≈ 0.1 − 1 "k is much smaller than the elastic terms in the 

passive stress expression. Therefore, we consider the contribution of the viscous term to be 

negligible in this analysis with a view that g denotes the long-term cortical stiffness, and the total 

stress reduces to ?� = �g/2��SK,�U /SmU − 1� + ?`,� for a spherical cell of radius SK,�. An investigation 

more directed to the specific influence of cortical organization and myosin contractility could 

readily extend this expression to describe long-term remodeling in response to signaling and stress 

in accordance with our previous work21,22.  

In addition to internal fluid pressure, the membrane also experiences loading from a spatially 

uniform external fluid pressure "NOP. Mechanical force balance for a spherical cell with radius SK,� 
dictates that the cortical stress can be related to the pressure difference across the membrane Δ"� ="� − "NOP. Therefore, the cortical stress may also be written as ?� = Δ"�SK,�/2ℎ�, where ℎ� is the 

cortical thickness. Further, within a multicellular organoid, proliferation of cells generates 

compressive solid stresses ?J,� that act on neighboring cells23. Deformation of fibrous matrix 

surrounding the cell cluster compounds the stress, as stretched fibers squeeze on the cluster24. 

Thus, we obtain the following expanded expression for the membrane/cortical stress:  

?� = g2 oSK,�UShU − 1p + ?`,� = �ΔP� − ?J,��SK,�2ℎ� , ��18�  
where Sh is the reference cell radius. Further, we note that the passive stress expression may be 

linearized to reduce solution complexity by assuming that the cortical deformation is small such 

that ?:,� = �g/2��SK,�U /SmU − 1� = �g/2���ShU + 2ΔSSh + ΔSU�/SmU� ≈ g	SK,�/Sh − 1�. 

 



Supplementary Note 5. Pressure and fluxes from 2-cell analyses 

 

Supplementary Fig 1: Additional figures for two-cell analysis under control conditions. a) Form of 

solid growth stress applied to cell 1; Difference between internal and external b) hydrostatic 

pressure Δ" and c) osmotic pressure ΔΠ; Ion fluxes across the cell membrane: d) MS channels �� Q�; e) leak channels �� \; f) active transport �� :. 

 

 

 

Supplementary Fig 2: Additional figures for two-cell analysis during inhibition of ion flux across 

gap junctions. a) Form of solid growth stress applied to cell 1; Difference between internal and 

external b) hydrostatic pressure Δ" and c) osmotic pressure ΔΠ; Ion fluxes across the cell 

membrane: d) MS channels �� Q�; e) leak channels �� \; f) active transport �� :. 

 



Supplementary Note 6. Material parameters and motivation 

Parameter Description Value 

EJ  gap junction ion permeability factor 

(Hrs. HRUlR"kR� 
5 6 10Rt 

9:,J  
gap junction water permeability factor 

(H. lR"kR) 
1 6 10R 

Sh  reference cell radius (
H) 7.1 �J  area of membrane adhered between two cells (
HU) 63.3  g  effective stiffness of cortical layer �u"k� 6 ?`  active cortical stress �"k� 100 ℎ  thickness of cortical layer �
H) 0.6 

W  
MS channel ion permeability factor 

(Hrs. HRUlR"kRU� 
2 6 10R 

?K  threshold stress of MS channel ("k) 75 ?�  saturating stress of MS channel ("k) 600 

E\  leak channel ion permeability factor 

(Hrs. HRUlR"kR� 
1.5 6 10Rv 

a  
rate constant of ion flux via active transporters 

(Hrs. HRUlR"kR� 
2.25 6 10Rt 

ΔΠK  critical osmotic pressure difference of ion pump �]"k� 40 Πwxy  external osmotic pressure (z"k) 0.67 

9:,Q  
cell membrane water permeability factor 

(H. lR"kR) 
7 6 10RU 

SQ`O  spheroid radius (
H) 33.4 

Supplementary Table 1: Parameters for chemo-osmotic model.  

The density of GJs on the adhered membrane of epithelial-like cells has been estimated25 to lie in the 

range of {J ≈ 2 X 10} HRU. Assuming Poiseuille flow through GJs of radius SJ ≈ 1 �H and length sJ ≈ 15 �H 26, following Mathias et al (2008)25 and Gao et al. (2011)6, the solute permeability factor 

can be estimated as 9:,J = {JTSJ/�8isJ� , where i is the viscosity of water. Within channels of radius 1 �H and at body temperature (� = 310 g), the viscosity of water can be approximated as 0.5 H"k. l 27, leading to a coefficient 9:,J ≈ 10R H. lR. "kR. Further, considering the molar 

volume of water � � = 18 H9/Hrs, we can determine the solvent GJ permeability coefficient in terms 

of the number of moles whereby EJ,� = 9:,J/� � = 5.82 X 10Rt Hrs. HRUlR"kR. Assuming similar 

diffusive behavior for the solutes (ions), EJ,� suggests that ion coefficient EJ should lie in the range 10Rt −  10R~ Hrs. HRUlR"kR. We determined that a value of EJ = 5 X 10Rt Hrs. HRUlR"kR 

provides good agreement between our simulated and experimentally measured volumes, assuming a 

cell-cell adhered membrane surface area �J on the order of 10% of the reference cell surface.  

