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SUMMARY
Local cell contraction pulses play important roles in tissue and cell morphogenesis. Here, we improve a
chemo-optogenetic approach and apply it to investigate the signal network that generates these pulses.
We use these measurements to derive and parameterize a system of ordinary differential equations
describing temporal signal network dynamics. Bifurcation analysis and numerical simulations predict a
strong dependence of oscillatory system dynamics on the concentration of GEF-H1, an Lbc-type RhoGEF,
which mediates the positive feedback amplification of Rho activity. This prediction is confirmed experimen-
tally via optogenetic tuning of the effective GEF-H1 concentration in individual living cells. Numerical simu-
lations show that pulse amplitude is most sensitive to external inputs into the myosin component at low
GEF-H1 concentrations and that the spatial pulse width is dependent on GEF-H1 diffusion. Our study offers
a theoretical framework to explain the emergence of local cell contraction pulses and their modulation by
biochemical and mechanical signals.
INTRODUCTION

Cells can sense various physical and chemical signals from their

environment to steer changes in their dynamic behavior (Kim

et al., 2018; Saha et al., 2018). This sensing process is particu-

larly important during embryogenesis, in which the differentiation

and migration of cells is controlled both by chemical morpho-

gens and the mechanical properties of the extracellular matrix

(Kim et al., 2018; Saha et al., 2018). The sensing of chemical sig-

nals, such as growth factor concentration, is primarily a passive

process, in which a diffusible molecule engages a corresponding

cellular receptor. In contrast, probing of mechanical signals re-

quires an active process that generates force to deform physical

structures that interact with cells (Kim et al., 2018; Nalbant and

Dehmelt, 2018; Saha et al., 2018). For example, the differentia-

tion of stem cells is steered by the elasticity of the cell environ-

ment, which differs significantly between tissues such as brain

or bone (Engler et al., 2006). This mechanosensing process
C
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depends on myosin motors (Engler et al., 2006) that produce

contractile forces.

Interestingly, myosin-generated contractile forces are often

pulsatile (Baird et al., 2017; Bement et al., 2015; Coravos et al.,

2017; Graessl et al., 2017; Mâıtre et al., 2015; Munjal et al.,

2015; Nalbant and Dehmelt, 2018; Nishikawa et al., 2017; Wu,

2017). Such pulsed contractions enable efficient remodeling of

tissues in various contexts during development (Gorfinkiel and

Blanchard, 2011; Martin et al., 2009). For example, during apical

constriction, pulsatile contractions enable a ratcheting mecha-

nism to drive large-scale cell rearrangements (Martin et al.,

2009). By generating sequential, shorter pulses, cells can repeat-

edly and locally probe the elasticity of their environment (Nalbant

and Dehmelt, 2018; Plotnikov et al., 2012), and this process was

proposed to play a role in probing local differences in substrate

elasticity during durotaxis (Plotnikov et al., 2012). Cells are more

sensitive to external cyclic stretch compared to constant coun-

terforces (Cui et al., 2015), and thus a pulsatile intracellular force
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er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:leif.dehmelt@mpi-dortmund.mpg.de
https://doi.org/10.1016/j.celrep.2020.108467
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2020.108467&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Article
ll

OPEN ACCESS
generating mechanismmay also bemore efficient in transducing

external mechanical cues (Nalbant and Dehmelt, 2018).

We recently proposed a mechanosensitive process in

adherent, mammalian cells that involves such local pulses of

myosin-dependent cell contraction that are controlled by the

small guanosine triphosphatase (GTPase) Rho (Graessl et al.,

2017). In this system, the frequency of local contraction pulses

was modulated by the elasticity of the extracellular matrix

(Graessl et al., 2017). This shows that extracellular mechanical

signals are transduced into a change in system dynamics; how-

ever, a theoretical concept that describes how these dynamics

are generated and how they are modulated by biochemical

and mechanical inputs was missing.

Here, we used acute protein activity perturbation to directly

investigate causal relationships between key components that

control local cell contraction pulses. Based on our experimental

investigations, we derived a quantitative model for signal

network dynamics. A theoretical analysis predicted switches be-

tween distinct dynamic states that are dependent on the con-

centration of the Rho-activating Lbc-type GEF GEF-H1 (ARH-

GEF2). We confirmed these predictions by optogenetic tuning

of the cytosolic concentration of GEF-H1 in individual living cells.

By combining experimental investigations and numerical simula-

tions of the system dynamics, we developed a theoretical frame-

work for spatiotemporal cell contraction pattern formation and

its modulation by biochemical or mechanical inputs.

RESULTS

Direct Experimental Investigation of Rho Amplification
Depolymerization of microtubules by nocodazole treatment in-

creases the cytosolic concentration of the Rho-activating regu-

lator GEF-H1 (Chang et al., 2008; Krendel et al., 2002). Interest-

ingly, this increased concentration does not simply elevate basal

Rho activity, but instead dramatically stimulates Rho activity dy-

namics (Figures 1A and 1B) (Graessl et al., 2017). To investigate

this dynamic system, we analyzed the interplay between GEF-

H1 and Rho activity.

