Cell Reports, Volume 33

Supplemental Information

Optogenetic Tuning Reveals Rho

Amplification-Dependent Dynamics

of a Cell Contraction Signal Network

Dominic Kamps, Johannes Koch, Victor O. Juma, Eduard Campillo-Funollet, Melanie Graessl, Soumya Banerjee, Tomáš Mazel, Xi Chen, Yao-Wen Wu, Stephanie Portet, Anotida Madzvamuse, Perihan Nalbant, and Leif Dehmelt

Supplemental Information

Supplemental Figures:

Supplemental Figure 1 (related to Figure 1): Direct investigation of Rho-dependent GEF-H1 plasma membrane recruitment. A: Quantification of the RhoA plasma membrane recruitment and Rho activity sensor/GEF-H1 co-recruitment. B: Quantification of GEF-H1 PH domain co-recruitment with active RhoA Q63L. F539A/I541E: PH domain mutant that is deficient in its interaction with active Rho. (A-B: % increase above average intensity before photoactivation at t=0s with standard error of the mean (SEM); $n \ge 14$ (A) or $n \ge 21$ (B) cells from three experiments; ****, $P \le 0.0001$; ***, $P \le 0.001$; **, $P \le 0.01$; *, $P \le 0.05$; paired t test before and 10 s after photoactivation);

Supplemental Figure 2 (related to Figure 2): Schematic summary of improved "Molecular Activity Painting" technique to acutely introduce stable perturbations at the plasma membrane of living cells. A: Experimental workflow and time considerations. B: Schematics for step-wise construction of perturbation system. This figure was created using Servier Medical Art templates, which are licensed under a Creative Commons Attribution 3.0 Unported License; https://smart.servier.com

Supplemental Figure 3 (related to Figure 2): Rho activity and myosin cell cortex recruitment response to Lbc-type GEF perturbation. A: TIRF images of immobilized GEF-H1 C53R perturbation and Myosin response (see also Video 2). B-C: TIRF images of immobilized LARG perturbation and Rho activity sensor (B) or Myosin (C) response (see also Video 2). D: Kinetics of Rho activity sensor and Myosin cell cortex recruitment response to acute chemo-optogenetic LARG perturbations ($n \ge 23$ cells from three experiments, mean with SEM). E: Dependence of Rho activity dynamics on the effective cytosolic concentration of GEF-H1 C53R. Activity dynamics were measured by determining the standard deviation of the local Rho activity sensor signal (n=124 cells from three experiments; mean and SEM; One way ANOVA, Dunnett's post test, *: P<0.05, ****: P<0.0001). % indicates percentage of mean intensity. Scale bars: 10µm.

Supplemental Figure 4 (related to Figure 3): GEF-H1 concentration-dependent switching of **Rho activity dynamics by reversible optogenetic tuning.** A-D: Analysis of two representative cells that demonstrate either reversible activation (A,B) or reversible saturation (C,D) of Rho activity dynamics during subsequent increase and decrease of the effective cytosolic concentration of GEF-H1 via photoactivation (PA) of the LOVTRAP system. A,C: Top: TIRF images of mCherry-Zdk1-GEF-H1(C53R) and the Rho sensor (see also Video 5). Bottom: Kymographs corresponding to green arrows in top panel. Yellow arrows point to Rho activity pulses or Rho activity waves. B,D: Cytosolic mCherry-Zdk1-GEF-H1(C53R) levels obtained as the minimum signal in green boxed regions in A or C, and measurements of the Rho activity sensor signal over the time course of the experiment. E: Local standard deviation of Rho activity signals at low (<300) or high (>300) levels of mCherry-Zdk1-GEF-H1(C53R) from all analyzed cells (n = 16 cells from three experiments, mean and SEM; unpaired t-test, *: P<0.05). Columns represent the change of the average local standard deviation of Rho activity signals induced by the release of GEF-H1 from mitochondria (comparing the time ranges -5 to 0 min before PA with 25 - 30 min during PA) or induced by the recovery of GEF-H1 to mitochondria (comparing the time ranges 25 - 30 min during PA with 25 – 30 min after PA). % indicates percentage of mean intensity. PA: photoactivation. Scale bars: 10µm.