Across a number of cell types the membrane solvent permeability rate "� has been reported to lie 

in the range of 10R} − 10R� H/l 28. Jiang and Sun (2013)10 highlighted that this can be related to 

the membrane water permeability factor such that 9:,Q = "�� �/#�, from which we ascertain an 

upper value of 9:,Q = 7 6 10RU used here. The spheroid radius SQ`O is directly measured from 

the day 5 experimental images (Fig 3). In epithelial cells, the thickness ℎ of the actin cortex has 

been reported to vary from  0.1~0.6 
H29 for which we assume the upper value. Experimentally 

reported values for cell stiffness are highly variable (0.1 – 100 u"k 30), likely associated with 



measurement timescales and cell remodeling. We assume a value g = 6 u"k and ?` = 100 "k in 

line with Jiang and Sun (2013), with treatment of dissipative effects discussed in Section S4. The 

reference cell radius Sh was approximated such that the prediced cell volumes at an early stage of 

organoid growth provide good agreement with our experiments (Supplementary Fig 10e). The 

external osmotic pressure ΠNOP can be computed from physiological ion concentrations ((�`�,N =145Hz, (�� ,N = 5Hz and (�\�,N = 110Hz 31) with ΠNOP = #�	(�`�,N + (��,N + (�\�,N� =0.67 z"k. As the free energy from ATP is  Δ]` ≈ 30 u5/Hrs, the critical osmotic pressure for 

active pumping is then ΔΠK = ΠNOPΔ]`/#� = 40 ]"k. The flux associated with active ion pumps 

has been measured to lie between 10Rt and 10R~ Hrs. HUlR 32,33. As per Jiang and Sun (2013), 

after dividing by ΔΠK the pump coefficient should be confined to the range a ≈2.5 6 10R�~2.5 6 10Rt Hrs. HRUlR"kR, for which we choose a value of 2.25 6 10Rt Hrs. HRUlR"kR. The ion fluxes across mechanosensitive and leak channels have an amplitude 

on the order of active ion pumps (i.e. 10Rt~10R~ Hrs. HUlR)32,33; To maintain such continuity 

Jiang and Sun (2013) suggested a value W = 2 6 10R Hrs. HRUlR"kRU, which we retain for our 

analyses, while the threshold and saturation stress are reduced to provide better agreement with 

our experiments (Fig 3). In keeping with this motivation, the leak channel permeability factor E\ 
is assumed to equal the threshold permeability of the MS channels (i.e. W?K). The influence of key 

model parameters on cell volume in two connected cells (in response to solid growth stress ?J, =

Supplementary Fig 3: Sensitivity of model predictions to key parameters. Cell volume changes in 

response to an applied solid growth stress ��,� = ��� �� on cell 1 associated with variance in a) 

cortical stiffness � and thickness �, b) gap junction permeability to fluid ��,� and ions ��, c) 

mechanosensitive threshold stresses �� and ��, and d) pump coefficient � and leak channel 

permeability ��. 



150 "k on cell 1) is shown in Supplementary Fig 3. Briefly, increasing the effective cortical compliance 

(via a reduction in g or ℎ) will lead to an increase in cell volume (Supplementary Fig 3a). Under loading, 

increasing the permeability of GJs to ions (via EJ)  will cause increased swelling of the connected 

neighbor (Supplementary Fig 3b); this behavior also emerges from increasing the permeability to 

solvent (via 9:,J) due to an increase in advective flow. Increasing the threshold stress ?K for the opening 

of MS channels causes cell volume to increase (due to higher ion retainment), while increasing the 

stress at which MS channel opening saturates ?� will reduce cell volume (Supplementary Fig 3c); this 

is akin to increasing channel permeability. Finally, increasing the rate of active pumping via a will 

increase cell volume, while increasing the permeability of leak channels via E\ will reduce cell volume 

(Supplementary Fig 3d).  

Supplementary Note 7. Influence of cell elongation 

In our main analyses we assume that the cells retain an approximately spherical shape. However, in 

proliferating clusters cells may attain high aspect ratios and more irregular configurations. In this 

section we propose a model extensio n to analyze highly elongated shapes for which a cylindrical 

geometry is a reasonable representation. In a thin-walled cylindrical vessel, the circumferential and 

longitudinal stress can be related to the pressure difference across the wall by ?�,� = Δ"�S�/ℎ� and ?\,� =Δ"�S�/2ℎ�, respectively. From classic Hookean relations, the change in radius and cylinder length may 

then be expressed as 

ΔS� = ShΔ"�S�gℎ� L1 − �2M , k�� 

Δs� = shΔ"�S�gℎ� 012 − �1 ��19� 

respectively, where sh is the initial cylindrical length and � is the material Poisson’s ratio. Initially 

considering an arbitrar y cylinder comprised of an incompressible material (� = 0.5) and of fixed 

reference volume �h, we find that with increasing reference length to radius ratio sh/Sh the cylinder 

becomes increasingly resistant to volume change under an equivalent load (Supplementary Fig 4a). 