To induce acute RhoA activity perturbations, we applied a

variant of a chemo-optogenetic technique that we recently

developed (Chen et al., 2017) (Figure 1C). In this variant, we

used a pulse of light to uncage a chemical dimerizer that is cova-

lently linked to a plasma membrane anchor. This uncaging event

enables plasma membrane targeting of E. coli dihydrofolate

reductase (eDHFR) fusion proteins of Rho. We combined this

acute perturbation method with total internal reflection fluores-

cence (TIRF) microscopy-based readouts of a Rho activity probe

to experimentally measure how plasma membrane targeting of

eDHFR fusion proteins affect Rho activity (Figure 1C). To mea-

sure Rho activity, we used a low-expressing, fluorescently

tagged GTPase binding domain (GBD) that selectively binds

the active form of Rho (Graessl et al., 2017). Acute, local target-

ing of constitutively active Rho (eDHFR-RhoA Q63L) was ex-

pected to induce a local increase in Rho activity. We observed

a robust increase in the Rho activity sensor signal at the pertur-

bation site (Figures 1D and 1E; Video S1). Targeting of wild-type

Rho or the fast-cycling mutant F30L also increased Rho activity

signals, suggesting that at least a fraction of these constructs
2 Cell Reports 33, 108467, December 1, 2020
was in the active state (Figure S1A). The Rho sensor response

to wild-type or fast-cycling Rho appeared to be even stronger

compared to constitutively active Rho. This may be due to a

higher basal Rho activity sensor signal that is caused by consti-

tutively active Rho, resulting in a lower dynamic range in the

response signal. Interestingly, GEF-H1 was co-recruited

together with these Rho constructs and the Rho activity sensor

(Figures 1D, 1E, and S1A; Video S1). This clearly demonstrates

that a local increase in Rho activity causes increased plasma

membrane recruitment of GEF-H1.

It was previously shown that the Pleckstrin homology (PH)

domain of GEF-H1 and related Lbc-type GEFs can interact

with active Rho (Medina et al., 2013). We find that this domain

is sufficient for plasma membrane recruitment to increased

Rho activity at local perturbation sites (Figure 1F). In contrast,

the dominant-negative, inactive Rho mutant T19N cannot recruit

the GEF-H1 PH domain to the plasma membrane. This shows

that the interaction with the GEF-H1 PH domain is dependent

on the Rho activity state (Figure 1F). Introducing two point muta-

tions within the PH domain of GEF-H1 that are localized to the

Rho interaction surface (Medina et al., 2013) interferes with its

plasma membrane recruitment to active Rho (Figure S1B). This

shows that an intact PH domain is both necessary and sufficient

for Rho activity-dependent GEF-H1 plasma membrane recruit-

ment. Together with the well-documented ability of the Dbl ho-

mology (DH) domain to activate Rho via nucleotide exchange

(Rossman et al., 2005), this recruitment activity closes a positive

feedback loop that can amplify Rho activity in cells.

Derivation and Parameterization of a Quantitative
Temporal Model for Cell Contraction Signal Network
Dynamics
To gain a more quantitative understanding of Rho activity dy-

namics, we formulated a scheme that describes the most rele-

vant biochemical reactions (Figure 2A; see Method Details for

justification of their specific implementation). Themost important

features of this system are the positive feedback loop between

Rho and the Lbc family member GEF-H1 (Figure 1) and a nega-

tive feedback loop that acts via inhibition of GEF-H1 via myosin

(non-muscle myosin-IIa, MYH9; Graessl et al., 2017; Lee et al.,

2010). The active forms of Rho andmyosin are known to be local-

ized preferably near the plasma membrane, either via direct

membrane association or the submembraneous actin cortex,

whereas the inactive forms are predominantly cytosolic (Citi

and Kendrick-Jones, 1987; Garcia-Mata et al., 2011). The motor

domain of active myosin was shown to bind the DH domain of

Dbl family GEFs, which includes GEF-H1, thereby inhibiting its

nucleotide exchange activity (Lee et al., 2010). The inactivation

of GEF-H1 would lead to less activation of Rho, which targets

GEF-H1 to the plasma membrane. As these processes happen

on a faster timescale than the overall system dynamics, the as-

sociation and dissociation of GEF-H1 are expected to closely

follow Rho activity. Thus, the activity state of the three major

signal network components, GEF-H1, Rho, and myosin, is ex-

pected to drive dynamic plasmamembrane association/dissoci-

ation kinetics (Figure 2A).

We then used the biochemical reaction scheme to derive a

system of three ordinary differential equations (ODEs) that



Figure 1. Direct Investigation of Rho-Dependent GEF-H1 Plasma Membrane Recruitment

(A) TIRF image of a U2OS cell that expresses the Rho activity sensor mCherry-Rhotekin-GBD. Rho activity dynamics were stimulated by releasing GEF-H1

(ARHGEF2) from microtubules into the cytosol via nocodazole.

(B) Kymographs corresponding to the yellow box in (A), which represent irregular, Rho activity dynamics before and after nocodazole application.

(C) Schematic representation of acute chemo-optogenetic plasmamembrane recruitment of active Rho. NvocTMP-Cl: photocaged chemical dimerizer; HaloTag/

eDHFR: dimerization domains for chemo-optogenetic perturbation.

