Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

Supporting Information

Multicomponent Transition Metal Dichalcogenide Nanosheets for Imaging-Guided Photothermal and Chemodynamic Therapy

Yu Zhu,‡ Yingjie Wang,‡ Gareth R. Williams, Liyang Fu, Jingjing Wu, Hui Wang, Ruizheng Liang,* Xisheng Weng,* Min Wei*

Y. Zhu, L. Fu, J. Wu, H. Wang, Dr. R. Liang, Prof. M. Wei State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China E-mail: liangrz@mail.buct.edu.cn (Dr. R. Liang); weimin@mail.buct.edu.cn (Prof. M. Wei)

Y. Wang, Prof. X. Weng Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China E-mail: xshweng@medmail.com.cn (Prof. X. Weng)

Dr. G. R. Williams UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK

[‡] These authors contributed equally to this work.

Figure S1. XRD pattern of CoFeMn-LDH precursor with Co: Fe: Mn = 2: 0.75: 0.25.

Figure S2. XRD patterns of CFMS NSs with Co: Fe: Mn = 1: 0.25: 0.75 (line 1), 1: 0.5: 0.5 (line 2), 1: 0.75: 0.25 (line 3), 2: 0.75: 0.25 (line 4), and 3: 0.75: 0.25 (line 5).

Figure S3. XPS spectra of the A) Co 2p, B) Fe 2p, C) Mn 2p regions for Co₂Fe_{0.75}Mn_{0.25}-LDH.

Figure S4. XPS spectra of the A) Co 2*p*, B) Fe 2*p*, C) Mn 2*p*, D) S 2*p* regions for CFMS NSs (Co: Fe: Mn = 2: 0.75: 0.25).

Figure S5. TEM image of CFMS-PVP NSs (Co: Fe: Mn = 2: 0.75: 0.25).

Figure S6. A) AFM image and B) measured thickness of CFMS-PVP NSs (Co: Fe: Mn = 2: 0.75: 0.25).

Figure S7. The Tyndall effect of $Co_2Fe_{0.75}Mn_{0.25}S_6$ -PVP NSs in water, DMEM and PBS from Day 1 to Day 7.

Figure S8. TEM image and corresponding size distribution of CFMS-PVP NSs with various ratios A) Co: Fe: Mn = 1: 0.25: 0.75, B) Co: Fe: Mn = 1: 0.5: 0.5, C) Co: Fe: Mn = 1: 0.75: 0.25, D) Co: Fe: Mn = 3: 0.75: 0.25.

Figure S9. Thermogravimetric curves of CFMS and CFMS-PVP NSs (Co: Fe: Mn = 2: 0.75: 0.25).

Table S1. Chemical composition of CFMS-PVP NSs with various molar ratios of Co/Fe/Mn and S/(Co + Fe + Mn), based on ICP results.

CFMS-PVP	Co/Fe/Mn	S/Metal
1/0.25/0.75/4	1/0.28/0.74	2.11
1/0.5/0.5/4	1/0.61/0.57	2.05
1/0.75/0.25/4	1/0.68/0.24	2.07
2/0.75/0.25/6	2/0.76/0.28	2.31
3/0.75/0.25/8	3/0.81/0.27	2.21

Figure S10. Temperature profiles of $Co_2Fe_{0.75}Mn_{0.25}S_6$ -PVP NSs dispersion (50 µg mL⁻¹) under 808 nm laser irradiation at various power densities (0.25, 0.50, 0.75, and 1.0 W cm⁻²).

Figure S11. The photothermal photographs of water, $Co_2Fe_{0.75}Mn_{0.25}$ -LDH precursor, CFMS-PVP NSs (Co: Fe: Mn = 2: 0.75: 0.25) detected by a thermal infrared imaging device.

Table S2. Photothermal conversion efficiency (η) of different PTT agents reported in the literature.

Photothermal agent	η (%)	Size	Refs
MoS ₂ -PEG NSs	32.96%	~80 nm	ACS Nano. 13, 2544-2557 (2019)
WS ₂ -PVP NSs	36.9%	~200 nm	Adv. Funct. Mater. 29, 1901722
			(2019)
TaS ₂ -PEG NSs	39.0%	110 nm	Adv. Funct. Mater. 27, 1703261
			(2017)
$\mathrm{Ti}_{0.71}\mathrm{Ta}_{0.29}\mathrm{S}_{y}\mathrm{O}_{z}~\mathrm{NSs}$	39.2%	0.2~2 μm	Angew. Chem. Int. Ed. 56, 7842 –
			7846 (2017)
Cu ₂ Se	50.89%	~86.89 nm	Chem. Mater. 31, 6174–6186
			(2019)
Cu-Fe-Se NSs	78.9%	70 nm	ACS Appl. Mater. Interfaces. 10,
			43396-43404 (2018)
ReS ₂ NSs	79.2%	~100 nm	Small. 14, 1703789 (2018)
CFMS-PVP NSs	89.0%	~60.0 nm	This work

Figure S12. A) Photothermal heating curves of $Co_2Fe_{0.75}Mn_{0.25}S_6$ -PVP NSs and $Co_2Fe_1S_6$ -PVP NSs. B) Calculation of the photothermal conversion efficiency for $Co_2Fe_1S_6$ -PVP NSs at 808 nm. The time constant (τ_s) for the heat transfer was calculated from the cooling period (purple line).

