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Text S1. Noachian Water Inventory  
At the present, if all of the known ice were to be distributed globally, it would only make ~30 m global  
equivalent layer (GEL) (62). The distribution of the present-day inventory of water ice above the  
predicted ice stability line of approximately +1 km during the Noachian would have resulted in  
regional ice sheets with an average thickness of only 700 m. The Martian water budget during late  
Noachian is unknown with estimates anywhere between 640m (63) to 5000 m GEL (64). The  
distribution of these water inventory estimates above the predicted ice stability line would have  
resulted in ice sheets with an average thickness of 14  - 116 km, however, it is unlikely for the entire  
global inventory of water in ancient Mars to have been deposited in the southern highlands alone.  
For our nominal model, we assume a conservative value of 2 km thick ice sheets (similar to the  
thickness of the Taku glacier on Earth (65, 66) in southern highlands to assess if basal melting would  
have been possible during the Noachian. This value of ice thickness is extremely conservative and  
corresponds to roughly ~14% of the 640m GEL estimate and ~1% of the 5000m GEL estimate.   

  
Text S2. The Effect of Icy Highlands on Surface Temperature  
We model the thermophysical evolution of ice sheets using mean annual surface temperature of 230  
K based on the 3D GCM models of Mars (11). However, the surface temperature could be  
considerably lower if a substantial portion of Mars was covered by ice. This is because ice is reflective  
and reduces the amount of energy available to warm the surface. Simulation of ice on early Mars  
scenarios suggest that global ice coverage could have exceeded 25 – 30 %. In such a scenario, the  
surface temperature may decrease by almost 25 K. Although, this effect is considerably muted in the  
presence of a thick CO2 atmosphere with clouds (10) . We ran all the models presented here with a  
surface temperature of 200 K and found that no melt is produced. If Mars had thicker ice deposits  
in the Noachian highlands, then it is possible to generate melt even with a 200 K surface temperature.  
It is conceivable that thick ice deposits on Mars, if they existed, may have been covered by a thin layer  
of dust or volcanic ash as also observed for recently detected ice sheets (67), thus reducing the total  
albedo and reducing the problem associated with the icy highlands melt scenario. Both SPLD and  
NPLD exhibit depositions of ice with varying dust content (68), thus, it is plausible that subsequent  
dust deposition would have decreased the albedo of icy highlands. While speculative, the layering  
observed within the NPLD and SPLD suggest that this is not an unlikely scenario to have occurred  
on Mars.   
  
Text S3. Snow Accumulation Rate  
No empirical evidence exists to constrain the snow accumulation rate during the Noachian. We use  
a nominal accumulation rate of 10 mm yr-1, which is predicted from GCM models. The snow  
accumulation rate is roughly exponentially dependent on temperature, so if there was a minor  
addition of greenhouse gases to the atmosphere or if the young Sun was slightly more luminous, then  
significantly faster accumulation than 10 mm yr-1 would have occurred. In general, faster or increased  
accumulation would have led to increased basal melting. No meltwater would have been generated if  
the snow accumulation rate was substantially lower than considered here. Some insight about the  
plausibility of these values may be gathered from terrestrial estimates. The average accumulation of  
snow over the continent as a whole is estimated to be equivalent to about 150mm of water per year.    
  
 Text S4. Th and K Enriched Regions of Mars  
We sought to find regions on Mars that are statistically enriched in Th and K. To that end, we used  
an enhanced Student’s t-test parameter, ti, that measures the error-weighted deviation for each  
element from its bulk-average on Mars at each 5° × 5° chemical map grid  derived from GRS data  
(69, 70):   
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where ci is the wt% of an element, m is the global arithmetic mean wt%, sm,i is the numerical uncertainty  
of ci, and s is the standard deviation of the data. The key difference between the ‘ti’ used here and the  
commonly used Student’s t parameter is the inclusion of ‘sm,i’ in the denominator. Additional  
information about the enhanced t-test can be found in our previous work (69, 70). Here we define  
areas of significant enrichment as those with ti values greater than 1.5 (i.e. statistical confidence in  
directional deviation > 94 %).   

