779 Appendix A. Supplementary Materials

780 **1. Isotopic measurements**

The aliquots for Os isotopic analysis were added into chilled Pyrex® Carius tubes, along with 781 5 ml of concentrated HNO₃ and 2.3 ml of concentrated HCl. The Carius tubes were sealed and 782 then heated for at least 24 h at 220 °C (Shirey and Walker, 1995). Osmium was extracted from the 783 solution using CCl₄ solvent-extraction methods (Cohen and Waters, 1996), and then further 784 purified using microdistillation from a dichromate solution (Birck et al., 1997). This procedure 785 resulted in ~70 % yield for Os. Between 70-300 ng of purified Os were loaded onto outgassed Pt 786 filaments in HBr, activated with Ba(OH)₂, and analyzed as OsO₃⁻ by a *Thermo-Fisher Triton* 787 thermal ionization mass spectrometer (TIMS) at the University of Maryland (UMd) (Walker, 788 2012). Osmium isotopic data were corrected for instrumental and natural mass fractionation by 789 normalizing ¹⁹²Os/¹⁸⁸Os to 3.08271 (Allègre and Luck, 1980). Isobaric interferences from OsO₃⁻ 790 species with ¹⁷O or ¹⁸O were corrected using the O isotopic composition reported by Nier (1950). 791 Molybdenum aliquots were prepared following the methods described in Worsham et al. 792 (2016a). In brief, aliquots were dried, dissolved in 1 M HF, and loaded onto an anion column of 793 AG 1-X8 (200-400 mesh) resin. Molybdenum was eluted using 6 M HNO₃-3 M HF, dried, and 794 dissolved in 6 M HCl. The Mo solution was then added to a smaller anion column with ~0.3 mL 795 AG 1-X8 (200-400 mesh) resin and eluted with 1 M HCl. This elution was repeated a second time. 796 This procedure resulted in ~50 % yield for Mo. Purified Mo aliquots were treated with 797 concentrated HCl and HNO₃ multiple times in order to destroy organics. The samples were then 798 dissolved in 6 M HCl, about 500-1000 ng Mo were loaded onto outgassed Re filaments, and 799 activated with ~ $2 \mu L$ of a 5 $\mu g/\mu L$ La(NO₃)₃ solution. A double filament assembly was used and 800 the same amount of $La(NO_3)_3$ was added to the ionization Re filament. Molybdenum was measured 801

as MoO_3^- by the *Thermo-Fisher Triton Plus* TIMS at UMd. The ¹⁰⁰Mo¹⁸O¹⁶O₂⁻ species was measured using a 10¹³ Ω resistor amplifier for O isotope interference corrections. Molybdenum isotopic data were corrected for instrumental and natural mass fractionation by normalizing ⁹⁸Mo/⁹⁶Mo to 1.453171 (Lu and Masuda, 1994).

Aliquots for Ru isotopic analysis were prepared following the procedure discussed by 806 807 Bermingham et al. (2016). In brief, aliquots of the primary dissolution were dried and dissolved in 0.15 M HCl and then processed through a cation column of AG50WX8 (200-400 mesh) resin. 808 Ruthenium was immediately eluted using 0.15 M HCl and dried to about 5 µL for microdistillation, 809 in which H₂Cr₂O₇ was used as the oxidant and 6 M HCl was used as the trap solution and reductant. 810 This procedure resulted in ~50 % yield for Ru. About 1000 ng of purified Ru were loaded onto 811 outgassed single Pt filaments in HBr, activated with Ba(OH)₂, and analyzed as RuO₃⁻ by a Thermo-812 Fisher Triton Plus TIMS. Ruthenium isotopic data were corrected for instrumental and natural 813 mass fractionation by normalizing ⁹⁹Ru/¹⁰¹Ru to 0.745075 (Chen et al., 2010). The O isotopic 814 composition reported by Nier (1950) was used to determine and correct for in-run ¹⁷O and ¹⁸O 815 molecular interferences. 816