We next extend our mechano-osmotic model to simulate the behavior of elongated cylindrical cells in 

response to an applied growth stress. Combining Eqns S18 and S19 the change in cellular radius can be 

Supplementary Fig 4: Influence of cell elongation. a) Influence of cylindrical length to radius ratio ��/�� on volume change from a fixed reference volume �� = ���� ��� under constant pressure 

with ��/� = �. ���; b) Difference in volume �� − �� of connected cylindrical cells under an 

applied solid growth stress ��,� = ��� ��.  



expressed as ΔS� = �Sh/g��3Δ"�S�/�4ℎ��  − ?`,�/2�. Assuming for illustrative purposes that the cortex 

is incompressible, the length change then reduces to Δs� = ℎh?`,�/2g due to the Poisson effect. For the 

flux relations, the cellular surface area �� = 2TsS� + 2TS�U and we assume that the opening of 

mechanosensitive channels (via Eqn S15) depends predominantly on the circumferential stress as ?�,� =2?\,�. All other model elements and parameters remain as defined for the standard mechano-osmotic 

model. Under an applied solid growth str ess ?J, a volume difference between the loaded and unloaded 

cell emerges as per our analysis of spherical cells. However, in keeping with the mechanisms highlighte 

d for an arbitrary cylinder, with an increasing reference length to radius ratio sh/Sh the volume 

difference is predicted to reduce (Supplementary Fig 4b). This indicates that, as cells elongate, they 

become less sensitive to loading. Beyond, our model may be extended for the consideration of more 

erratic and complex cell shapes, but such studies will require discrete geometry definitions and finite 

element analysis to describe local variations in wall stretch and solute flux.   

Supplementary Note 8. Mechano-electro-osmotic solute flow in single and connected cells 

Consideration of electrical potentials: Up until this point we have confined our consideration of 

cellular volume regulation to a dependence on osmotic and hydrostatic pressures, and neglected the role 

of electrical potentials. In this section, we proceed to define a framework for coupled mechano-electro-

osmotic (MEO) interactions and demonstrate that the mechanisms proposed for multi-cell volume 

regulation are largely unchanged by such an extension. We begin by introducing the classic pump-leak 

model34,35 to describe the fluxes of dominant ions associated with cellular volume control (�k�, g�, 
and  sR), whereby 

�(�`�,��� = − ��¡�`¢�� o£� − #�¢ ln o(�`�,N(�`�,� pp − 3¤��¢��  , ��20� 

�(��,��� = − ��¡�¢�� o£� − #�¢ ln o(��,N(��,� pp + 2¤��¢��  , ��21� 

�(�\�,��� = ��¡�\¢�� o£� + #�¢ ln o(�\�,N(�\�,� pp . ��22� 

Here, solute concentrations (¥,� = �¥,�/��,  £� is the membrane potential, �� is the cell surface area, ¢ 

is the Faraday constant, and ¡¥ are the ion channel conductances for a given species. The log-based 

term is a form of the Nernst equation, determining the electrical potential of the species as a function of 

internal and external (¦) concentrations. In this formulation, ¤ is the strength of the pump current with 

associated values representing the 3:2 stoichiometry of the �k − g ATPase. While earlier we assumed 

that pumping actively transports a single ion species across the membrane, the biological mechanism 

of �k − g pumping is more complex. From Glitsch and Tappe (1995)12, the free energy during the 

pumping action is Δ] = Δ]` + 3 0−¢£� + #� ln 0K§¨�,©K§¨�,ª 11 + 2 0¢£� + #� ln 0K«�,©K«�,ª 11, where Δ]` is 

an energy input associated with hydrolysis of ATP. Provided this reaction is energetically favorable 

(Δ] < 0), the pump transfers three �k� ions against their concentration gradient to the cytosol, and 

two g�from the external media into the cytosol. However, the net result of this complex pathway, which 

downstream is predicted to cause an overall increase in cytosolic osmotic pressure and cell volume 

(Supplementary Fig 5g-h), is similar to the behavior captured by only considering an active influx in 

Eqn 6.  

The balance laws must be additionally supplemented by the electroneutrality condition 



(�`�,� + (��,� − (�\�,� + ¬O6/�� = 0, ��23� 

where 6 is the total amount of impermeable molecules in the cell35 which have a mean valence ¬O. 

Initially considering a single suspended cell, from Eqn S8 the volume may thus be determined from ���/�� = −9:,Q�Δ"� − ΔΠ��, where the osmotic pressure difference ΔΠ� = #��(�`�,� + (��,� +(�\�,� + 6/�� − �(�`�,N + (��,N + (�\�,N�� and recall that the hydrostatic pressure difference ΔP� =2?�ℎ/S�  + ?J,�.  
Predictions for single-cell behavior: Previously we have discussed mechanosensitive (MS) channels, 

proteins in the cell membrane that open under a tensile membrane stress to allow solute flow as driven 

by their electro-osmotic potential. One of the most widely appreciated MS pathways relates to Piezo1, 

which opens under tension to allow a calcium influx, thereby activating  kU�-gated g� channels to 

relieve osmotic pressure in swollen cells36. This behavior may be described by adapting our MS channel 

model (Eqn S15) to incorporate a stress-dependence in the conductivity of g� channels, such that 

¡��?�� = V ¡�h¡�h + W��?� − ?K�¡�h + W��?� − ?K�    
�X ?� ≤ ?K�X ?K < ?� < ?��X ?� ≥ ?�  , ��24� 

where ¡�h is the conductivity of leak (always permeable) channels, and W�, ?K, and ?� are MS constants. 

