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1 Derivation of the spike-and-slab prior
The proposed prior distribution for R can be factored into two parts,

p(R|δ) = C−1
δ |R|

−(p+1)
∏
j<k

Normal(rjk|0, v2
δjk

)
∏
j

Exp(rjj |λ/2)1R∈R+

p(δ|πδ) ∝ Cδ
∏
j<k

π
δjk
δ (1− πδ)1−δjk

where Cδ is a normalizing constant. First we show that Cδ < ∞ so that the prior distribution is proper.
We note

Cδ = C

∫
R+

|R|−(p+1)
∏
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exp(−(rjk)2/2v2
δjk

)
∏
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exp(−λrjj/2)dR
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2
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Since exp(−λrjj/2 + p+1
2 log(rjj)) is a non-negative function of rjj , and has a global maximum at rjj =

(p+ 1)/λ, and C is a positive constant, we have

Cδ ≤ C ′
∫
R+

|R|−(p+1)
∏
j

(rjj)−
p+1
2 dR,

where the constant C ′ < ∞, and
∫
R+ |R|−(p+1)

∏
j(r

jj)−
p+1
2 dR < ∞ as well since it is proportional to the

marginally uniform prior of R derived from the Wishart distribution. Therefore the normalizing constant
Cδ <∞, and the prior is proper.

In order to obtain the prior distribution on the expanded precision matrix Ω = (DRD)−1, we put prior
on the marginal expansion parameter D with a prior distribution so that p(d2

j |R) is an inverse Gamma
distribution with shape and rate parameter being ((p+ 1)/2, 1/2), we have

p(D|R) ∝
∏
j

d
−(p+2)
j exp(

1

2d2
j

)

By definition, we know rjk = ωjkdjdk. The Jacobian of the transformation from Ω to Σ is |Σ|−p−1.
Under the transformation from Σ to (D,R), the Jacobian is given by 2p

∏
dpj . Putting them together, we

can derive

p(Ω|δ) = p(R|δ)p(D|R)|J |

∗Department of Biostatistics, Yale School of Public Health, New Haven, CT, zehang.li@yale.edu
†Department of Statistics and Department of Sociology, University of Washington, Seattle, WA, tylermc@uw.edu
‡Department of Sociology, The Ohio State University, Columbus, OH, work@samclark.net

http://bayesian.org
mailto:zehang.li@yale.edu
mailto:tylermc@uw.edu
mailto:work@samclark.net
http://dx.doi.org/0000


2 Bayesian latent Gaussian graphical models for verbal autopsies
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where dj = σj is the square root of the k-th diagonal element of Σ = Ω−1, i.e.,
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2 Comparing spike-and-slab with Wishart prior
Since the proposed method is heavily based on the spike-and-slab prior for the precision matrix (Wang, 2015),
Ω, we first describe the spike-and-slab prior on the precision matrix, and compare it to other commonly used
prior families in this section. Wang (2015) defines the spike-and-slab prior as

p(Ω|δ) ∝ C−1
δ

∏
j<k

Normal(ωjk|0, v2
δjk

)
∏
j

Exp(ωjj |λ/2)1Ω∈M+

p(δ|πδ) ∝ Cδ
∏
j<k

π
δjk
δ (1− πδ)1−δjk

where M+ denotes the space of positive definite matrices, δjk are latent indicator variables for each ωjk
related to their size (large or small), πδ is the prior sparsity parameter, and v1 � v0 imposes different levels
of shrinkage for the elements drawn from the “slab” and “spike” prior distributions respectively. Conditional
on the binary indicators δjk, this representation shrinks the elements of Ω differently: a very small v0 allows
us to strongly shrink elements in Ω to 0 if they are small in scale, and a larger v1, i.e. a more dispersed prior
distribution, shrinks the larger elements only slightly and thus leads to less bias.