Tungsten aliquots from the primary dissolution were exposed to air for 1-2 weeks in order to 817 818 oxidize Fe in the solution from +2 to +3. Ferrous Fe was then removed using a diisopropyl ether extraction procedure (Dodson et al., 1936). The resulting solution was dried, dissolved in 1 M 819 HCl-0.1 M HF, and eluted through a cation column of AG50-X8 (200-400 mesh) resin with 1 M 820 HCl-0.1 M HF. The solution was then dried, dissolved in 0.5 M HCl-0.5 M HF, loaded onto a 821 column of AG1-X8 (100-200 mesh) resin, and eluted with 6 M HCl-1 M HF. This elution was 822 repeated twice using progressively less resin and acid (Touboul and Walker, 2012). This procedure 823 resulted in ~60 % yield for W. Organics accrued during the column chemistry were removed by 824

drying the sample multiple times in concentrated HCl and HNO₃. About 300-1000 ng of purified 825 W were then dissolved in 1 M HCl- 0.01 M HF, loaded onto outgassed single Re filaments, 826 activated with 1 μ L of a 5 μ g/ μ L La-5 μ g/ μ L Gd solution, and measured as WO₃⁻ using a *Thermo*-827 Fisher Triton TIMS following the method of Archer et al. (2017). This method allowed 828 independent measurement of both ¹⁸²W/¹⁸⁴W and ¹⁸³W/¹⁸⁴W. Potential mass interference from 829 ReO₃⁻ species were also monitored and corrected for. Tungsten isotopic data were corrected for 830 instrumental and natural mass fractionation by normalizing ¹⁸⁶W/¹⁸⁴W to 0.92767 (Volkening et 831 al., 1991). 832

Some prior studies of terrestrial and cosmochemical materials have observed deviations in 833 ¹⁸³W/¹⁸⁴W ratios for reference standards and samples that were processed through certain column 834 chemistry procedures and analyzed by multi-collector inductively-coupled plasma mass 835 spectrometry (e.g., Kruijer et al., 2013; Cook and Schönbächler, 2016; Kruijer and Kleine, 2018). 836 Such deviations have been interpreted to be the result of nuclear field shift effects, requiring 837 corrections to be made to account for the observed deviations (Cook and Schönbächler, 2016). 838 However, no such effects have been observed for reference standards, terrestrial samples, or 839 meteorite samples using the column chemistry procedures described here, coupled with thermal 840 ionization mass spectrometry (Archer et al., 2017; Mundl et al., 2017; Mundl et al., 2018; Archer 841 et al., 2019). Consequently, no corrections to the measured $^{183}W/^{184}W$ ratios from this study have 842 been made. 843

Values of μ^{182} W for the SBT were corrected for nucleosynthetic variations using the method reported by Kruijer et al. (2014a). In this correction, variation in the *r*-process component for irons is subtracted from the μ^{182} W value using μ^{183} W as an *r*-process component proxy. This correction is based on the ^{182/184}W vs. ^{183/184}W isotopic composition of fine- and coarse-grained CAI, which

give a $^{182/184}$ W vs. $^{183/184}$ W (186/184 normalized) correlation of $+1.41 \pm 0.06$. The ΔT_{CAI} ages were 848 then calculated using the CAI initial value μ^{182} W of -349 ± 7 (Kruijer et al., 2014b), the present-849 day chondritic μ^{182} W value of -190 ± 10 (Kleine et al., 2004), and the decay constant for ¹⁸²Hf of 850 0.078 ± 0.002 Myr⁻¹ (Vockenhuber et al., 2004). The ΔT_{CAI} ages for Babb's Mill, South Byron, 851 and ILD 83500 were calculated from the μ^{182} W and μ^{183} W values determined by normalizing to 852 ¹⁸⁶W/¹⁸⁴W. The uncertainties for the ΔT_{CAI} ages include the 2SD determined from the analysis of 853 standards run during an analytical campaign for $\mu^{182}W$ and $\mu^{183}W$ compositions, and the 854 uncertainty associated with the μ^{183} W *r*-process correction only (Kruijer et al., 2014a). Tungsten 855 isotopic data were not obtained for Milton because there was insufficient material to make this 856 measurement. 857

858

859 **2. Fractional crystallization modeling**

In this study, Eq. S1 is used to calculate the concentration of an element throughout the 860 evolution of a liquid melt, where F_n is the fraction of liquid (n = 100 is pure liquid), C_{Ln} is the 861 concentration of an element in the liquid phase at F_n , and D_n is the partition coefficient of an 862 element. The concentration of an element is calculated at each 0.1 % fraction of liquid with respect 863 to the concentration of the previous liquid fraction. For S, a constant partition coefficient of 0.001 864 is used (Walker et al., 2008). The partition coefficients for P and C are determined at each F_n by 865 considering the concentration of S and P or S and C, respectively, in the liquid at F_{n+1} . Equation 866 S2 is used to account for the effects of S on P and C partitioning behavior (Chabot and Jones, 867 2003). 868

