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Figure S1. Synthesis of mBPs. 
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Figure S2. AFM image of bare BPs. 
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Figure S3. XPS P 2p spectra of bare BPs and mBPs. 

 

 

  



     

5 

 

 

Figure S4. XPS O 1s spectra of bare BPs. 
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Figure S5. Absorption spectrum of bare BPs in NMP. 
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Figure S6. The dispersibility of mBPs in CH2Cl2 + PMMA, CH2Cl2 + eicosane and CH2Cl2 + 

PMMA + eicosane. 
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Figure S7. SEM images of the MPCM composites with different core/shell ratios. (a) Ratio of 

8, 3 g eicosane + 0.375 g PMMA; (b) Ratio of 10.7, 4 g eicosane + 0.375 g PMMA; (c) Ratio 

of 13.3, 5 g eicosane + 0.375 g PMMA; (d) Ratio of 7.5, 3 g eicosane + 0.4 g PMMA; (e) 

Ratio of 6, 3 g eicosane + 0.5 g PMMA; (f) Ratio of 4.4, 3 g eicosane + 0.675 g PMMA. 
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Table1. Phase-changing characteristics and encapsulation parameters of the microcapsule 

samples. 

 

  

The encapsulation parameters are calculated by following equations: 

 

 

 

 

 

 

Where              and            are the melting latent heat of the eicosane and two types 

of microcapsules and              and            represent the cooling latent heat of the 

eicosane and microcapsules, respectively.  

 

 

 

 

 

 

 

 

 

  

R % =
 𝐻𝑚 𝑆𝑝 𝑒𝑟𝑒

 𝐻𝑚 𝐸𝑖𝑐𝑜𝑠𝑎𝑛𝑒
× 100 

E % =
 𝐻𝑚 𝑆𝑝 𝑒𝑟𝑒 +  𝐻𝐶 𝑆𝑝 𝑒𝑟𝑒

 𝐻𝑚 𝐸𝑖𝑐𝑜𝑠𝑎𝑛𝑒 +  𝐻𝐶 𝐸𝑖𝑐𝑜𝑠𝑎𝑛𝑒
× 100 

η % =
 𝐻𝑚 𝐸𝑖𝑐𝑜𝑠𝑎𝑛𝑒  𝐻𝑚 𝑆𝑝 𝑒𝑟𝑒 +  𝐻𝐶 𝑆𝑝 𝑒𝑟𝑒 

 𝐻𝑚 𝑆𝑝 𝑒𝑟𝑒  𝐻𝑚 𝐸𝑖𝑐𝑜𝑠𝑎𝑛𝑒 +  𝐻𝐶 𝐸𝑖𝑐𝑜𝑠𝑎𝑛𝑒 
× 100 
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Figure S8. SEM images and DSC curves of smaller (a, b) and larger (c, d) microcapsules. 
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Figure S9. DSC thermogram over ten heating/cooling cycles of mBPs-MPCM composites. 
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Figure S10. The stability of mBPs-MPCM composites at ambient condition. 
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Figure S11. EDS maps of mBPs decorated MPCM composites. 
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Figure S12. Photothermal characteristics of pure water. 
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Figure S13. Photothermal performance of mBPs-MPCM composites prepared with 3wt‰ 

and 5wt‰ of mBPs. 
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Figure S14. Model simulation. Variation of temperature of core material with time. 

Model Description 

According to our experiments, the simulation of the mBPs decorated MPCM and mBPs-

MPCM composites for solar-energy storage is simplified as sphere one-dimensional heat 

conduction.  The models for mBPs decorated MPCM and mBPs-MPCM composites are 

shown below.  In the models the mBPs are served as heat sources and thus, external and 

internal heat sources are applied to mBPs decorated MPCM and mBPs-MPCM models, 

respectively. 