Finally, Mori (2011)35 demonstrated that the membrane potential may be approximated by 

£� = ¢�� Q�� 0(�`�,� + (��,� − (�\�,� + ¬O 6��1 , ��25� 

where  Q is the membrane capacitance per unit area. This system of equations can be solved to predict 

the time-dependent evolution of cell volume, membrane potential, and solute concentrations using in-

built ode solvers in Matlab (ode23s). We assume the external ion concentrations remain at physiological 

levels, such that (�`�,N = 145Hz, (�� ,N = 5Hz and (�\�,N = 110Hz 31 and that the conductivity 

coefficients are confined to previously suggested ranges37, with  Q = 0.01 ¢/HU, ¡�` = 0.1 �/HU, ¡�\ = 2 �/HU, and ¡�Q`O = 1 �/HU such that ¡�h + W��?� − ?K� = ¡�Q`O and ¡�h = 0.1 �/Hj. The 

pump current ¤ = 5 H�/HU, number of impermeable solutes 6 = 2 6 10Rj Hrs, and mean valence ¬O = −1.5 are estimated to provide a reasonable prediction of cytosolic ion concentrations 

(Supplementary Fig 5)31. The remining model parameters are fixed at those previously outlined 

(Supplementary Table 1). Following the application of stress ?J, the cell is predicted to reduce in 

volume (Supplementary Fig 5a), with an associated steady state increase in membrane potential due to 

an increase in g� ions (Supplementary Fig 5c). The MEO equations may also be rearranged at steady 

state by setting the time derivatives to zero (i.e. �/�� = 0), reducing to the following:  

�kN¦R®L¯� j:J§¨M°± ² + gN¦R®L¯RU:J«M°± ² −  sN¦0®¯°±1 + ¬O 6�� = 0, ��26� 

#�
⎝
⎜⎜⎛�kN¦R®L¯� j:J§¨M°± ² + gN¦R®L¯RU:J«M°± ² +  sN¦0®¯°±1 + 6�� − ��kN + gN +  sN�

⎠
⎟⎟⎞ − Δ"� = 0, ��27� 

where the first expression stems from the electroneutrality condition and the second from steady state 

hydrostatic and osmotic pressure balance. We solve this system using the Matlab in-built function 



Xlrs¹¦ (Supplementary Fig 5d-f) in conjunction with the mechanical constraints. This approach no 

longer requires the approximation for the membrane potential (Eqn S25), and shows good agreement 

with the transient solution (blue markers in Supplementary Fig 5d-f). It is interesting to note that with 

consideration of electrolyte flow, the magnitude of applied stress required to induce a comparable 

reduction in cell volume is significantly higher than in the case non-electrolyte flow. In non-electrolyte 

flow, an applied stress increases cytosolic hydrostatic pressure, causing a solvent efflux. In response to 

a reduced fluid content the cytosolic osmotic pressure increases and thus there is also an increased solute 

flow to the external media. In turn, additional fluid is lost due to a depleted cytosolic ion concentration. 

However, with inclusion of the role of fixed charges and electroneutrality, osmotic gradients alone are 

not sufficient to cause an equivalent solute flow, as the electrical potential within the cytosol resists ion 

loss. As such the osmotic pressure remains high under single cell loading, permitting the cell to retain 

fluid and resist shrinkage.  

 

Supplementary Fig 5: Influence of mechano-electro-osmotic flow in single cells. (a-c) Single cell 

behavior in response to applied loading with consideration of electro-osmotic flow using Matlab 

ode23s to compute the time-series solution: predictions for a) cell volume, b) membrane potential, 

and c) concentrations of º��, ��, and »�� over time. (d-f) Steady state single cell behavior in 

response to a series of applied loading with consideration of electro-osmotic flow using Matlab 

fsolve: predictions for d) cell volume, e) membrane potential, and f) concentrations of º��, ��, 

and »��. Markers show corresponding predictions at steady state from the transient analysis. (g-

h) Influence of pump current � on g) cell volume and h) membrane potential.  