(D) Representative TIRF images of chemo-optogeneticmTurquoise2-eDHFR-RhoQ63L plasmamembrane recruitment and co-recruitment of Rho activity sensor

(mCitrine-Rhotekin-GBD) and cytosolic, microtubule-binding deficient GEF-H1(C53R) mutant fused to mCherry (see also Video S1).

(E and F) Quantification of co-recruitment of RhoA constructs, Rho activity or control sensors, and GEF-H1(C53R) or GEF-H1 PH domain (percentage increase

above average intensity before photoactivation at t = 0 s with standard error of the mean (SEM); nR 10 (E) or nR 15 (F) cells from 3 experiments; **p% 0.01; ***p

% 0.001; ****p % 0.0001; paired t test before and 10 s after photoactivation.

Scale bars: 10 mm.

See also Figure S1.

Article
ll

OPEN ACCESS
describes the temporal dynamics of the three system compo-

nents: active GEF, active Rho, and active myosin (see Equations

1, 2, and 3 in Method Details). To characterize the contribution of

these biochemical reactions to the system dynamics, we studied

amodel that is homogeneous in space. The ODEmodel includes

13 parameters, which are the component total concentrations,

reaction rates, andMichaelis constants. The total concentrations

of Rho andmyosin were derived frommass spectrometry-based

analyses performed in U2OS cells (Beck et al., 2011). To esti-

mate the remaining 11 free parameters, we performed detailed

quantitative measurements of the system dynamics.

To directly measure the kinetics of the central reactions in this

signal network, we developed an improved generic variant of an
acute, chemo-optogenetic signal network perturbation tech-

nique that we recently developed. The original method, which

we called molecular activity painting (Chen et al., 2017), enabled

switch-like perturbations of signal networks at the plasma mem-

brane within seconds. The improved variant that we introduce in

this study (Figures 2B and S2; Method Details) does not require

specialized DNA-directed immobilization or surfacemodification

procedures. Instead, glass surfaces are functionalized by a very

simple protocol that is based on surface adsorption.

We applied this improved method to acutely target an active,

microtubule-binding deficient mutant of GEF-H1 (C53R) to the

plasma membrane. We then measured how quickly this pertur-

bation induced an increase in the Rho activity sensor (Figures
Cell Reports 33, 108467, December 1, 2020 3



Figure 2. Parameterization and Analysis of a Temporal Model for Cell Contraction Signal Network Dynamics

(A) A biochemical reaction scheme for positive and negative feedback regulation of Rho activity. GEF-H1 mediates positive feedback (highlighted in red) and

myosin (non-muscle myosin-IIa, MYH9) mediates negative feedback (highlighted in blue). E, enzymatic reaction, MA, mass action, C, cytosolic, PM, plasma

membrane-associated (a detailed description of the model and a justification of the specific implementation is given in Method Details).

(B) A schematic representation of improved molecular activity painting, a simplified, generic method for immobilized chemo-optogenetic plasma membrane

recruitment and its application to introduce acute and stable GEF-H1 perturbations (see Method Details).

(legend continued on next page)
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2C and 2D; Table S1; Video S2). These experiments revealed

that Rho activation occurs very rapidly within a few seconds af-

ter the chemo-optogenetic perturbation. In contrast, recruit-

ment of the negative feedback mediator myosin occurred

much slower over the time course of minutes (Figures 2D and

S3A; Video S2).

It should be noted that the Rho activity response quickly rea-

ches a maximum and subsequently decays to a lower level with

slower kinetics. These two phaseswere expected due to the pro-

posed rapid positive feedback and delayed negative feedback

regulation. GEFs from the related Lbc family are expected to

share these properties, as they can bind to active Rho (Medina

et al., 2013) and also belong to the Dbl family that is inhibited

by myosin (Lee et al., 2010). We found earlier that increased

expression of the Lbc-GEF LARG (ARHGEF12) stimulates Rho

activity pulses similarly to GEF-H1 (Graessl et al., 2017). Here,

we find that acute targeting of LARG to the plasma membrane

induced a biphasic response similar to that of GEF-H1, which

further supports this idea (Figures S3B–S3D; Video S2).

In addition to measuring the kinetics of the signal network

response to acute perturbations, we measured spontaneous ac-

tivity dynamics that are stimulated by increasing cytosolic GEF-

H1 levels either by overexpression of the microtubule-binding

deficient C53R mutant (Table S1) or by applying nocodazole

(Graessl et al., 2017) (Figures 2E–2G; Video S3). The period of

Rho activity was determined by fast Fourier transformation

(FFT) analysis, and the width of pulses and time lags between

Rho andmyosin were measured via time series and cross-corre-

lation analysis (Graessl et al., 2017) (Table S1).

These experimental measurements were then used to fit the

11 free parameters of the ODE system. To maximally constrain

the free parameters, we simultaneously fitted ODE simulations

to experiments in 2 regimes: (1) Rho and myosin activation after

acute GEF-H1 perturbation at a low total concentration of GEF-

H1 (perturbation regime; Figure 2D) and (2) spontaneous oscilla-

tory system dynamics at increased concentrations of total

GEF-H1 (oscillatory regime; Figure 2G). As we neglect spatial in-

formation, the ODE model represents local dynamics over time.