Due to the positive definiteness constraint, the normalizing constant for this prior distribution of Ω is
intractable. We glean insights about this prior distribution by simulating from the prior using the MCMC
steps described in Wang (2015). Figure 1 shows the induced marginal prior distribution on R and R−1

under a complete graph and an AR(2) graph respectively. In the complete graph case when the marginal
shrinkage parameter v1 is large, the marginal prior on R and R−1 induced by this spike-and-slab distribution
becomes very similar to that of the marginal uniform prior. This is not surprising as it can be seen directly
from the marginal distribution on the matrix elements of Ω as well. For the j-th column of Ω, the spike-
and-slab prior induces the conditional prior distribution on ω[j,−j] and the Schur complement ωj|−j =

ωjj − ωT[j,−j]Ω
−1
[−j,−j]ω[j,−j] to be

ω[j,−j]|Ω[−j,−j] ∼ Normal(0, (λΩ−1
[−j,−j] + diag(V −1

[j,−j]))
−1)

ωj|−j |Ω[−j,−j] ∼ Gamma

(
1,
λ

2

)
where V = {v2

δjk
}jk is the matrix of the “penalization” parameters determined by v0, v1 and a given graph.

This resembles the conditional prior distribution under the Wishart distribution in the previous section, i.e.
when Ω ∼Wishart(p+ 1, Ip), the marginal prior distribution for the same quantities are

ω[j,−j]|Ω[−j,−j] ∼ Normal(0,Ω[−j,−j])

ωj|−j |Ω[−j,−j] ∼ Gamma

(
1,

1

2

)
The Wishart prior induced on ω[j,−j] is the limiting case in the spike-and-slab prior as v0 = v1 → ∞ and
λ = 1. The spike-and-slab prior can be viewed, therefore, as a shrinkage prior in the middle ground between
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Figure 1: Marginal priors for R and R−1. Different marginal priors induced by the spike-
and-slab prior on Ω with p = 50 and λ = 2. Top row: marginal priors conditional on a
complete graph, i.e. v0 = v1. Left: off-diagonal elements Rij , i 6= j. Middle: diagonal elements
R−1
ii . Right: off-diagonal elements R−1

ij , i 6= j. Bottom row: marginal priors conditional on

a fixed AR(2) graph with fixed v1 = 1 and varying v0 values. Left: diagonal elements R−1
ii .

Middle: Non-zero off-diagonal elements (slab) R−1
ij , i 6= j. Right: Zero off-diagonal elements

(spike) R−1
ij , i 6= j. The densities are derived from sampling 2, 000 draws using MCMC from

the prior distribution after 2, 000 iterations of burn-in.

the Wishart prior and G-Wishart prior where off-diagonal contains exact zeros, while sharing both the easy

computational properties of the former and the graph interpretation of the latter.

For the proposed prior on the correlation matrix, we can exam such induced conditional priors in a similar

fashion. If we denote Θ = R−1, then θj|−j = 1, and θ[j,−j]|Θ−j,−j] follows similar distribution

θ[j,−j]|Θ[−j,−j] ∼ Normal(0, (λΘ−1
[−j,−j] + diag(V −1

[j,−j]))
−1)

in the constrained space that Θ is a inverse correlation matrix. This conditional density also can help

guide the choice of the hyperparameters, by comparing λ, v0, and v1 to Θ−1
[−j,−j]. The scale of Θ−1

[−j,−j]
is easy to comprehend, since Θ−1

[−j,−j] = R[−j,−j] − rT[j,−j]r[j,−j]. The linear constraints may render the

choice of hyperparameters not straightforward when the edge probability is larger. Nevertheless, we can see

from Figure 2 that both the spike-and-slab distributions still changes as expected when we fix all but one

parameters, and behaves marginally similar to the spike-and-slab prior for the precision matrix.

3 Implied prior sparsity with different hyperparameters
In this section, we provide more prior simulation results to facilitate the choice of λ, v0, v1, and πδ. Figure 3

illustrates our approach in understanding how these 4 parameters jointly imply the prior sparsity. It can be

seen that small λ and extremely small v0 usually leads to denser prior graph unless v1 is also small, which

defeats the purpose of using the continuous mixture prior. We choose to use λ = 10, v0 = 0.01, v1/v0 = 100,

and πδ = 0.0001 in our experiments. In general, for the prior edge probability to be calibrated between 0.05

to 0.2, we believe the model is not very sensitive to parameters in the close range to our choices.
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Figure 2: Marginal priors for R and R−1. Different marginal priors induced by the spike-
and-slab prior on R with p = 50. Top row: marginal priors conditional on a complete graph,
i.e. v0 = v1. Left: off-diagonal elements Rjk, j 6= k. Middle: diagonal elements rjj . Right: off-
diagonal elements rjk, j 6= k. Bottom row: marginal priors conditional on a fixed AR(1) graph
with fixed v1 = 1 and varying v0 and λ values. Left: diagonal elements rjj . Middle: Non-zero
off-diagonal elements (slab) rjk, j 6= k. Right: Zero off-diagonal elements (spike) rjk, j 6= k.
The densities are derived from sampling 2, 000 draws using MCMC from the prior distribution
after 2, 000 iterations of burn-in.