⁸⁶⁹ Values of D_o for P and C are taken from Chabot et al. (2017) and Worsham et al. (2016b), ⁸⁷⁰ respectively. The β_{SPC} variable is determined using Eq. S3 (Jones and Malvin, 1990), in which β_{SPC} and β_P are taken from Chabot et al. (2017) and β_C is taken from Worsham et al. (2016b). For P, the effects of C are not considered and for C, the effects of P are not considered. The β_{SPC} and "Fe domains" (Eq. S4; Chabot et al., 2017) variables are calculated at each F_n , where X_i is the mole fraction of an element.

875
$$Eq. S1: C_{Ln-1} = \frac{C_{Ln}}{(F_{n-1} + 1 - F_{n-1}D_{n-1})}$$

Eq. S2:
$$\frac{1}{D} = \frac{[Fe \text{ domains}]^{\beta_{SPC}}}{D_o}$$

877
$$Eq. S3: \beta_{SPC} = \left[\frac{2X_S}{2X_S + 4X_P + 4X_C}\right]\beta_S + \left[\frac{4X_P}{2X_S + 4X_P + 4X_C}\right]\beta_P + \left[\frac{4X_C}{2X_S + 4X_P + 4X_C}\right]\beta_C$$

Eq. S4: Fe domains =
$$\frac{1 - 2X_s - 4X_P - 4X_C}{1 - X_s - 3X_P - 3X_C}$$

Eq. S5:
$$C_{Sn} = C_{Ln}D_n$$

After determining the concentration of S, P, and C at each F_n , the D values for the HSE are calculated at each F_n using Eq. S2-S4 by collectively considering the changes in S, P, and C content in the liquid (Jones and Malvin, 1990; Chabot and Jones, 2003; Worsham et al., 2016b; Chabot et al., 2017). The concentration of HSE in the liquid at each F_n is then determined using Eq. S1 and the solid composition (C_{Sn}) at each F_n is determined using Eq. S5.

885

886 **3. Thermal accretion model**

This study uses a thermal accretion model (Eq. S6) that describes a solid sphere, which gains heat through ²⁶Al decay and loses heat by conduction (Carslaw and Jaeger, 1959). The model solves for the temperature at a certain depth within the sphere at any time (t) after accretion and we assume that differentiation occurred instantaneously when the temperature halfway to the

center of the body from the surface reached 1600 K (Kruijer et al., 2017). This assumption is made 891 since ~50 % of silicate melt fractions may be necessary for core formation (Taylor, 1992). In order 892 to be consistent with past studies, we assume a radius of R = 40 km for the parent body and the 893 temperature is evaluated at a depth of r = 20 km (Kruijer et al., 2017). The background nebular 894 temperature is represented as T_0 , thermal conductivity is represented as K, thermal diffusivity is 895 represented as k, and a ²⁶Al decay constant of $\lambda = 9.83 \times 10^{-7} \text{ yr}^{-1}$ is used with a Solar System initial 896 ²⁶Al/²⁷Al ratio of 5.23 x 10⁻⁵ (Norris et al., 1983; Jacobsen et al., 2008). All values used in this 897 model are listed in Table S1. 898

899 Eq. S6:
$$T = T_0 + \frac{kA}{K\lambda} e^{-\lambda t} \left(\frac{Rsin\left(r * \left(\frac{\lambda}{k}\right)^{\frac{1}{2}}\right)}{rsin\left(R * \left(\frac{\lambda}{k}\right)^{\frac{1}{2}}\right)} - 1 \right) + \frac{2R^3A}{r\pi^3K} \sum_{n=1}^{\infty} \frac{(-1)^n}{n(n^2 - \frac{\lambda R^2}{k\pi^2})} sin\left(\frac{n\pi r}{R}\right) e^{-kn^2\pi^2 t/R^2}$$