Therefore, we fitted ODE model simulations to measurements of

activity dynamics within small regions of the plasma membrane

(circles in Figures 2C and 2E). Except for the total concentration

of GEF-H1, all of the parameters were kept identical in these two
(C) TIRF images of immobilized GEF-H1(C53R) perturbation and Rho sensor res

(D) Kinetics of Rho activity sensor and myosin cell cortex recruitment response

numerical simulations of system dynamics using Equations 1, 2, and 3 (n R 20 c

(E) TIRF images of U2OS cells, in which cytosolic GEF-H1 levels were increased

(F) Kymograph corresponding to the yellow line shown in (E) to visualize regular

(G) Quantification of experimentally measured Rho activity and myosin cell cor

corresponding numerical simulations of system dynamics.

(H) Two parameter bifurcation analysis of Equations 1, 2, and 3 to predict total con

myosin, which can generate stable or oscillatory system dynamics.

(I) One parameter bifurcation analysis of Rho activity dynamics predicts limit c

furcations at GT = 0.1557 and GT = 0.6215).

(J) Simulations of Rho activity dynamics predict maximal Rho activity peak ampl

(K) Experimental confirmation of maximal Rho activity peak amplitude at intermed

n = 124 cells from 3 experiments; means and SEMs; ***1-way ANOVA, Dunnett’s

Scale bars: 10 mm.

See also Figures S2 and S3.
regimes. To search this parameter space, we used a Bayesian

approach and a parallelized Markov chain Monte Carlo method

(MCMC) (Campillo-Funollet et al., 2019) starting from 15 distinct

sets of parameters, which were randomly sampled from uniform

prior distributions (see Table S2 for parameter ranges and

Method Details). Table S3 shows the parameter values with the

highest probability (i.e., the mode of the posterior distributions,

and the 95% credible intervals [CIs]).
Model Predictions: Dependence of SystemDynamics on
the Concentration of the Feedback Mediator GEF-H1
Numerical simulations performed using estimates of the param-

eter values exhibited major features of the observed system dy-

namics. First, simulations in the perturbation regime effectively

represented experimentally measured Rho and myosin activa-

tion kinetics (Figure 2D). Second, simulations in the oscillatory

regime generated system dynamics that closely mimicked

experimentally measured width and time shifts of Rho, GEF,

and myosin pulses (Figure 2G). This shows that the proposed

biochemical reaction scheme (Figure 2A) and the corresponding

system of ODEs are sufficient to generate the observed temporal

system dynamics.

We next performed a detailed numerical analysis of the ODE

system to predict how variations in the total concentration MT

of the negative feedback mediator myosin and GT of the positive

feedback mediator GEF-H1 affect Rho activity dynamics (Fig-

ures 2H and 2I). A two-component bifurcation analysis showed

that oscillations only occur in concentration ranges, in which

neither myosin nor GEF-H1 is zero. Thus, based on this pro-

posed system, both positive and negative feedback are required

for oscillatory system dynamics (Figure 2H). This is in agreement

with our previous experimental observation that interfering with

GEF-H1 or myosin inhibited Rho activity pulses (Graessl et al.,

2017). This analysis also confirms our experimental observation

that increased GEF-H1 concentrations stimulate oscillatory Rho

activity dynamics (Figures 1A and 1B) (Graessl et al., 2017). At

the lowest concentrations, the system is stable, and at increased

GEF-H1 concentrations, the system can generate limit-cycle os-

cillations. In addition, the two-component (Figure 2H) and one-

component (Figure 2I) bifurcation analyses also predicted an

additional transition toward lower Rho activity dynamics at the
ponse (see also Video S2).

to acute chemo-optogenetic GEF-H1 perturbations and the corresponding

ells from at least 3 experiments, means and SEMs).

by nocodazole-induced microtubule depolymerization (see also Video S3).

pulses of Rho activity followed by myosin cell cortex recruitment.

tex recruitment pulse dynamics corresponding to the yellow box in (E), and

centration ranges of the positive and negative feedbackmediators GEF-H1 and

ycle oscillations at intermediate GEF-H1 concentrations (subcritical Hopf bi-

itude at intermediate GEF-H1 concentrations.

iate GEF-H1(C53R) expression levels (percentage of signal above background;

post test, p < 0.001).
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highest GEF-H1 concentrations, at which the system was again

stable.

Further analysis using ODE simulations predicted that the

peak Rho amplitude is minimal at low and high GEF-H1 concen-

trations and reaches a maximum at intermediate GEF-H1 con-

centrations (Figure 2J). Experimental manipulations of the

GEF-H1 concentration confirmed this model prediction. The

highest Rho activity pulses, as measured by the peak amplitude

were found at intermediate expression levels of active GEF-H1

(Figure 2K). Using the standard deviation (SD) of the local signal

(see Method Details) as an alternative measure for system dy-

namics, we corroborate this observation (Figure S3E), thereby

further supporting our experimental confirmation of the model

prediction.

Switching of Cell Contraction Signal Network Dynamics
in Single Cells by Optogenetic Tuning of the Cytosolic
GEF-H1 Concentration
Next, we performed simulations in which we gradually increased

the total GEF-H1 concentration GT to investigate how quickly the

system dynamics respond to changes in this parameter. These

simulations predict that Rho activity oscillations rapidly begin

and end at GEF-H1 concentrations GT that correspond to the

subcritical Hopf bifurcations of the ODE system (Figures 2I

and 3B).