Analysis of connected cells: We next proceed to extend the MEO model for the analysis of connected 

cells and solvent/solute flow through gap junctions (GJs). As described in Section S2, GJs are not 

selective for individual ion species or solvent. Combining Eqns S11 and S20, transport of a given 

(positively charged) ion species ¼ through GJs (from cell � + 1 to cell �) may then be expressed by  

�(J,¥�� = − �J¡J¢�� e�£� − £��� − #�¢ ln o(¥,��(¥,� pf − �J9:,J(¥∗�� �Δ"� − Δ"���, ��28� 

where the term on the left describes diffusive flow driven by electro-osmotic gradients and the term on 

the right describes advective flow as driven by hydrostatic pressure gradients (as described in Section 

S1). Here ¡J is a coefficient associated with GJ conductivity, assumed for demonstrative purposes to 

equal ¡�Q`O, and (¥∗ is the mean cytosolic concentration of ion species ¼ across the connected cells of 

interest. Eqns S20-S21 can then be extended to describe the change in ion concentrations within a given 

cell � as dependent on exchange across both the cell membrane and GJs, whereby: 

�(�`�,��� = − ��¡�`¢�� o£� − #�¢ ln o(�`�,N(�`�,� pp − 3¤��¢��
− �J¡J¢�� e�£� − £��� − #�¢ ln o(�`�,��(�`�,� pf − �J9:,J(�`�∗�� �Δ"� − Δ"���, ��29� 

�(��,��� = − ��¡�¢�� o£� − #�¢ ln o(��,N(��,� pp + 2¤��¢��
− �J¡J¢�� e�£� − £��� − #�¢ ln o(��,��(��,� pf − �J9:,J(��∗�� �Δ"� − Δ"���, ��30� 

�(�\�,��� = ��¡�\¢�� o£� + #�¢ ln o(�\� ,N(�\�,� pp
+ �J¡J¢�� e�£� − £��� + #�¢ ln o(�\�,��(�\�,� pf − �J9:,J(�\�∗�� �Δ"� − Δ"���. ��31� 

The associated cell volume depends on both hydrostatic and osmotic pressure gradients, as before, with: ����� = −�J9:,J�Δ"� − Δ"���
−��9:,Q LΔ"� − #� L(�`�,� + (��,� + (�\�,� + 6/�� − 	(�`�,N + (��,N + (�\�,N�M M . ��32� 

Following the approach from the mechano-osmotic flow analysis, we explore how an applied stress on 

the surface of one cell (associated with proliferation of surrounding cells) induces swelling of a 

neighboring cell. As per the single cell MEO analysis, the system of equations Eqns S23, S29-S32 can 

be solved either transiently or at steady state; both solutions are shown in Supplementary Fig 6. 

Simulations reveal that the MEO model predicts the same trends as the mechano-osmotic model 

discussed in the main paper text (Fig 2): the volume of a loaded cell reduces with increasing applied 

stress and its neighbor increasingly swells due to an ion influx via gap junctions (Supplementary Fig 

6a). The mechanisms by which ions are driven into the neighbor differ slightly due to the consideration 

of electrical potentials. The applied stress generates an increase in the cytosolic hydrostatic pressure of 

the loaded cell, driving advective flow across GJs in accordance with Eqns S29-S31. As g� ions are 

the dominant species, such a flow increases the membrane potential of the connected cell. Due to the 

increased positive charge (Supplementary Fig 6b),  sR ions are drawn into the neighboring cell from 



both the loaded cell and the external fluid (Supplementary Fig 6e) to maintain electroneutrality. Solvent 

then enters the cell to reduce the osmotic pressure gradient, which is further lowered by the continuous 

influx of fluid from the advective GJ flow (Supplementary Fig 3g). Further, the loss of ions from the 

loaded cell impairs its ability to retain water relative to an isolated cell (Supplementary Fig 5), again 

similar to the mechanisms identified from non-electrolyte flow in Fig 2.  

 

Supplementary Fig 6: Role of gap junctions (GJ) in cellular volume control in accordance with 

MEO model: In response to applied loading, predictions are shown for a) cell volume, b) 

membrane potential, c-e) concentrations of º��, ��, and »��, f) hydrostatic pressure and g) 

osmotic pressure at steady state in a loaded and connected unloaded cell. Markers show 

corresponding predictions at steady state from transient analysis.  

Supplementary Note 9. Spatial variance in external solute concentrations 

In our analyses we implicitly assume that the extracellular ion concentrations are spatially 
uniform. However, within multi-cellular organoids there may also be local interstitial osmotic 

perturbations that can influence cell behavior. Further, in large non-vascularized cell clusters there 

may be an unequal distribution of external solutes. Thus, here we introduce an extension to the 

MEO model to facilitate exploration of such a non-uniform solute distribution on shrinkage and 

swelling. Recall that the water flux across the cell membrane is driven by a balance between the 

internal and external hydrostatic and osmotic pressures, such that 57,Q,� = −9:,Q�Δ"� − ΔΠ��, 

where Δ"� = "� − "NOP and ΔΠ� = Π� − ΠNOP. Within the MEO model the osmotic pressure 

differences are stated explicitly in terms of individual species, with ΔΠ� = #��(�`�,� + (��,� +(�\�,� + 6/�� − �(�`�,N + (��,N + (�\�,N��. Without loss of generality this difference can be 

rephrased to consider a local variation in �k� concentration ½(�`�,N,� such that ΔΠ� = #��(�`�,� +(��,� + (�\�,� + 6/�� − �(�`�,N + ½(�`�,N,� + (��,N + (�\�,N��. As an increase in the interstitial 

solute concentration will also affect loading on the cell membrane, the associated flux must also 

be updated to include ½(�`�,N,�: �(�`�,��� = − ��¡�`¢�� o£� − #�¢ ln o(�`�,N + ½(�`�,N,�(�`�,� pp − 3¤����
− �J¡J¢�� e�£� − £��� − #�¢ ln o(�`�,��(�`�,� pf − �J9:,J(�`�∗�� �Δ"� − Δ"���. ��33� 