Supplemental tables

Experimental measurement	Measured values
GEF-H1 perturbation rate constant	0.0789 +/- 0.006 s ⁻¹ (with Rho sensor; left
(mono-exponential fit to grey	panel)
curve in Figure 2D)	0.0397 +/- 0009 s ⁻¹ (with Myosin; right panel)
Rho and Myosin response kinetics	Simulations were fitted to all time points shown
	in Figure 2D
Period of Rho activity pulses	248 ± 95 s (n=10 cells; in the presence of
	active GEF-H1 C53R, this work)
Time shift Myosin after Rho	39.5 +/- 14.7 s (n=37 cells; Graessl et al.)
Time shift Rho after GEF-H1	2.5 ± 5.6 s (n=68 cells; Graessl et al.)

Supplemental Table 1: Experimental data used to parameterize the ODE system (related to Figure 2). The ODE system is given in Eq.(1-3).

Parameter	Lower bound for fitting	Upper bound for fitting
Concentrations		
in 10 ⁶ molecules/cell:		
G _T (oscillatory regime) G _T (perturbation/Rho response) G _T (perturbation/Myosin response)	0.142 0.0142 0.0142	20 1 1
R_T (all regimes; fixed value based on ¹²) M_T (all regimes; fixed value based on ¹²)	0.443 1.24	0.443 1.24
Rate constants: k_1/K_{m1} in s ⁻¹ (10 ⁶ molecules/cell) ⁻² k_2/K_{m2} in s ⁻¹ (10 ⁶ molecules/cell) ⁻¹ k_3 in s ⁻¹ (10 ⁶ molecules/cell) ⁻² k_4 in s ⁻¹ (10 ⁶ molecules/cell) ⁻² k_5/K_{m5} in s ⁻¹ (10 ⁶ molecules/cell) ⁻² k_6/K_{m6} in s ⁻¹ (10 ⁶ molecules/cell) ⁻¹	0.316 0.15 0.15 0.015 0.005 0.000844	31.6 150 15 15 5.00 2.67
Michaelis constants in 10^6 molecules/cell:		
$egin{array}{c} K_{m1} \ K_{m2} \ K_{m5} \ K_{m6} \end{array}$	0.0475 0.01 0.003 0.0563	47.5 10 3.00 5.63

Supplemental Table 2: Parameters of the ODE system and their prior distributions for fitting to experimental data (related to Figure 2). The ODE system is given by Eq.(1-3). The distributions are defined by the given ranges with equal probability.

Physical parameter	Estimated value (mode of distribution)	95% lower bound	95% upper bound
Total concentrations			
in 10 ⁶ molecules/cell:			
GEF-H1 (G _T);	0.179	0.178	4.64
GEF-H1 (G _T);	0.0858	0.0491	0.175
Rho response	0.233	0.0203	0.234
GEF-H1 (G _T); perturbation regime; Myosin response	0.255	0.0205	0.234
Rho (R _T); all regimes; fixed value based on ¹²	0.443		
Myosin (M _T); all regimes; fixed value based on ¹²	1.24		
Rate constants:			
k_1/K_{m1} in s ⁻¹ (10 ⁶ molecules/cell) ⁻¹	3.88	1.09	5.37
k_2/K_{m2} in s ⁻¹ k ₃ in s ⁻¹ (10 ⁶)	2.04 1.19	0.880 0.723	3.83 3.34
molecules/cell) ⁻¹ k ₄ in s ⁻¹ (10^6	3.98	3.97	14.9
molecules/cell) ⁻¹ k ₅ /K _{m5} in s ⁻¹ (10 ⁶	0.417	0.074	0.718
molecules/cell) ⁻¹ k_6/K_{m6} in s ⁻¹	0.00509	0.000904	0.00510
Michaelis constants in 10 ⁶ molecules/cell:			
K _{m1} K _{m2}	2.42 0.0745 0.014	0.0886 0.0741 0.00733	2.43 0.564 0.0658
Km5 Km6	0.786	0.00733	1.83

Supplemental Table 3: Parameters of the ODE system and their estimations obtained via fitting to experimental data (related to Figure 2). The ODE system is given by Eq.(1-3). The values correspond to the mode of the posterior distribution. The lower and upper bounds correspond to the highest posterior density region, containing 95% of the posterior probability mass.