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Examples of native MS studies on nucleotide-binding complexes. 

Of note, several multimeric protein nucleotide-binding complexes have been analyzed by native 

MS, e.g., rotary V-type ATPases (1, 2) and proteasomes (3–7). Advances in MS mass 

resolution enabled studies focused on establishing nucleotide occupancy within the complex. 

For example, high accuracy and high reproducibility of molecular ion generation in separate 

experiments allowed for a differentiation between the ATP- and ADP-binding GroEL complexes 

(~800 kDa) utilizing Orbitrap (8) mass analyzer and resolved the stepwise addition of ATP to 

GroEL complex using QTOF (9) mass analyzer, thus allowing for probing allosteric mechanisms 

(10). Using modified Waters QTOF mass analyzer, simultaneous binding of ADP and the AMP-

PNP ATP analogue (mass difference 79 Da)  to the DNA mismatch repair MutS ABC ATPase 

was resolved for the ~200 kDa dimeric form of the complex (albeit not for its tetrameric 

counterpart) (11). Changes to the oligomeric state and nucleotide occupancy were 

demonstrated for the bacterial enhancer binding protein PspF AAA+ domain upon binding 

sigma factor σ54 (12). The study on the AAA+ ATPase p97 pointed to the presence of two 

distinct ADP and ATP-γS loading states suggesting cooperative nucleotide binding via discrete 

steps involving 5-6 nucleotides; interestingly, recombinant p97 that was purified in nucleotide-

free buffer was reported to carry 10 ADP molecules (13). 

Detection of over-charged oligomers in the native nanoESI MS of PAN proteins. 

The highly charged molecular ion envelopes of PAN hexamers observed in the <D> and <T> 

regions as well as dimers seen in the <M> regions of the spectra  (text Fig. 2 and 5) resemble 

protein molecular ions that are generated in the course of native MS via chemically or thermally 

induced supercharging (14–20) (21, 22). We refer to those ions as over-charged rather than 

supercharged to stress that they appeared in the absence of known supercharging-inducing 

conditions. We note that a similar phenomenon of generating both native-like and “extended-
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like” structures was observed, albeit not discussed for octasome analysis that was performed 

using the same mass spectrometer that we have employed (Fig. 2) in Azegami et al. (23) 

Despite the years of studies, the effects of supercharging on maintenance of native-like 

structures and protein ligand binding still remain intensely disputed in the literature (24–27). 

While we do not know what triggered formation of over-charged ions in our spectra, we 

compared their properties in terms of ligand binding capacity and levels of residual solvation to 

those of their native counterparts. We examined the results of four experiments in which high 

quality spectra of both native and over-charged hexamers were detected; we note that over-

charged hexamers within the <T> m/z region were used for this analysis rather than their 

counterparts observed within the <D> region since the latter overlapped with the native dimers 

of much higher intensity. We found that over-charged species observed in our studies were 

consistent with the presence of bound ligands (Fig. S6A), suggesting a significant preservation 

of their higher order structure despite of them carrying “excessive” protons. The number of 

bound ADP nucleotides was found to be 5.7±0.22 and 5.9±0.24 for native and over-charged 

species, respectively. The residual solvation ratios for over-charged hexamers of PANKA vs 

PANWT were very close to those of native hexamers (1.11±0.07 and 0.98±0.06, respectively) 

(Fig. S6B). This result suggested that in accord with their native counterparts, the structures of 

over-charged ligand bearing PANWT and ligand-less PANKA ions were highly similar. 

Interestingly, the residual solvation ratios for over-charged vs. native species suggested the 

diminished level of residual solvation of the over-charged species (0.75±0.16 and 0.80±0.13 for 

both the PANKA and PANWT species, respectively (Fig. S6B).  