Figure S13. N₂ adsorption-desorption isotherm of the $Co_2Fe_{0.75}Mn_{0.25}S_6$ -PVP NSs. Inset: corresponding pore size distribution.

Figure S14. A) Diffuse reflection spectrum of the solid Co₂Fe_{0.75}Mn_{0.25}S₆-PVP NSs. B) The responding Tauc plot of $(\alpha hv)^2$ vs. photons energy (*hv*).

Figure S15. PA intensity of $Co_2Fe_{0.75}Mn_{0.25}S_6$ -PVP NSs and $Co_2Fe_{0.75}Mn_{0.25}$ -LDH aqueous suspensions at various concentrations (2.5, 5, 10, 20, and 50 µg mL⁻¹ from left to right). Data are given as mean \pm S.D. (n = 3).

Figure S16. TEM image and corresponding size distribution of $Co_2Fe_{0.75}Mn_{0.25}S_6$ -PVP NSs (50 µg mL⁻¹) reacted with GSH (1.0 mM).

Figure S17. A) Co 2p, B) Fe 2p, C) Mn 2p XPS spectra for CFMS-PVP NSs (Co: Fe: Mn = 2: 0.75: 0.25) after GSH treatment.

Figure S18. Fenton reactions occurring in the presence of $Co_2Fe_{0.75}Mn_{0.25}S_6$ -PVP NSs. Michaelis-Menten steady-state kinetics upon the addition of varied concentration of H₂O₂ (0.05, 0.1, 0.2, 0.5, 1.0 and 2.0 mM) are shown at 298 K (A-C) and 318 K (D-F). Data are plotted as mean \pm S.D. (*n* = 3).

Figure S19. Cell viability of Hela, U87mg, and HepG2 cells incubated with various concentrations of $Co_2Fe_{0.75}Mn_{0.25}S_6$ -PVP NSs. (Data are given as mean ± S.D, n = 6).

Figure S20. A) Relative viabilities of HepG2 cells after incubation with different concentrations of $Co_2Fe_{0.75}Mn_{0.25}S_6$ -PVP NSs and 808 nm laser irradiation at 1.0 W cm⁻² for 8 min. B) Cell apoptosis analysis using the Annexin V-FITC/PI double staining method with 808 nm laser irradiation at 1.0 W cm⁻² for 8 min.

Figure S21. Thermal infrared imaging at the tumor site of HepG2-tumor bearing mice exposed to 808 nm laser irradiation for 6 min at 8 h post injection.

Figure S22. Temperature rise on tumors of mice administered by *i.v.* injection with PBS, and $Co_2Fe_{0.75}Mn_{0.25}S_6$ -PVP NSs under 808 nm laser irradiation at 1.0 W cm⁻² for 6 min.

Figure S23. Digital photographs of the excised tumors from each group after 16 days of therapy. Groups: (1) PBS + NIR (6 min irradiation, control group), (2) CFMS-PVP NSs (CDT alone), (3) CFMS-PVP NSs + NIR (6 min irradiation, PTT/CDT).

Figure S24. A) The distribution of the $Co_2Fe_{0.75}Mn_{0.25}S_6$ -PVP NSs in various organs as a function of time, determined by measuring Co concentrations. B) Excretion of the CFMS-PVP NSs, again quantified *via* Co concentration. Data are presented as mean \pm S.D, n = 3. P values in (A) were calculated by ANOVA followed by Tukey's post-test (*P < 0.05, **P < 0.01).

Figure S25. Body weight changes of HepG2 tumor bearing mice as a function of time after various treatments. Data are presented as mean \pm S.D, n = 6.

Figure S26. Kidney and liver function markers and blood cell counts of nude mice bearing HepG2 tumors after injection of PBS (control) and CFMS-PVP NSs. Data are presented as mean \pm S.D, n = 3.

Figure S27. Relative tumor volume of 4T1-Fluc-tumor-bearing mice after different treatments. Data are presented as mean \pm S.D, n = 4. P values were calculated by ANVOA followed by Tukey's post-test (*P < 0.05, **P < 0.01).