900

The background temperature is assumed to be 250 K, consistent with models by Hevey and 901 Sanders (2006), Kruijer et al. (2014b), and Kruijer et al. (2017), which is the average temperature 902 estimated for a circumsolar disk at 2.5 AU and 1 Myr after T-Tauri star formation (Woolum and 903 Cassen, 1999). The power per unit volume A (W m⁻³) = H* ρ , where H is the power per unit mass 904 (W kg⁻¹) and ρ is the density of the planetesimal (kg m⁻³). The power per unit mass, H, is equal to 905 (total Al atoms/kg)*(26 Al/ 27 Al)*(2.0 x 10⁻²⁶ W/atom), where (26 Al/ 27 Al) is a function of time, the 906 parent body concentration of Al is based off of the range observed in carbonaceous chondrites 907 (0.86-1.68 wt. %; Lodders and Fegley, 1998), and the decay power of ²⁶Al is calculated from a 908 decay energy of ²⁶Al of 6.4 x 10⁻¹³ J/atom with its half-life of 9.83 x 10⁻⁷ yr⁻¹ (Hevey and Sanders, 909 2006). We note that this calculation of heat production differs from that reported by Kruijer et al. 910 911 (2017). Kruijer et al. (2017) report using a range of Al concentration from 8.65-16.8 wt. %, which is an order of magnitude greater than used here. In addition, Kruijer et al. (2017) report calculating 912

heat production as A = Al concentration*(${}^{26}Al/{}^{27}Al$) and it is calculated in this study as A = (total Al atoms/kg)*(${}^{26}Al/{}^{27}Al$)*(2.0 x 10⁻²⁶ W/atom)*(ρ), where (${}^{26}Al/{}^{27}Al$) is a function of time in both models. Despite these differences between the model inputs, the results of both models differ by less than 0.2 Myr. For this study, 0.86 wt. % Al relates to A = 12.3*(${}^{26}Al/{}^{27}Al$), 1.20 wt. % Al relates to A = 17.1*(${}^{26}Al/{}^{27}Al$) and 1.68 wt. % Al relates to A = 23.9*(${}^{26}Al/{}^{27}Al$). Therefore, the results in this study for 0.86 wt. % Al and 1.20 wt. % Al are similar to the results by Kruijer et al.

919 (2017) for 12 wt. % Al and 16.8 wt. % Al, respectively.

920 Supplementary Tables

921 **Table S1**

Sample	n ^a	μ ¹⁸⁹ Os	2SD	μ ¹⁹⁰ Os	2SD
Milton	1	-4	8	25	18
Babb's Mill	2	1	6	-4	7
Babb's Mill (rep)	1	8	7	-1	4
South Byron	3	8	7	-4	7
ILD 83500	1	3	6	-3	7

922 Osmium isotopic composition data for Milton and the SBT.

^a n is the number of analyses. The reported μ^{189} Os and μ^{190} Os values reflect the average values obtained for each meteorite piece. Uncertainties reflect the largest (of n analyses) 2SD of the standards run during an analytical campaign.

Table S2

928	Terms and	values us	sed in the	e thermal	accretion	model.
/ = -						

Term	Symbol	Units	Value	Source
Al concentration	Al	Wt. %	0.86-1.68	Lodders and Fegley (1998)
Ambient temperature	To	К	250	Woolum and Cassen (1999)
Decay constant	λ	yr ⁻¹	9.83 x 10 ⁻⁷	Norris et al. (1983)
Decay energy	Е	J atom ⁻¹	6.4 x 10 ⁻¹³	Hevey and Sanders (2006)
Density	ρ	kg m ⁻³	3200	Kruijer et al. (2017)
Diffusivity	k	$m^2 s^{-1}$	5 x 10 ⁻⁷	Kruijer et al. (2017)
Initial ²⁶ Al/ ²⁷ Al	$^{26}Al/^{27}Al_i$	atom/atom	5.23 x 10 ⁻⁵	Jacobsen et al. (2008)
Power per unit mass	Н	W kg ⁻¹	a	
Power per unit volume	А	W m ⁻³	Ηxρ	
Depth assessed for temperature	r	km	20	Kruijer et al. (2017)
Radius of body	R	km	40	Kruijer et al. (2017)
Thermal conductivity	K	W m ⁻¹ K ⁻¹	2.1	LaTourrette and Wasserburg (1998)

 $\overline{}^{a}$ H = (Al atoms/kg)*(26 Al/ 27 Al)*(E* λ_{sec}), where (26 Al/ 27 Al) is a function of time and λ is in units of s⁻¹.