 
 

Fig. 1 Physical model of the heat conductivity process of a single microcapsule. (a) Model for 

mBPs decorated MPCM (External heat source); (b) Model for mBPs-MPCM (Internal heat 

source). Where the q (W·m
-2

), qloss (W·m
-2

), Φ (W·m
-3

) and E (W·m
-2

) represent heat flux of 

external heat source, heat loss to external environment, source term of internal heat source 

and the power density of solar radiation, respectively. 

 

Hypothesis: 

1) The heat conduction in the sphere is rotation symmetric of the spherical center. 

2) The heat source and heat loss are rotation symmetric of the spherical center. 

3) The heat energy generated by internal heat source is uniformly distributed in the core. 

4) The physical parameters of the core and shell are not changed with temperature. 
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With the light radiation, q and Φ can be calculated according equations (1) and (2): 
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According to symmetry hypothesis, the heat conduction in Fig.1 can be simplified as one-

dimensional heat conduction in spherical coordinates.  The heat conduction equation (3) is 

shown below [1]. 
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Where the ρ (kg·m
-3

), T (℃), t (s), r (m), c (J·kg
-1

·K
-1

), λ (W·m
-1

·K
-1

) and S (W·m
-3

) are the 

density, the temperature, the time, the radial coordinate, the specific heat, the thermal 

conductivity and the source term, respectively.  S=Φ (Internal heat source), S=0 (External heat 

source). 

Numerical Model  

Uniform cell centered scheme is used.  

 

Fig.2 Sketch of the grid partition.   

Where the i, Δr, ri, Ti, 1/2 and N+1 are the grid number, the grid step at i, the temperature at i, 

the grid interface and the virtual grid, respectively. 

Discrete Equations 

Based on conservation of energy, the discrete equation of heat conduction can be derived.  

The heat of grid i introduced from the interface of i-1/2 and i+1/2 can be calculated according 

to following equations: 
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In which ri can be calculated: 
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i
r i r                                                (6) 

Heat from internal heat source: 

s i i
q S V   (7) 

The grid volume Vi: 

2
4

i i
V r r                                     (8) 

Heat variation of grid i in unit time, where the Δt, n and n+1 are the time step, the current and 

next time step number: 
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Based on conservation of energy,  
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According to equations (4) to (10), the discrete equation of heat conduction at grid i can be 

derived: 
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Further simplified: 

1 1 1 *

1 1

n n n n

i i i i i i i i
A T B T C T T T

  

 
                                                                                   (12) 

Where the Ai、Bi、Ci and T
*
 can be calculated: 
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Boundary Conditions 

In the calculation in Fig.2, two boundaries r=0 and r=Rs exist, and Rs can be calculated by 

equation: 
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The grid volume V0 at boundary r=0: 
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Considering there is only right boundary at boundary r=0 and equation (4), 
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Further simplified: 
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In addition, 
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The relationship between the virtual node temperature (TN+1) and internal node temperature at 

External boundary r=Rs should be considered.  There is heat transfer between the shell and 

external environment, including the heat from external heat source q and heat loss qloss. 
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Where the hf and Tf are the convective heat transfer coefficient and temperature of the 

environment.   

Relationship at boundary N+1/2: 
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Based on equations (23) to (25),  
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The convective heat transfer coefficient can be calculated, where the Ds is the diameter of the 

microcapsule. 

s
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D


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The Nu is the Nussel number of natural convective heat transfer.  The Ra and Pr are Rayleign 

number and Prandtl number of the air. 
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The physical parameters involved in the calculation are shown in Table 1.  And the output 

temperatures are acquired from the outside and center of the core for internal heat source 

(mBPs-MPCM) and external heat source (mBPs decorated MPCM) group, respectively. 

 

Table 1 Parameters for calculation 

Parameters 
Value 

Core material Shell material 

ρ (kg·m
-3

) 900 1180 

λ (W·m
-1

·K
-1

) 0.12 0.18 

c (J·kg
-1

·K
-1

) 3200 1400 

Radius (mm) 5.94 6.0 

E (W·m
-2

) 1000 

Ambient 

temperature/℃ 
25.0 

Ambient pressure/kPa 101.325 

Initial temperature/℃ 25.0 
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