4 Posterior inference for the classification model
This section describes the inference procedure for the model presented in Section 2 of the main paper. The
steps are mostly similar to Section 3.2 of the paper.

Update Z and Λ. This first two steps are the same as in Section 3.2 of the main paper, except replacing
µ to the corresponding µc.

Update µ. The conditional posterior distribution for the mean parameters is also multivariate normal,

µc|Y , R̃,X ∼ Normal

(
(

1

σ2
Ip + ncR̃

−1)−1(
1

σ2
µ0c + ncR̃

−1z̄c), (
1

σ2
Ip + ncR̃

−1)−1

)
where nc =

∑
i 1yi=c and z̄c =

∑
i:yi=c

Zi .

Update R. To update the latent correlation matrix, we first draw the working expansion and expand the
observations in the same way as Section 3.2 of the main paper. The rescaled sample covariance matrix is
S =

∑n
i=1(Wi −Dµyi)′Λ−2(Wi −Dµyi). The rest of the sampling steps are the same.

Update Y . The cause-of-death assignment can be updated by calculating the posterior probability of
belonging to each cause by Pr(Yi = c|Zi,µ, R̃) ∝ φ(Zi;µc, R̃).

Update π. The update of the CSMF follows similar to the algorithm in McCormick et al. (2016). We first
sample the latent mean and variance by

µθ ∼ Normal(
1

C

∑
c

θc,
σ2
θ

C
),
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σ2
θ ∼ Inv-χ2(C − 1,

1

C

∑
c

(θc − µθ)2).

Then we sample θ|nc, µθ, σ2
θ ∝ prodcπ

nc
c Normal(θ;µθ, σ

2
θI) using ESS, where nc is the number of deaths

assigned to cause c.

Update σ2
c . When σ2

c is not fixed in the model, we can sample them from the conjugate posterior distribution

σ2
c ∼ InvGamma(0.001 +

p

2
, 0.001 +

∑p
j=1(µcj − µ0cj)

2

2
) .

5 Evaluation of the Gaussian approximation in Section 3.1
In Section 3.1 of the main paper, the posterior samples of v was taken using with a Gaussian approximation
step of the conditional density. That is, we approximate the true conditional distribution

p(v|u,S,V ) ∝ Gamma(v;
n

2
,
sjj + 1

2
) exp

(
− 1

2v
u′(D̂ + D̃(u, v) + λΩ−1

[−j,−j])u

)
with

p(v|u,S,V ) ∝ Normal(v;
n

sjj + 1
,

2n

(sjj + 1)2
) exp

(
− 1

2v
u′(D̂ + D̃(u, v) + λΩ−1

[−j,−j])u

)
since sjj is typically much smaller than n which makes the Gamma density well approximated by the
Normal distribution. To assess this approximation, we additionally implemented a modified ESS approach
by rewriting the correct conditional density into

p(v|u,S,V ) ∝ Normal(v;
n

sjj + 1
,

2n

(sjj + 1)2
) exp

(
− 1

2v
u′(D̂ + D̃(u, v) + λΩ−1

[−j,−j])u

)
R(v; sjj , n)

where R(v; sjj , n) is the ratio between the Gamma and Normal densities. Notice that this approach allows
the exact likelihood to be sampled at each step, but could potentially suffer from slow mixing (Nishihara
et al., 2014). The approximation used in the paper leads to very similar posterior means of the parameters
compared to sampling from this exact likelihood. Figure 4 shows the comparison of the posterior means of
R and µ using the two sampling schemes. The posterior means obtained from the approximation shrink
slightly more to zero but with good agreement to the ones drawn from the exact likelihood.

6 Additional simulation evidence of classification accuracies

6.1 Classification error

In this section we illustrate the performance of our method for cause-of-death assignment in VA analysis. We
generate n = 800 unlabeled data with p = 50 from C = 20 classes, where the class membership distributions
are generated from Dirichlet(1). Data within all groups share the same latent correlation matrix but have
different marginal mean vectors generated in the same way as described in the main paper.