Similar modifications could be made to the expressions for g� or  sR. As shown in Supplementary 

Fig 7a, the introduction of a small osmotic shock (5Hz) has a marked, albeit low, influence on 

the volume of the shocked cell. The sudden change in the external �k� concentration causes the 

osmotic pressure difference to sharply decrease, by ½ΔΠ� = #��5Hz� ≈ 13 u"k (Supplementary 



Fig 7b). However, this perturbation is rapidly balanced by solvent efflux from the cell and solute 
influx. Overall, it is interesting to note that hydrostatic pressure change that corresponds to such 

an osmotic pressure fluctuation is quite low (Supplementary Fig 7c), predicted to be on the order 

of 20 "k. Naturally, this magnitude depends on effective cell stiffness and resistance to volume 

change. The steady state volume of the connected neighboring cell is unaltered as the diffusive 

potential (introduced by the slight variance in the shocked cell’s solute concentration) is not 

sufficient to overcome the balance of electrical potentials. The same behavior may be explored 
with the mechano-osmotic model presented in the main paper text by similarly perturbing the 

external osmotic pressure ΠNOP in Eqns 4 and 6.  

 

Supplementary Fig 7: Response of connected cells to a sudden local osmotic shock: Influence on a) 

cell volume, b) the hydrostatic pressure difference �� and c) the osmotic pressure difference �¾.  

Supplementary Note 10. Spatial variance in external hydrostatic pressure 

Beyond osmotic pressure gradients, our analysis also implicitly assumes that the extracellular 

hydrostatic fluid pressure "NOP is spatially uniform (i.e. "�NOP = "��NOP = "NOP) and that cell loading 

is predominantly attributed to solid stress associated with cluster growth. However, within 

proliferating tumors there may also be local interstitial pressure gradients that can influence cell 

behavior. Thus, here we extend our formulations to facilitate exploration of their influence on cell 

shrinkage and swelling. As highlighted in the previous section, the water flux across the cell 

membrane 57,Q,� = −9:,Q�Δ"� − ΔΠ��, where Δ"� = "� − "NOP. Without loss of generality this flux 

can be rephrased such that 57,Q,� = −9:,Q	Δ"� − ½"�NOP − ΔΠ�, where ½"�NOP is a hydrostatic 

pressure perturbation acting only on cell �. Thus, extending Eqn S32, the change in cell volume 

may be expressed as: ��K,��� = −�JEJ�Δ"� − Δ"���−��EK�Δ"� − ½"NOP − ΔΠ��. ��34� 

As an increase in the interstitial fluid pressure will also affect loading on the cell membrane, the 

mechanical force balance must also be updated, whereby 

?� = g2 oSK,�UShU − 1p + ?`,�
= �ΔP� − ½"NOP − ?J,��SK,�2ℎ� . ��35�  

The introduction of a local hydrostatic pressure perturbation (½"NOP = 1 u"k) is shown in 

Supplementary Fig 8. In the absence of gap junctions, our model predicts that (unlike solid stress) 

an additional fluid pressure does not cause a change in cell volume (Supplementary Fig 8d). 

Although the increase in external hydrostatic pressure should drive water into the cell, swelling is 

opposed by the compressive load that the same interstitial pressure imposes on the cell membrane. 

However, the internal hydrostatic pressure of the loaded cell increases (by a magnitude equal to ½"NOP). When GJs become permeable, because the hydrostatic pressure of the loaded cell is higher 

than that of its neighbor, advective flow drives solutes into the neighboring cell, lowering its 

membrane potential (Supplementary Fig 8b). The loaded cell then shrinks due to water loss, 

though the electroneutrality condition and electrical potentials limit the volume reduction 



(Supplementary Fig 8a). This mechanism is similar to that outlined for solid stress loading in 
Section S8, whereby the increasing ion concentration in the neighboring cell causes it to swell. Of 

note, the magnitude of the volume differences from local hydrostatic (½"�NOP) and solid stress (?J,�) 
loading are equivalent (Supplementary Fig 8c). Further, the combined analysis in this and the 

previous section highlight that an equivalent osmotic and hydrostatic pressure load do not have an 

identical influence on cellular volume. In terms of volume reduction in the locally loaded cell, an 

osmotic pressure induced by a 5Hz solute perturbation (~10 u"k) is found to be broadly 

equivalent to a hydrostatic pressure 10-fold lower (½"�NOP = 1 u"k). However, the impact on 

neighboring connected cells is markedly different. The same behavior may be explored with the 

mechano-osmotic model presented in the main paper text by similarly perturbing the external 

hydrostatic pressure by ½"NOP in Eqns 3 and 4. Similarly, the extension can also be incorporated 

to the continuum-level model via inclusion of ½"NOP in the membrane-specific term within Eqn 9. 