Fig. S1. Compilation of CRE-corrected μ^{97} Mo *vs.* μ^{100} Ru data for iron meteorites from Bermingham et al. (2018). Blue squares represent meteorites classified as CC type and red diamonds represent meteorites classified as NC type. Data from this study for the SBT and Milton are also plotted. The black line represents the regression of the Mo-Ru cosmic correlation from Bermingham et al. (2018). The inset shows the Mo and Ru isotopic composition of the SBT and Milton without other meteorites.

Fig. S2. Compilation of μ^{183} W *vs*. μ^{182} W data for iron meteorites from Kruijer et al. (2017). Blue squares represent meteorites classified as CC type and red diamonds represent meteorites classified as NC type. The average SBT W isotopic composition is also plotted (green triangle). The average μ^{183} W value for the SBT (+9 ± 5, 2SE, n = 4) is resolved from the W standard value obtained during the analytical campaigns for this work (0 ± 2, 2SE, n = 16).

Fig. S3. CI-normalized HSE patterns calculated from a constant HSE initial concentration from
Table 4 and varying S and P parental melt compositions. Assuming Milton metal crystallized in
the first ~10% of solid, the Re/Os of Milton metal resembles a high S system with 17 wt. % S, 1.5
wt. % P, and <0.05 wt. % C. However, the Pt/Os of Milton metal resembles a lower S system with
8 wt. % S, 1 wt. % P, and <0.05 wt. % C.

955

Fig. S4. Fractional crystallization models for Re (ppb) vs. Re/Os and Pt (ppb) vs. Pt/Os for two 956 pairs of parental melt compositions. Black lines represent mixing between solid and liquid, at 0 % 957 solid-100 % liquid, 20 % solid-80 % liquid, and 40 % solid-60 % liquid. (Upper left and right) 958 Fractional crystallization model, which reproduce the HSE patterns observed for the SBT, 959 calculated for the initial parameters listed in Table 4. (Bottom left and right) Fractional 960 crystallization model with 7 wt. % S and 1 wt. % P, which can reproduce the observed HSE 961 patterns for Milton metal. This model requires a starting liquid composition of Re = 1,350 ppb, Os 962 = 11,000 ppb, and Pt = 17,500 ppb. Neither model can reproduce both Re/Os and Pt/Os observed 963 in Milton metal and the SBT through solid metal-liquid metal mixing. 964

Fig. S5. CI-normalized HSE parental melt compositions, with varying S and P contents, which reproduce the Milton HSE pattern as an early (<10 %) fractional crystallizing metal. The parental melt composition of the SBT is shown for comparison.

Fig. S6. Thermal model results for a 40 km radius body when evaluating the temperature midway to the center of the body (r = 20 km). The model is based on an assumption of instantaneous differentiation when the temperature reaches 1600 K. Thermal model results are shown for Al concentrations of 0.86, 1.20, and 1.68 wt. %. The differentiation age of the SBT (2.1 ± 0.8 Myr after CAI formation; blue solid line \pm blue dashed lines) fits an accretion age range of 1.1 ± 0.5 Myr after CAI formation.

976 Supplementary References

977	

978	Allègre C.J. and Luck JM. (1980) Osmium isotopes as petrogenetic and geological tracers. Earth
979	<i>Planet. Sci. Lett.</i> 48 , 148–154.
980	
981	Archer G.J., Mundl A., Walker R.J., Worsham E.A., Bermingham K.R. (2017) High-precision
982	analysis of ${}^{182}W/{}^{184}W$ and ${}^{183}W/{}^{184}W$ by negative thermal ionization mass spectrometry:
983	per-integration oxide corrections using measured ¹⁸ O/ ¹⁶ O. Int. J. Mass Spectrom. 414, 80-
984	86.
985	
986	Archer G.J., Walker R.J., Tino J., Blackburn T., Kruijer T.S., Hellmann J.L. (2019) Siderophile
987	element constraints on the thermal history of the H chondrite parent body. Geochim.
988	<i>Cosmochim. Acta</i> 245 , 556-576.
989	
990	Bermingham K.R., Walker R.J., Worsham E.A. (2016) Refinement of high precision Ru isotope
991	analysis using negative thermal ionization mass spectrometry. Int. J. Mass Spectrom. 403,
992	15-26.
993	
994	Bermingham K.R., Worsham E.A., Walker R.J. (2018) New insights into Mo and Ru isotope
995	variation in the nebula and terrestrial planet accretionary genetics. Earth Planet. Sci. Lett.
996	487 , 221-229.
997	