For the proposed model, we further investigate the scenario where 0, 100 and 200 labeled data exist.
Intuitively, adding labeled data helps our model identify the dependence structure more quickly, especially
in the presence of low sample size and high proportion of missing data. However, we do not impose the
assumption that the labeled data shares the same class distribution as the testing data to maintain fair
comparison. Figure 5 and 6 display the results in terms of the CSMF accuracy and classification accuracy.
The proposed latent Gaussian model consistently outperforms both the naive Bayes classifier and InterVA
model, and is more robust to misspecification.
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Figure 4: Compare the estimated latent correlation matrix and latent marginal
means using approximate and exact likelihood. The data are simulated as in Case (ii)
described in the main paper with 20% and 50% of missing data respectively. Both samplers
are run 10, 000 iterations with the first half discarded and every 10th iteration saved.
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Figure 5: Box plot of CSMF accuracy for simulated mixed data. The accuracy is evaluated in a
dataset with a total n = 800 observations and p = 50 variables including 5 continuous variables from C = 20
classes, under both correct and misspecified priors and different proportion of missing data.

7 Convergence analysis

7.1 Examples with simulated data

In the simulation analysis with p = 50 and a single class, the posterior draws converge fairly quickly. Figure 7

shows the trace plots of the graph size and a random selection of muj from 5 chains with different starting

values in a single simulation with misspecified priors and 20% missing data. The Gelman-Rubin statistics

for the graph size and µ are all less than 1.01.

7.2 Examples with VA data

In this section we present the Gelman-Rubin statistics for fitting the proposed model to the Karonga data.

We focus on the convergence of CSMF. We ran the Karonga data with four chains from different starting

values. We drew Table 1 shows the Gelman-Rubin statistics for the CSMF vector ordered by the prevalence.

The statistics are mostly close to 1 except for causes with small fractions. Similar difficulties in convergence

of small CSMFs have been previously reported in McCormick et al. (2016) as well. The traceplots in Figure 8

and 9 show that the CSMFs converge to the same levels from multiple chains.
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Figure 6: Box plot of classification accuracy for simulated mixed data. The accuracy is evaluated
in a dataset with a total n = 800 observations and p = 50 variables including 5 continuous variables from
C = 20 classes, under both correct and misspecified priors and different proportion of missing data.

8 More details about the Karonga data analysis

8.1 Distribution of causes of death in Karonga data

A figure representation of the causes-of-death distribution in the Karonga dataset used in the experiments

are presented in Figure 10.

8.2 Estimated dependence structures

In this subsection, we include some additional results of the analysis in Section 6.2 of the main paper using

pre-2008 data as training set and all the rest as testing data. The estimated correlation matrix, inverse

correlation matrix, and the posterior inclusion probabilities of edges are shown in Figure 11.
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Figure 7: Trace plots of the graph size and a random subset of the marginal means µj. The
colors indicate five chains with different starting values.

9 Numerical illustration of structural bias of independence
assumption in VA analysis

In this section, we provide a numerical illustration to show the influence of ignoring correlation in cause-

of-death assignment. We note that similar ideas of incorporating the dependencies between predictors for

prediction have been studied recently in regression analysis (e.g. Guan et al., 2016; Peterson et al., 2015).

For Naive Bayes classification, many previous studies have shown that it is, in many scenarios, robust to

ignored dependencies (e.g., Rish, 2001), yet we are not aware of any formal discussion of the independence

assumption in VA analysis. Here we illustrate some potential issues with the following example.

Assume the simple scenario where only three infectious diseases C = (c1, c2, c3) are of interest. For

example, HIV/AIDS, TB, and a third category of “undetermined infectious disease”, which in general includes

deaths possibly due to either HIV/AIDS or TB but cannot be determined from data. Assuming there

are two symptoms S = (s1, s2), and denoting Ps1s2(C) = Pr(C|S = (s1, s2)), pi = Pr(s1 = 1|Ci) and

qi = Pr(s2 = 1|Ci), we can write the conditional distribution for the four combinations of S as follows under
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Figure 8: Trace plots for each CSMF posterior. Samples from four chains including the
burn-in period, arranged in descending order by the mean.
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Figure 9: Trace plots for each CSMF posterior. Samples from four chains after the
burn-in period, arranged in descending order by the mean.
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Figure 10: Distributions of causes-of-death in Karonga dataset by year. The integers
in each cell show the number of deaths in the corresponding period, and the shading represents
the proportion of causes in each year. The data before 2008 are used as prior information in
the experiment and thus are combined in this figure.
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Figure 11: Posterior mean correlation (upper left), inverse correlation (upper right), and the
inclusion probability (lower) matrix for Karonga data. The cells with orange color are
the known edges from the questionnaire structure that is not estimated.
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Mean RHat