To test this model prediction, we applied the LOVTRAP sys-

tem (Wang et al., 2016), which enabled us to manipulate the

effective, cytosolic concentration of GEF-H1 in individual living

cells by releasing it from mitochondria (Figures 3A and 3C–3F).

In this system, illumination with blue light led to the reversible

release of the dark-state binding Zdk1 domain from light-oxy-

gen-voltage-sensing (LOV2) domains that are anchored at mito-

chondria. In our experimental conditions, stepwise small in-

creases in blue light intensity led to a continuous increase in

the cytosolic levels of GEF-H1 (Figures 3C and 3D; Video S4)

over time. This continuous increase was accompanied by a

change in the system dynamics from very small activity pulses

to high amplitude pulses, followed by recurring, propagating

waves (Figures 3C and 3D; Video S4). Interestingly, at the highest

cytosolic levels, wave propagation, and pulse amplitude dimin-

ished again, and the overall system dynamics were greatly

reduced (Figures 3C–3E; Video S4). Direct comparison of theo-

retical (Figure 3B) and experimental (Figure 3D) tuning of the

cytosolic GEF-H1 concentration shows very similar changes in

Rho activity dynamics. Combining multiple cells and plotting a

measure of Rho activity dynamics, the local SD of Rho sensor

signal, against the effective cytosolic GEF-H1 signal (Figure 3F),

confirmed the existence of three dynamic regimes: low activity

amplitude in the stable regime at low GEF-H1 levels, high ampli-

tude at intermediate GEF-H1 levels, and low amplitude at the

highest GEF-H1 levels. The reduced Rho activity dynamics at

the highest GEF-H1 levels suggests that this system is saturated

under these conditions. To test whether switching system dy-

namics is reversible, we used the LOVTRAP system to sequen-

tially increase and decrease the effective cytosolic GEF-H1 con-

centration (Figure S4; Video S5). We found that both the

activation and saturation of system dynamics are reversible (Fig-

ure S4; Video S5). Thus, our experimental manipulations show
6 Cell Reports 33, 108467, December 1, 2020
that the dynamic state of individual cells can rapidly switch at

multiple effective concentration levels of cytosolic GEF-H1.

These observations directly confirmed that the GEF-H1 concen-

tration is a critical parameter of this dynamic signal network. Our

experimental tuning of the bifurcation parameter GT directly vali-

dated the predictions of the numerical bifurcation analysis.

Influence of External Inputs into the Myosin Component
on Rho Activity Dynamics
We noted that oscillations observed in the numerical simulations

of the ODE model are always highly regular (Figure 2G). In

contrast, experimentally observed oscillations were either regu-

lar (Figure 2G) or irregular (Figures 1A and 1B), suggesting that

additional, extrinsic processes could influence the experimen-

tally observed system dynamics. In particular, myosin activity

dynamics are simplified in the ODE model, in which they are

controlled only by Rho and a constant inhibitory baseline activity.

However, in cells, myosin activity is known to be modulated by

mechanical or biochemical inputs that originate from both extra-

cellular and intracellular sources. For example, myosin activity is

stimulated by viscoelastic counterforces (Luo et al., 2012), which

originate from themechanical properties of actomyosin itself and

from associated subcellular structures, such as cell-substrate

adhesions, the nucleus, or cell-cell junctions (Tojkander et al.,

2012). In addition, these viscoelastic counterforces are modu-

lated by stochastic fluctuations that originate fromBrownianmo-

tion (Brangwynne et al., 2008), actin polymerization (Weber et al.,

2015), adhesion clusters (Erdmann and Schwarz, 2004), and

small actomyosin ensembles (Erdmann and Schwarz, 2012).

Thus, to derive a more realistic theoretical concept, we aimed

to account for these complex and partially stochastic processes.

To keep our theoretical concept as simple as possible, we

considered a phenomenological description of these extracel-

lular and intracellular inputs and modeled them by adding low

levels of Gaussian noise to the myosin component to obtain a

system of stochastic differential equations (SDEs) (see Equa-

tions 4, 5, and 6 in Method Details).

At low GEF-H1 concentrations, the SDE numerical simulations

generated irregular, pulsatory dynamics (Figure 4A). At high

GEF-H1 concentrations, the system showed no oscillations or

pulses, but instead only low amplitude noise (Figure 4C). In

contrast, at intermediate GEF-H1 concentrations, relatively reg-

ular, recurring pulses were observed (Figure 4B). To quantify

peak irregularity, we measured the coefficient of variation (CV)

of interpeak intervals. The application of this measure to SDE

simulations predicted maximal peak regularity (i.e., lowest CV)

at intermediate GEF-H1 concentrations (Figure 4D). To test this

prediction, we analyzed interpeak intervals in cells that express

varying levels of GEF-H1. Compared to simulations, the experi-

mentally measured CV displayed relatively high cell-to-cell vari-

ability, suggesting that additional factors may influence the reg-

ularity of system dynamics. Nevertheless, as predicted by the

simulations, the CV of interpeak intervals was reduced at inter-

mediate expression levels (Figure 4E).