998	Birck JL., Roy-Barman M., Capmas F. (1997) Re–Os isotopic measurements at the femtomole
999	level in natural samples. Geostand. Newsl. 20, 9–27.
1000	
1001	Carlslaw H. S. and Jaeger J. C. (1959) Conduction of heat in solids. Oxford: Oxford University
1002	Press.
1003	
1004	Chabot N. L. and Jones J. H. (2003) Parameterizing iron meteorite partitioning experiments.
1005	Meteorit. Planet. Sci. 37, 1425–1436.
1006	
1007	Chabot N.L., Wollack E.A., McDonough W.F., Ash R.D., Saslow S.A. (2017) Experimental
1008	determination of partitioning in the Fe-Ni system for applications to modeling meteoritic
1009	metals. Meteorit. Planet. Sci 52, 1133-1145.
1010	
1011	Chen J.H., Papanastassiou D.A., Wasserburg G.J. (2010) Ruthenium endemic isotope effects in
1012	chondrites and differentiated meteorites. Geochim. Cosmochim. Acta 74, 3851-3862.
1013	
1014	Cohen A.S. and Waters F.J. (1996) Separation of osmium from geological materials by solvent
1015	extraction for analysis by thermal ionization mass spectrometry. Anal. Chimica Acta 332,
1016	269–275.
1017	
1018	Cook D.L. and Schönbächler M. (2016) High-precision measurement of W isotopes in Fe-Ni alloy
1019	and the effects from the nuclear field shift. J. Anal. At. Spectrom. 31, 1400-1405.
1020	

1021	Dodson R. W., Forney G. J., Swift E. H. (1936) The extraction of ferric chloride from hydrochloric
1022	acid solutions by isopropyl ether. J. Am. Chem. Soc. 58, 2573-2577.
1023	
1024	Hevey P.J. and Sanders I.S. (2006) A model for planetesimal meltdown by ²⁶ Al and its implications
1025	for meteorite parent bodies. Meteorit. Planet. Sci 41, 95-106.
1026	
1027	Jacobsen B., Yin Qz., Moynier F., Amelin Y., Krot A.N., Nagashima K., Hutcheon I.D., Palme
1028	H. (2008) ²⁶ Al- ²⁶ Mg and ²⁰⁷ Pb- ²⁰⁶ Pb systematics of Allende CAIs: canonical solar system
1029	initial ²⁶ Al/ ²⁷ Al ratio reinstated. Earth Planet. Sci. Lett. 272, 353-364.
1030	
1031	Jones J. H. and Malvin D. J. (1990) A nonmetal interaction model for the segregation of the trace
1032	metals during solidification of Fe-Ni-S, Fe-Ni-P, Fe-Ni-S-P alloys. Metall. Trans. B
1033	21B, 697–706.
1034	
1035	Kleine, T., Mezger, K., Münker, C., Palme, H., Bischoff, A. (2004) ¹⁸² Hf– ¹⁸² W isotope systematics
1036	of chondrites, eucrites, and Martian meteorites: chronology of core formation and mantle
1037	differentiation in Vesta and Mars. Geochim. Cosmochim. Acta 68, 2935–2946.
1038	
1039	Kruijer T.S., Fischer-Gödde M., Kleine T., Sprung P., Leya I., Wieler R. (2013) Neutron capture
1040	on Pt isotopes in iron meteorites and the Hf-W chronology of core formation in
1041	planetesimals. Earth Planet. Sci. Lett. 361, 162-172.
1042	