Graph size 474.59 1.02

TB/AIDS 0.25 1.07
Cardiovascular disorder 0.20 1.05

Acute febrile illness 0.09 1.05
Genito urinary disorders 0.09 1.08
Cause of death unknown 0.08 1.08

Respiratory disorder 0.06 1.04
Central nervous system disorder 0.04 1.10

NCD - unspecifiable or other unlisted 0.04 1.25
Gastro intestinal disorder 0.03 1.05

Endocrine disorders 0.03 1.05
Neoplasm 0.03 1.41

Communicable - unspecifiable or other unlisted 0.02 1.34
Maternal 0.02 1.38

Nutritional disorder 0.01 1.66
Diarrhoeal disease without fever 0.00 1.23

Anaemia 0.00 1.41

Table 1: Gelman-Rubin statistics for graph size and CSMF in the Karonga example.

the independence assumption

Pr(S|Ci) =

( 0 1

0 (1− pi)(1− qi) (1− pi)qi
1 pi(1− qi) piqi

)
i = 1, 2, 3

Applying Bayes rule with uniform prior on the prior distribution of the three causes of death, we can see
the entries in the table above are proportional to the posterior probability of assigning each cause of death
given a specific observation of symptoms, since

Ps1,s2(Ci) =
1
3P (S|Ci)∑3
j=1

1
3P (S|Cj)

=
P (S|Ci)∑3
j=1 P (S|Cj)

∝ P (S|Ci) .

Now consider the case where the two symptoms s1 and s2 are respectively key symptoms for c1 and c2, so
that p1 > p2 and q1 < q2. Since deaths due to c3 are essentially a mixture of the other two causes and we
assume equal prevalence of c1 and c2, we can roughly let P (S|C3) = P (S|C1)/2 +P (S|C2)/2. Still using the
independence assumption for c1 and c2, we calculate the correct joint distribution of symptoms given c3 to
be

Pr(S|C3) =

( 0 1

0 θ00 θ10

1 θ01 θ11

)

=

( 0 1

0 ((1− p1)(1− q1) + (1− p2)(1− q2))/2 ((1− p1)q1 + (1− p2)q2)/2

1 (p1(1− q1) + p2(1− q2))/2 (p1q1 + p2q2)/2

)
which violates the independence assumption since the product of marginal probabilities Pr(s1 = 1|C3) Pr(s2 =
1|C3) = (θ10 +θ11)(θ01 +θ11) = (q1 +q2)(p1 +p2)/4 > (p1q1 +p2q2)/2 = θ11 when (p1−p2)(q1−q2) < 0. This
implies that by naively applying Bayes rule and assuming independence of symptoms, we will over-estimate
P11(C3) under this setup.

Additionally, we consider the scenario where p1 = q2 and q1 = p2, which is highly likely when the
conditional probabilities are provided as rankings instead of numerical values, as in the implementation of
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InterVA. It is obvious to show that Pr(s1 = 1|C3) Pr(s2 = 1|C3) = (q1 +q2)(p1 +p2)/4 = (q1 +p1)2/4 > q1p1,
which means if independence of symptoms conditional on causes is assumed, a researcher will conclude
P11(C3) > P11(C1), and similarly P11(C3) > P11(C2). In contrast, if the analysis is carried out with the
correct conditional probability table, it should lead to P11(C1) = P11(C2) = P11(C3) since the lower right
entries in all three tables are equal. This heuristic example shows that even when some of the conditional
independence assumptions are satisfied and all marginal Ps|c are accurately estimated, due to the particular
features of VA analysis that includes causes that are “undetermined”, the independence assumption can
lead to undesired outcomes that overestimate the “undetermined” categories. These biases result entirely
from model assumptions and cannot be solved with more data, and the problem becomes even worse as the
number of symptoms and causes grows.
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