These results seem to suggest that the temporal dynamics of

the GEF-H1/Rho/myosin signal network are relatively insensitive

to extrinsic noise or other extrinsic inputs at intermediate and

high cytosolic concentrations of GEF-H1. At intermediate levels,



Figure 3. Model Prediction and Experimental Confirmation of GEF-H1 Concentration-Dependent Switching of Rho Activity Dynamics by

Optogenetic Tuning

(A) A schematic representation of GEF-H1 release from mitochondria to tune the effective cytosolic GEF-H1 concentration with light.

(B) Simulation of Rho activity dynamics with linearly increasing total concentration of GEF-H1 (GT).

(C–F) The dependence of Rho sensor activity dynamics on the effective, cytosolic GEF-H1 concentration was analyzed in U2OS cells expressing the LOV domain

targeted to mitochondria (TOM20-LOV2), mCherry-Zdk1-GEF-H1(C53R), and a Rho sensor (mCitrine-Rhotekin-GBD).

(C–E) Analysis of a representative cell.

(C) Top: TIRF images of mCherry-Zdk1-GEF-H1(C53R) and the Rho sensor (see also Video S4). Bottom: kymographs corresponding to green arrows in top panel.

Yellow arrows point to Rho activity pulses, cyan arrows point to Rho activity waves.

(D) Cytosolic mCherry-Zdk1-GEF-H1(C53R) levels obtained as the minimum signal in green boxed regions in (C), and measurements of the Rho activity sensor

signal over the time course of the experiment.

(E) The local standard deviation of Rho activity signals over the time course of the experiment, using a shifting time-interval of 15 frames, average of all central cell

regions of the cell shown in (C), and cytosolic mCherry-Zdk1-GEF-H1(C53R) levels (moving average of 15 frames corresponding to 2.5 min).

(F) Plot of local standard deviation of Rho activity signals against cytosolic mCherry-Zdk1-GEF-H1(C53R) levels from all of the analyzed cells (n = 23 cells from 3

experiments). Lines connect 3 data points that represent the following time intervals of optogenetic tuning experiments: the average of the initial 10 frames, the

intermediate frames, and the last 10 frames. Lines with net increase of local Rho activity standard deviation are in green, lines with net decrease are in magenta.

(E and F) Percentage (%) indicates percentage of mean intensity.

Scale bars: 10 mm.

See also Figure S4.
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Figure 4. Sensitivity of Rho Activity Pulses to Stochastic Myosin Inputs

Numerical simulations of the system of stochastic differential equations (Equations 4, 5, and 6) that include extrinsic additive noise in the myosin component to

represent extracellular and intracellular inputs.

(A–C) SDE simulations at low (A), intermediate (B), and high (C) cytosolic concentrations of GEF-H1 (GT).

(D) Measurement of the coefficient of variation (CV) of the Rho activity interpeak distance in SDE simulations at various cytosolic concentrations of GEF-H1 (GT).

The black bar indicates the range of GT that generates oscillatory dynamics in the absence of noise.

(E) Measurement of the CV of the Rho activity interpeak distance in experiments at varying expression levels of active, microtubule-binding deficient GEF-

H1(C53R) mutant (n = 91 cells from 3 experiments; box and whisker plot; ****1-way ANOVA, Dunnett’s post test, p < 0.0001).

(F) Dependence of maximal Rho activity peak amplitude on extrinsic noise levels in the myosin component (Noisemyosin) at low, intermediate, and high GEF-H1

concentrations (GT).

(G) Dependence of the CV of the Rho activity interpeak distance on extrinsic noise levels in the myosin component at low, intermediate, and high GEF-H1

concentrations (GT).

Dotted black line in (D) and (G): CV of Gaussian input noise. (D), (F), and (G): mean and SD from 3 independent simulations.
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pulses do not need a trigger, leading to self-sustained oscillatory

dynamics, and at high levels, a large fraction of the Rho compo-

nent is constantly in the active form and activity dynamics are

dampened. In contrast, at low cytosolic concentrations of

GEF-H1, noise can trigger irregular pulses, suggesting that the

system is most sensitive to extrinsic inputs under these condi-

tions. To test this idea, we gradually increased the level of

extrinsic noise in our SDE simulations andmeasured peak ampli-
8 Cell Reports 33, 108467, December 1, 2020
tude and peak regularity. We found that pulses with high

maximal Rho activity amplitude are increasingly generated at

low GEF-H1 concentrations with increasing noise (Figures 4A

and 4F). At intermediate and high GEF-H1 concentrations,

maximal Rho activity amplitude is largely independent of noise

levels (Figures 4B, 4C, and 4F).

Peak irregularity, measured via the CV of interpeak intervals,

increases most strongly with increasing noise levels at low



Figure 5. Spatial Patterning of Rho Activity Dynamics

(A) Schematic representation of the cellular automata model. Reactions (left) are simulated within individual discrete regions. Mass transfer between these re-

gions is simulated based on fast and slow diffusive mobility of the cytosolic and plasma membrane-associated components (center). Cytosolic and plasma

membrane regions of cells are represented by two 2-dimensional (2D) arrays of discrete spatial regions (right).