1043	Kruijer T.S., Kleine T., Fischer-Gödde M., Burkhardt C., Wieler R. (2014a) Nucleosynthetic W
1044	isotope anomalies and the Hf-W chronometry of Ca-Al-rich inclusions. Earth Planet. Sci.
1045	<i>Lett.</i> 403 , 317-327.
1046	
1047	Kruijer T.S., Touboul M., Fischer-Gödde M., Bermingham K.R., Walker R.J., Kleine T. (2014b)
1048	Protracted core formation and rapid accretion of protoplanets. Science 344, 1150–1154.
1049	
1050	Kruijer T.S., Burkhardt C., Budde G., Kleine T. (2017) Age of Jupiter inferred from the distinct
1051	genetics and formation times of meteorites. Proc. Natl. Acad. Sci. 114, 6712-6716.
1052	
1053	Kruijer T.S. and Kleine T. (2018) No ¹⁸² W excess in the Ontong Java Plateau source. <i>Chem. Geol.</i>
1054	485 , 24-31.
1055	
1056	LaTourrette T. and Wasserburg G.J. (1998) Mg diffusion in anorthite: Implications for the
1057	formation of early solar system planetesimals. Earth Planet. Sci. Lett. 158, 91-108.
1058	
1059	Lodders K. and Fegley B. (1998) The Planetary Scientist's Companion. Oxford Univ Press, New
1060	York, 371 pp.
1061	
1062	Lu Q. and Masuda A. (1994) The isotopic composition and atomic weight of molybdenum. Int. J.
1063	Mass Spectrom. Ion Process. 130, 65–72.

1065	Mundl A., Touboul M., Jackson M.G., Day J.M.D., Kurz M.D., Lekic V., Helz R.T., Walker R.J.
1066	(2017) Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66-69.
1067	
1068	Mundl A., Walker R.J., Reimink J.R., Rudnick R.L., Gaschnig R.M. (2018) Tungsten-182 in the
1069	upper continental crust: Evidence from glacial diamictites. Chem. Geol. 494, 144-152.
1070	
1071	Nier A.O. (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen,
1072	oxygen, argon, and potassium. Phys. Rev. 77, 789–793.
1073	
1074	Norris T.L., Gancarz A.J., Rokop D.J., Thomas K.W. (1983) Half-life of ²⁶ Al. J. Geophys. Res.
1075	88 , B331-B333.
1076	
1077	Shirey S.B. and Walker R.J. (1995) Carius tube digestion for low-blank rhenium-osmium analysis.
1078	Anal. Chem. 34 , 2136-2141.
1079	
1080	Taylor G.J. (1992) Core formation in asteroids. J. Geophys. Res. 97, 14717-14726.
1081	
1082	Touboul M. and Walker R.J. (2012) High precision tungsten isotope measurement by thermal
1083	ionization mass spectrometry. Int. J. of Mass Spectrom. 309, 109-117.
1084	
1085	Vockenhuber C., Oberli F., Bichler M., Ahmad I., Quittem G., Meier M., Halliday A.N., Lee D
1086	C., Kutschera W., Steier P., Gehrke R.J., Helmer R.G. (2004) New half-life measurement

1087	of ¹⁸² Hf: Improved chronometer for the early solar system. <i>Physical Review Letters</i> 93 ,
1088	172501-1-172501-4.
1089	
1090	Volkening J., Köppe M., Heumann K.G. (1991) Tungsten isotope ratio determinations by negative
1091	thermal ionization mass spectrometry. Int. J. Mass Spectrom. 107, 361-368.
1092	
1093	Walker R.J., McDonough W.F., Honesto J., Chabot N.L., McCoy T.J., Ash R.D., Bellucci J.J.
1094	(2008) Modeling fractional crystallization of group IVB iron meteorites. Geochim.
1095	<i>Cosmochim. Acta</i> 72 , 2198-2216.
1096	Walker R L (2012) Evidence for homogeneous distribution of osmium in the protosolar nebula
1090	Earth Planet. Sci. Lett. 351-352 , 36-44.
1098	
1099	Woolum D. S. and Cassen P. (1999) Astronomical constraints on nebular temperatures:
1100	Implications for planetesimal formation. <i>Meteorit. Planet. Sci</i> 34 , 897–907.
1101	
1102	Worsham E.A., Walker R.J., Bermingham K.R. (2016a) High-precision molybdenum isotope
1103	analysis by negative thermal ionization mass spectrometry. Int. J. Mass Spectrom. 407, 51-
1104	61.
1105	
1106	Worsham E.A., Bermingham K.R., Walker R.J. (2016b) Siderophile element systematics of IAB
1107	complex iron meteorites: new insights into the formation of an enigmatic group. Geochim.
1108	Cosmochim. Acta 188, 261-283.