In this instance the hydrostatic perturbation ½"NOP�S� would need to be spatially defined in a 

similar context to ?J�S�. 

 

Supplementary Fig 8: Response of connected cells to a local differences in hydrostatic pressure: 

Influence on a) cell volume and b) membrane potential; c) Predicted difference in cell volumes 

(�� = �� − ��) for local hydrostatic (¿�ÀÁÂÃ) and solid stress (��,À) loading with open GJs; d) 

Influence of a hydrostatic pressure perturbation on cell volume when GJs are closed.  

Supplementary Note 11. Validation of experimental nuclear measurements 

 



Supplementary Fig 9. Validation of nuclear measurements. Comparison of the volume 

measurements using stimulated emission depletion (STED) microscopy with a super-resolution 

mode with isotropic resolution in x, y and z, and laser scanning confocal microscopy. Nuclear 

volume of single MCF10A cells is measured by STED and confocal microscopy, showing 

consistency between two methods. 

Supplementary Note 12. Determination of local solid growth stress in proliferating organoid 

In our experimental system single cells were seeded in Matrigel/alginate hydrogels, which had a shear 

modulus of approximately 300 "k. The isolated cells proliferated to achieve a small cluster by day 3 

(Supplementary Fig 10a) and continued to grow into a larger cluster on day 5. To characterize the 

stresses introduced by growth, we develop a finite element of model of the proliferative cluster and 

simulate its deformation of the surrounding hydrogel. We adopt the multiplicative decomposition of the 

deformation gradient Ä into an elastic tensor ÄN and a growth tensor ÄJ as proposed by Rodriguez et al. 

(1994) 38, such that Ä = ÄNÄJ. The growth tensor can be expressed by ÄJ = ÅJÆ, where ÅJ is the growth 

stretch and Æ is the second order identity tensor. Cluster growth from a single cell to a spheroid with a 

diameter of approximately 66.8 
H (Supplementary Fig 10a) identifies that ÅJ ≈ 4.4, assumed to 

increase linearly from days 0-5. With this definition of the growth tensor, we can then determine the 

elastic component of the deformation gradient via ÄN = Ä ÄJR. The mechanical behavior of the hydrogel 

and spheroid may then be described by a Neo-Hookean hyperelastic formulation, with a Cauchy stress 

given by: 

� = ]5N 0ÇÈN − 13 �S�É N�Æ1 + Ê�5N − 1�Æ, ��36� 

where 5N is the determinant of the elastic component of the deformation gradient,  ÇÈN = 5NR
ËÌÄNÄNÍ and 

É N = 5NR
ËÌÄNÍÄN are the left and right Cauchy-Green tensors, respectively, ] is the material shear 

modulus, and Ê is the material bulk modulus. Our hydrogels have a shear modulus ]Î = 300 "k and 

we assume a bulk modulus of ÊÎ = 500 "k in line with previously reported values39. We assume an 

effective cell shear and bulk modulus of ]Î = 385 u"k and ÊÎ = 833 "k, in accordance with our 

previous work21. Simulations suggest that with increasing cluster growth, the surrounding hydrogel 

becomes increasingly stretched (Supplementary Fig 10b), such that on day 5 a pressure " ≈ 550 "k is 

applied (Supplementary Fig 10c). Recently, Dolega et al. (2017)40 demonstrated that the pressure in a 

proliferative cell cluster under applied loading is spatially non-uniform by experimentally measuring 

the deformation of polyacrylamide beads embedded within the spheroid; the core stress was identified 

to be approximately equal to the applied load with a 2- to 3-fold reduction at the periphery, 

approximately following a linear distribution at intermediate locations. Our FE model predictions 

therefore suggest that the pressure acting on (uniformly) on the surface of individual cells in our day-5 

system linearly varies from ?JQ`O = 550 "k at the spheroid core to ?JQ�Ï = 200 "k at the periphery 

(Supplementary Fig 10d). This solid compressive stress enters the continuum framework via an 

expansion of Eqn 3 with ?�S� = �Δ"�S� − ?J�S��/2ℎ�. Following the continuum analysis from the 

main manuscript (Fig 3), we find that our model provides excellent agreement with our experimentally 

observed nuclear volumes at days 3 and 5 of growth (Supplementary Fig 10e-f). The experimentally 

measured volumes were observed to be spatially uniform on day 3, indicating the applied solid stress is 

also uniform and can be motivated directly from growth predictions (Supplementary Fig 10c).  



 

Supplementary Fig 10: Prediction of spheroid surface pressure due to growth: a) Cross-section 

images of GFP-NLS-labelled MCF10A cells at day 3 and 5. Scale bar 50 
H
H
H
H; b) Predicted matrix 

deformation from growth simulations using finite element analysis. Contours show max principal 

stretch in the hydrogel; c) Predicted evolution of spheroid surface pressure imposed by hydrogel 

during growth; d) Applied solid growth stress �� ��� is highest at the core and spatially non-

uniform;  Predicted and experimental spatial cell and nuclear volumes under control conditions 

on e) day 3 and f) day 5 (Ð > �). 

