Plasmodium falciparum sexual parasites regulate infected erythrocyte permeability

Guillaume Bouyer^{*1,2}, Daniela Barbieri^{*2,3}, Florian Dupuy^{2,3}, Anthony Marteau^{2,3}, Abdoulaye Sissoko^{2,4}, Marie-Esther N'Dri^{2,3}, Gaelle Neveu^{2,3}, Laurianne Bedault^{2,3}, Nabiha Khodabux^{2,3}, Diana Roman^{2,4}, Sandrine Houzé^{2,4}, Giulia Siciliano⁵, Pietro Alano⁵, Rafael M. Martins⁶, Jose-Juan Lopez-Rubio⁶, Jérome Clain^{2,4}, Romain Duval^{2,4}, Stéphane Egée #^{1,2}, Catherine Lavazec #^{2,3}

SUPPLEMENTARY INFORMATION

Supplementary Figure S1

a. Whole cell conductance calculated at -100 mV determined by patch clamp experiments on erythrocytes infected with trophozoites, stage II gametocytes and uninfected erythrocytes. **b.** Whole cell conductance calculated at -100 mV determined by patch clamp experiments on stage II GIE in

presence or absence of NPPB. **c.** Gametocytemia at 3 days, 5 days or 7 days of culture after a 3-hour incubation of stage II GIE with or without 100 µM NPPB followed by two washes in RPMI. The graph is normalized by the gametocytemia of control (without NPPB) at 3 days post treatment. In a-c, circles indicate the number of independent experiments. Error bars show the standard error of the mean (SEM). **d.** Immunofluorescence analysis of acetone/methanol-fixed infected erythrocytes stained with mouse antibodies against the NPP component RhopH2 (red) and rabbit antibodies against the gametocyte-specific protein Pf11-1 (green), showing the presence of RhopH2 in immature GIE. Yellow arrow: asexual stages, white arrows: immature GIE. DNA is stained with Hoechst 33342 (blue). Bars represents 5 µm.

а

	I	II	aka 111	-t	-t
averade	stage I	stage II	stage III	stage IV	stage V
gametocytemia	2.10	1.58	1.39	0.78	1.64
range (%)	1.19 - 3.45	0.55 - 4.31	0.58 - 2.07	0.5 - 1.3	0.68 - 3.18
stag	e l stage	ell sta	age III	stage IV	stage V
				-	Y
			-		NO.
		0	ALC.	(AL)	
	γ	- 1	- 6	-	YT
-					
stane		stage	r		
	100	stager	ا ط 100	1	
<u>E</u>	50 -	11	<u></u> 50	and the second	H
-100	Prop Providence	100 -10	Quanta 50	50	100
A start	-50 - V	m, mV 🗜	-50	- Vm,	mV
r	-100 -	ř	-100	-	
	-150 J		-150]	
stage III 🛛 🛓	¹⁰⁰]	stage	V < 100	1	
Ĕ	50 -	H	<u> </u>		
100					
. White	-50 - 50 V	m, mV	-50	- Vm,	mV
I.	-100 -	1	-100	-	
	-150		-150]	
	stage V	1100			
	5				
		= 50			
	-100****	50	50 100	NPPB	
		-50 -	Vm, mV	+ NPPB	
		-100 -			
		-150 J			

Supplementary Figure S2

a. Average gametocytemia in NF54 cultures used for isosmotic lysis experiments. **b.** Representative pictures of stage I GIE from the NF54-pfs47-pfs16-GFP line as observed by fluorescence microscopy and of stage II, III, IV and V GIE from NF54 as observed in Giemsa-stained thin blood smears. Scale bars: $5 \mu m. c. I-V$ plots from patch experiments on GIE from stage I to stage V with (orange) or without (blue) 100 μ M NPPB.

Supplementary Figure S3

a, **c**. Alanine-induced (a) and PhTMA⁺-induced (c) isosmotic lysis of stage II GIE from the NF54 isolate (Control) and the transgenic pHL*pfpkar* line, cultivated with and without pyrimethamine (Pyri).

b, **d**. Alanine-induced (b) and PhTMA⁺-induced (d) isosmotic lysis of stage V GIE from the NF54 isolate and the transgenic line PDE δ^- . All experiments were performed in presence or absence of 100 μ M NPPB. Circles indicate the number of independent experiments, error bars show the SEM and statistical significance is determined by one-way ANOVA with Sidak correction for multiple comparisons.

Supplementary Figure S4.

a. Sorbitol-induced isosmotic lysis of stage II GIE with 100 μ M tadalafil. **b, c.** Sorbitol-induced isosmotic lysis of stage V GIE with 1 μ M, 10 μ M or 100 μ M sildenafil (b) or with 1 μ M, 10 μ M or 100 μ M tadalafil (c). All experiments were performed in presence (orange) or absence (blue) of 100 μ M NPPB. Circles indicate the number of independent experiments, error bars show the SEM and statistical significance is determined by one-way ANOVA with Sidak correction for multiple comparisons.

Supplementary Figure S5.

a. Schematic of Fluo-DHA synthesis from dihydroartemisinin (DHA) and the fluophore HPA-NBD. **b.** Fluorescence microscopy imaging of paraformaldehyde-fixed early GIE showing Fluo-DHA uptake (green). DNA is stained with Hoechst 33342 (blue). Scale bars: 5 μm. **c.** Dose-response curves and IC₅₀ values for Fluo-DHA in early gametocytes (left panel) and mature gametocytes (right panel) from the NF54-cg6-pfs16-CBG99 line. Viability (luciferase activity) was determined 72 hours after a 3-hour incubation with serial dilutions of Fluo-DHA. Error bars show the SEM.

Supplementary Figure S6.

Scatter plots showing the gating strategy for Fluo-DHA uptake. GIE from stage II (a), III (b), IV (c) or V (d) were pre-incubated or not with 100 μ M NPPB for 30 minutes and then incubated with 1 μ M of Fluo-DHA for 2 hours. Twenty minutes before the end of incubation, GIE were stained with Hoechst 33342. Values in black: percentages of cells, values in grey and red: mean of fluorescence intensities (MFI) of Fluo-DHA with NPPB (grey) or without NPPB (red). Representative panels for each stage are shown.

Supplementary Figure S7.

a. Fluo-DHA uptake in stage II GIE upon 30 μ M or 100 μ M tadalafil incubation. **b.** Fluo-DHA uptake in stage V GIE upon 30 μ M or 100 μ M sildenafil incubation. Circles indicate the number of independent experiments, error bars show the SEM and statistical significance is determined by one-way ANOVA with Dunnett correction for multiple comparisons.