(B) Experimentally observed Rho activity sensor signals in U2OS cells obtained via TIRF microscopy (left panels) and numerical simulations of Rho activity

obtained by using a cellular automata model (right panels). Top panels: representative time frame from experiments and simulations (see also Video S6); bottom

panels: kymographs corresponding to white lines in top panels. Cells co-express the Rhotekin-GBD sensor and GEF-H1(C53R). The representative cell shown in

this panel expresses GEF-H1(C53R) at low levels.

(C) Measurement of spatial Rho activity pulse width by fitting a 2D Gaussian to the spatial autocorrelation function of cellular automata simulations. Shown is the

full width at half maximum (FWHM) of the Gaussian fit from simulations performed after multiplying diffusion coefficients with varying factors (mean and SD from 8

independent simulations).

(legend continued on next page)
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GEF-H1 concentrations (Figure 4G). Thus, low total concentra-

tions of the positive feedback mediator GEF-H1 are a prerequi-

site for triggering irregular pulses with high activity amplitude

by stochastic inputs into the myosin component.

Spatial Patterning of Rho Activity Dynamics Is
Dependent on Slow Diffusion of Membrane-Associated
GEF-H1
In previous sections, local system dynamics were investigated,

which revealed how pulsatile and oscillatory system dynamics

can emerge from the positive and negative feedback regulation

of Rho activity. However, to generate the observed spatiotem-

poral activity patterns, reactions must be coupled to transport

processes such as diffusion (Meinhardt, 2004; Turing, 1952).

We therefore extended the system of SDEs and performed nu-

merical simulations using a cellular automata model (Figure 5A;

Method Details) (Schmick et al., 2014). The reaction kinetic pa-

rameters that were obtained via the Bayesian fitting approach

of the ODE system (Table S3) were used, and no additional

parameter fitting was performed with the cellular automata

model. Estimations for diffusion coefficients of the active,

plasma membrane-associated and inactive, cytosolic system

components were based on published data or experimental

measurements (see Method Details). To represent external in-

puts, we used the lowest level of noise (Noisemyosin = 0.001)

that was capable of triggering stochastic Rho activity pulses

when the system of SDEs was solved numerically (Figure 4).

At low cytosolic GEF-H1 concentrations, numerical simula-

tions using this reaction-diffusion system (RDS, Equations 7, 8,

9, 10, 11, and 12) generated irregular, local Rho activity pulses

that were very similar to corresponding experimental observa-

tions (Figure 5B; Video S6). This shows that coupling of the reac-

tions of our temporal model with known diffusive mobility of the

major system components is sufficient to generate spatiotem-

poral patterns that correspond to our experimental observations.

Pattern formation often depends on differential diffusive

mobility of system components. Our RDS encompasses several

components with distinct mobility, and their individual contribu-

tion to pattern formation is unclear. We therefore varied individ-

ual diffusion coefficients in a sensitivity analysis. This showed

that up to 8-fold changes in diffusion coefficients did not prevent

the formation of local Rho activity pulses per se; however, spatial

pulse width was significantly altered (Figure 5C). The strongest

dependence was observed when altering the diffusion coeffi-

cient of plasma membrane-associated GEF-H1.

In cells that express increased levels of active GEF-H1, we

observed multiple, spatially focused wave structures that either

annihilated each other or merged and changed their shape and

propagation direction (Figure 5D; Video S7).We observed similar

activity dynamics in our simulations if we increased the GEF-H1

concentration (Figure 5E). By adding spatial dimensions and

analyzing the effect of coupling diffusion and reactions, we

extended our theoretical framework to explain experimentally
(D) Example for experimental observation of 2 focused wave fragments that fu

mCherry-Rhotekin-GBD sensor and EGFP-GEF-H1. The representative cell show

(E) Cellular automata simulation of Rho activity dynamics shows similar activity p

Scale bars: 10 mm.
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observed spatiotemporal patterns of cell contraction dynamics

and predict that the diffusive mobility of the positive feedback

mediator GEF-H1 is a critical parameter for activity pattern

formation.

DISCUSSION

In this study, we introduced an improved method to acutely per-

turb and measure the activity state of signal network compo-

nents and combined this experimental approach with theoretical

analysis of the system dynamics. This strategy enabled us to

infer causalities in a GEF-H1/Rho/myosin signal network and to

derive a theoretical framework that can explain the formation

of local pulses of Rho activity that control local cell contraction

dynamics.

Rho Activity Amplification Mediated by Lbc-type
RhoGEFs
An important insight of our study is that local Rho activity can be

amplified via a very simple mechanism in which active Rho can

recruit its own activator GEF-H1 to the plasma membrane.

GEF-H1 shares this ability with other members of the Lbc family

of RhoGEFs (Medina et al., 2013). Lbc-GEFs are conserved in

vertebrate and invertebrate species and widely expressed in

various mammalian cell types. Hence, these regulators may

also play a role in other systems that generate local cell contrac-

tion pulses, such as during oocyte cytokinesis (Bement et al.,

2015) or in tissue remodeling during embryogenesis (Coravos

et al., 2017; Kasza and Zallen, 2011; Martin et al., 2009, 2010;

Mason et al., 2016; Munjal et al., 2015; Nishikawa et al., 2017).