  
Text S5. Empirical Cumulative Distribution Functions  
Empirical Cumulative Distribution Functions (ECDF ) for all Noachian terrain reflects all pixels from  
the 1x1 degree resolution surface heat flow map (interpolated from the original 5x5 degree resolution  
map) (Fig. 3 (c)). That consists of each pixel where more than 50% of the area corresponds to  
Noachian age. Meanwhile, for each location where a mineral is detected  – often in an outcrop via  
CRISM data – the surface heat flow is approximated as that of the containing heat flow map pixel.  
For example, two spatially distinct detections of chloride within the same pixel are assigned the same  
heat flow value. A value of ‘NaN’ is ascribed when the location of the hydrous minerals is outside of  
Noachian terrain and those sites are excluded from further statistical analysis. Matlab command  
‘cdfplot’ is used to create the ECDF plots shown in Figure S6.   
  
  

  
  
Figure S1. Schematic showing the setup of our model. For a given snow accumulation/precipitation  
rate of b (mm yr-1), total thickness of the snow/ice slab (htot), and surface temperature (Ts), we solve  
for the surface heat flow (qs) that can produce meltwater. Melt is only produced for the thickest of  
the ice slabs.   



                                                 
 

  
  

Figure S2. Distribution of the heat producing elements in the shallow subsurface of Mars. (a) 
Potassium concentration in the shallow subsurface of Mars at 5°×5° in the mid-latitudes, as derived 
from Mars Odyssey Gamma Ray Spectrometer suite. (b) Same as (a) but showing the concentration 
of U calculated using the cosmochemical Th/U ratio. (c) Same as (a) and (b) but showing the 
concentration of Th. Rapidly increasing H abundance dilutes and increases numerical uncertainty 
for HPE concentrations in the polar latitudes. A mask has thus been applied to exclude such areas. 
 
 



 

  
Figure S3. Bouguer gravity and crustal thickness maps of Mars. (A) An example of a Bouguer  
gravity anomaly map of Mars assuming a constant density of 2900 kg m-3. (B) – (D) Crustal thickness  
of Mars derived from downward continuing the observed Bouguer gravity anomaly to a crust-mantle  
interface for crustal densities of 2900 – 2700 kg m-3.   
  
  
  
  
  
  
  
  
  
  
  
  
  
  



 

  
  
  
Figure S4. Current and Noachian crustal heat production rate for Mars. (a) Present day crustal heat  
production map using HPE abundance maps from Fig. S2 and crustal thickness maps from Fig. S3.  
(b) Crustal heat production rate during the Noachian with the current lateral HPE variability  
preserved.  
  



 

  
Figure S5. Contour map showing regions on Mars with significant enrichment of Th and K. The  
contour labels correspond to a modified ‘t’ parameter that show regions with significant enrichment  
of Th and K compared to the bulk-average of Mars. The background is the shaded relief map of  
Mars from Mars Orbiter Laser Altimeter (MOLA).  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  



 

  

  
Figure S6. An Empirical cumulative distribution function (ECDF) plot of surface heat flow values for  
all Noachian terrain and regions in Noachian terrain that bear various hydrous minerals.   
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  



                                                 
 

  
Table S1: All variables and values used in the thermal simulation.  
  
Variable Description Value Units 

�̇� Accumulation Rate 3.1688e-10 (1) m s-1 (cm yr-1) 
𝑐!"( Specific Heat of Ice 2000 J kg-1 K-1 
𝑐) Specific Heat of Voids 790 J kg-1 K-1 
𝑐* Specific Heat of Melt 3985 J kg-1 K-1 
𝑓+ Constant Coefficient 9.5064e-16 - 
g Acceleration Due to Gravity 3.711 m s-2 
H Enthalpy Calculated J kg-1 
𝐻, Enthalpy of Solid Cell Calculated J kg-1 
𝐻-.- Critical Ice Sheet Thickness 1300, 1400, 1500, 2000 m 
𝑘!"( Thermal Conductivity of Ice 2 W m-1 K-1 
𝑘) Thermal Conductivity of Voids 0.012 W m-1 K-1 
𝑘* Thermal Conductivity of Melt 0.6 W m-1 K-1 
L Latent Heat of Fusion 334774 J kg-1 
n Ice Deformation Coefficient 3 - 
𝜙) Void Space Volume Fraction Calculated - 
𝜙* Melt Volume Fraction Calculated - 
Q Activation Energy 45600 J mol-1 
R Gas Constant 8.314 J mol-1 K-1 
𝜌 Density Calculated kg m-3 
𝜌!"( Density of Ice 917 kg m-3 
𝜌) Density of Voids 1 kg m-3 
𝜌* Density of Melt 1000 kg m-3 
𝜌+ Ice Sheet Surface Density  350 kg m-3 
t Time - s 
T Temperature Calculated K 
𝑇, Surface Temperature 230 K 
𝑇$ Melting Temperature 273.15 K 
z Depth - m 
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