The mechanism(s) of generation of the partially dissociated native-like species described in the 

main text and the over-charged “extended” multimeric structures have not been established in 

this study. Given the observed highly variable levels of the over-charged species along their 
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native-like counterparts, we hypothesize that their formation might have been triggered by small 

alterations in initial conditions of droplet generation (e.g., an uneven performance of an emitter), 

which in turn would affect – in a non-linear fashion – droplet evolution, ultimately leading to a 

variable level of degradation of a native-like hexameric structure leading to either dissociation 

and/or acquisition of excessive charging.  
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Supplemental Figures with Legends  
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Fig. S1 AB. Evaluation of integrity of PAN preparations. A: UV spectra of PAN proteins. PANWT, 

PANKA, and PANR328A are shown in blue, orange and yellow, respectively.  PANWT and PANR328A show 

higher A260 than A280 whereas PANKA shows the opposite relationship, indicating nucleotide content in 

the first two but none in PANKA. B: Gel filtration analysis of PANWT. Gel filtration elution profiles of PANWT 

in Tris/NaCl (top) and 0.5 M ammonium acetate (bottom) buffers using Superdex 200 10/300 column are 

shown. Both PAN and standard proteins eluted slightly faster in the Tris buffer.



 

Fig. S2AB. Examples of fluctuations in the extent of PAN hexamer dissociation observed during a 

single nanoESI MS acquisition.  Panels A and B respectively show Massign-processed spectra of 

PANWT and PANKA, which were derived by summing up the scans that were marked at the total ion 

current (TIC) traces in the insets. Data showing low and high level of hexamer dissociation are shown in 

green and red, respectively. 
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Fig. S3AB. Evaluation of the native monomer 14+ (panel A) and native dimer 20+ (panel B) regions 

of the spectrum of the mixture of PANWT and PANKA following nucleotide exchange with AMP-PNP. 

Potential components of the sample carrying ADP and/or AMP-PNP are listed in the inset tables and 

marked in the spectra. The tables provide values for residual solvation mass increment (RSMI) for 

monomers and dimers calculated for various nucleotide compositions using experimental masses of 

peaks with which they potentially are associated. The RSMI values of apo PANKA monomer and dimer are 

provided for comparison and compositions that are associated with RSMI values that differ from those of 

apo PANKA by factor of 4 or more are annotated as outliers. The potential composition of a mixed dimer of 

WT-ADP and KA-AMP-PNP is italicized, as this type of hybrid products of PAN hexamer dissociation 

were never observed in our studies. As it is clear from the spectra, reliable differentiation between 

potential candidate species 3-7 is not feasible at the resolution that was achieved in this study. 
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Fig. S4. Analysis of the PANWT and a double mutant PANK217A/R328A mixture following ligand 

exchange with AMP-PNP.  Dark grey and green graphs show Massign-processed experimental spectra 

of a hexamer region (<H>) of a mixture of PANK217A/R328A with PANWT in its ADP- (bottom) and AMP-PNP-

binding (top) forms, respectively. Blue lines show the sum of Massign simulated spectra of component 

hexamers. Data for three MS analyses were combined. While multiple PANK217A/R328A -AMP-PNP binding 

protein forms are not resolved here, their presence is inferred by comparing peak width (FHWM) of this 

mutant with and without a bound AMP-PNP (showed in more detail in inset a). The peaks of 

PANK217A/R328A in the presence of AMP-PNP former are much broader: FHWMKARA/FHWMWT was1.0±0.14 

and 1.5±0.15 in the absence and presence of AMP-PNP (T-test=1.49E-04), respectively (inset b).  
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Fig. S5. Comparison of protein concentration measurement using three different commercially 

available assay kits. WT PAN and Walker B mutant (PAN E271Q) were analyzed. The results of 3 

experiments are shown. 
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Fig. S6 AB. Comparison of native and over-charged PAN hexamers. A: Over-charged PANWT 

hexamers carry ADP. ADP binding to PANWT derived from the native and over-charged hexamer data 

observed within m/z mass ranges <H> and <T>, respectively. The results of 4 independent analyses of 

PANWT+PANKA mixtures are shown. The number of bound ADP nucleotides was found to be 5.7±0.22 and 

5.9±0.24 for native and over-charged species, respectively. B: Comparison of residual solvation mass 

increments for WT to KA PAN hexamers in their native and over-charged states. Native and over-charged 

species for each KA and WT protein are annotated with “_N” and “_O-C”, respectively. Residual solvation 

mass increment ratios for KA vs WT PAN species were similar for both native and over-charged forms 

(i.e., 1.11±0.07 and 1.03±0.06, respectively, marked with light blue and orange dots). For both, WT and 

KA PAN, residual solvation was significantly lower for the over-charged species in comparison to their 

native counterparts, i.e., over-charged to native ratios were 0.75±0.16 and 0.80±0.13 for KA and WT 

proteins, respectively (annotated with green and purple crossed squares). 