 

Supplementary Note 13. Cell volume varies spatially in breast cancer biopsy sample 

 

Supplementary Fig 11: Characterization of cell volume heterogeneity in patient samples. a) 

Schematic of a tumor biopsy from a breast cancer patient with fluorescent image showing cell in 

a local malignant acinus. Adapted from our previous work41. Scale bar=50 ��; b) Predicted and 

measured (Ð = �) spatial cell and nuclear volumes from malignant acinus. For these simulations 

the reference cell volume �� = Ñ. � �� and the solid growth stress at the core ����� = Ò�� ��. 

All other parameters remain as reported for the experimental 3D model.  



Supplementary Note 14. Collagen/Matrigel system prior to stress-release 

To explore the influence of intra-spheroid stress (?J) we performed additional experiments whereby 

organoids were cultured in a collagen (3.5 H¡ HsR) / Matrigel (0.5 H¡ HsR) matrix (C/M). Cell 

locations were classified by position within the spheroid: inner (S/SQ`O ≤ 0.25), inner-mid (0.25 <S/SQ`O ≤ 0.5), outer-mid (0.5 < S/SQ`O ≤ 0.75), and outer (S/SQ`O ≥ 0.75). Comparison with 

observed day-5 nucleus volumes (Supplementary Fig 12a) from the Matrigel/alginate (M/A) system 

revealed the volume differences were not significant (" > 0.05). Further, our model predictions were 

also found to lie within the interquartile range (between the first and third quartiles) of both systems 

(Supplementary Fig 12b), indicating no parameter adjustment is required to capture nuclear volumes 

across these M/A and C/M systems.  

 

Supplementary Fig 12: Nuclear volumes in different systems. a) Comparison of nuclear volume of 

cells at the inner, inner-mid, outer-mid, and outer organoid regions at day 5 of growth in the 

Matrigel/alginate (M/A) and collagen/Matrigel (C/M) systems (Ð = Ó multi-cellular clusters over 

3 independent experiments). The boxes represent the interquartile range between the first and 

third quartiles, whereas the whiskers represent the 95% and 5% values, the squares represent 

the median, the horizontal lines show the mean, and the shaded region bounds indicate the 

maxima and minima. A two-tailed Student’s t-test was used when comparing the difference 

between two groups, ns: � > �. ��; b) Predicted and experimental (day 5) spatial nuclear volumes 

in the M/A and C/M systems. Experimental distributions plotted at mid-point of associated range.  

 

 

 

 

 

 

 



Supplementary Note 15. Analytical solutions at limits of gap junction permeability  

From our continuum formulation, it is possible to analytically derive solutions at the limits of gap 

junction permeability. Considering again the expression for the number of cellular ions at position S: 

Ô��S�Ô� = �J ShUSU ÕΠNOP#� 9:,J ÔÔS oSU ÔÖ"�S�ÔS p + EJ ÔÔS oSU ÔÖΠ�S�ÔS p×
−4TSKU�S� L	EQ�	?�S�� + E\ + a�ÖΠ�S� − aÖΠKM , ��37� 

and cell volume is described by   

Ô�K�S�Ô� = �J9:,J ShUSU ÔÔS oSU Ô	Δ"�S��ÔS p
−4TSKU�S�9:,Q	Δ"�S� − ΔΠ�S��, . ��38� 

At steady state, 
Ø��=�ØP = ØÙÚ�=�ØP = 0, thus considering the limit of zero gap junction permeability (i.e. EJ = 9:,J = 0), Eqn S37 yields: 

ΔΠ�r� = aΔΠKEQ��?�S�� + E\ + a . ��39� 

Under these conditions, at steady state ΔΠ�r� = Δ"�S� (via Eqn S38), then mechanical equilibrium 

dictates: 

σ�r� = g2 oSKU�S�ShU − 1p + ?`
= LΔΠ�S� − ?J�S�M SK�S�2ℎ . ��40� 

Therefore, spatial cell volume can obtained for a given solid stress distribution ?J�S�. 

Next, considering the limit of infinite gap junction permeability (EJ = 9:,J = ∞) mandates that ØØ= LSU ØÞß�=�Ø= M = ØØ= LSU ØÞà�=�Ø= M = 0. As such, ΔΠ�S� must be constant and spatially uniform (i.e. ΔΠ�r� = ΔΠ∗). We can then multiply Eqn S37 by SU and integrate between 0 and SQ`O to obtain: 

4T á SU=â¨ã
h SKU�S�	EQ�	?�S�� + E\ + a�ΔΠ∗�S 

= 4T�ΔΠäa� á SU=â¨ã
h SKU�S��S, ��41� 

which leads to: 

ΔΠ∗ = aΔΠK
a + E\ + < EQ�	?�S�� SKU�S� ><  SKU�S� >

, ��42�
 

where <  SKU�S� > =  å SU=â¨ãh SKU�S��S  

and < X	?�S�� SKU�S� > =  å X	?�S�� SU=â¨ãh SKU�S��S. 
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