In these systems, various additional mechanismswere proposed

that may mediate positive feedback amplification in local cell

contraction pulses (Bement et al., 2015;Munjal et al., 2015; Nish-

ikawa et al., 2017; Wu, 2017). These alternative mechanisms are

not mutually exclusive and could therefore act in parallel to Rho

activity amplification via Lbc-GEFs to ensure robust generation

of cell contraction pulses. Our study offers a simple mechanism

and a small set of candidates that could play an important role in

this process.

Simplifications in the Core Signal Network
In this study, we propose a very simple core reaction network

that generates the observed signal network dynamics. The

detailed, biochemical mechanisms that control Rho GTPases

and myosin are much more complex and include solubilization

by RhoGDIs, crosstalk between Rho family members, actin

and myosin filament polymerization, and several myosin regula-

tory kinases and phosphatases. By simplifying these complex

processes, our study suggests that the core reaction network

captures two of the most important features of this system: the

network topology, which includes coupled positive and negative

feedback loops, and the kinetics of the reactions that mediate

these feedback loops, which are fast and slow, respectively.
se and change their shape and propagation direction. Cells co-express the

n in this panel expresses GEF-H1 at intermediate levels (see also Video S7).

atterns as shown in (D).



Table 1. Comparison of the Estimated Values of the Michaelis

Constants with Maximal Concentrations of Corresponding

Theoretical System Components

Michaelis Constant, Mode,

and 95% Credible Interval

(in 106 Molecules/Cell)

Maximal Concentration of

Corresponding System

Component in Oscillatory

State (in 106 Molecules/Cell)

Km1: 2.42 (0.0886–2.43) inactive Rho: 0.44

Km2: 0.0745 (0.0741–0.564) active Rho: 0.34

Km5: 0.014 (0.00733–0.0658) inactive myosin: 1.21

Km6: 0.786 (0.258–1.83) active myosin: 0.24

Maximal concentrations were obtained from the numerical analysis of the

oscillatory state using Equations 1, 2, and 3 (see Method Details).
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These core features are typical for oscillatory/excitable systems

(Tyson et al., 2003) and enable rapid amplification of Rho at the

onset of a pulse that is coupled to a slow, delayed self-inhibition

that terminates this amplification phase.

The biochemical details of how these system features are im-

plemented may be necessary to enable the large difference in

the kinetics between the positive and negative feedback loops.

Solubilization of inactive Rho by RhoGDI provides a large pool

of cytosolic Rho that can be rapidly activated and transferred

to the plasma membrane (Garcia-Mata et al., 2011). In contrast,

polymerization of actin and myosin filaments is a relatively slow

process that acts via many intermediate steps, which slows

down the negative feedback loop.

The biochemical features of the individual Rho signal network

components integrate the core network that generates oscilla-

tions with inputs that can modulate these dynamics and outputs

that link to cellular functions. For example, the force that is

generated by myosin is critical to alter cell shape and is involved

in the transduction of mechanical signals, and the crosstalk be-

tween Rho and other regulators of cell morphodynamics, such

as Rac, may play a role in coordinating protrusive and contractile

cell shape changes.

The simplicity of the core network raises the question: can the

mathematical description be simplified further? In particular,

several reactions were implemented via saturable Michaelis-

Menten kinetics, but if those occur far from saturation, then a

simpler implementation via mass action may be sufficient.

Comparing the values of the Michaelis constants with the

maximal concentrations of the corresponding theoretical system

components obtained from the bifurcation analysis (Table 1)

suggests that the reactions that involve Km1 and Km6 occur far

from saturation, as the values of these Michaelis constants are

higher than the corresponding concentrations of inactive Rho

and active myosin. The upper limit of the 95% credible region

of Km2 is also relatively high compared to the corresponding con-

centration of active Rho, suggesting that this also applies to

some extent to Km2. This is in contrast to Km5, which is much

lower than the corresponding concentration of inactive myosin.

Thus, saturation and the associated non-linearity in the Michae-

lis-Menten terms is predominantly relevant for the reaction

involving Km5. The corresponding reaction is indeed expected

to be highly non-linear, as it represents a multi-step enzymatic
cascade that involves several kinases, phosphatases, and actin

polymerization (Riento and Ridley, 2003).

The parameters that we obtained by constraining our simpli-

fied core system with experimental data allows further insight

into system dynamics. For example, the observed local dy-

namics of active Rho andmyosin at the plasmamembrane occur

in the range of minutes; however, these timescales are likely

dominated by the relatively slow, rate-limiting reactions in the

negative feedback. Our parameter estimation suggests that the

turnover of active Rho molecules at the plasma membrane is

much faster (estimated dwell time of active RhoA; k2/Km2 �0.5

s) than the observed local dynamics of active Rho.

Emergence of Spatiotemporal Cell Contraction Patterns
Both in our experiments and in our reaction-diffusion simula-

tions, we observed focused pulses and wave structures with

increased Rho activity. Interestingly, these patterns are similar

to those predicted for three-component RDSs in the influential

paper by Alan Turing on the chemical basis of morphogenesis

(Turing, 1952), which were subsequently studied in more detail

by Hans Meinhardt (Meinhardt, 2004). In such systems, a single

activator is regulated by two distinct inhibitors, one local, long-

lasting inhibitor that controls oscillations in time, and one long-

ranging inhibitor that controls patterns in space (Meinhardt,

2004). These requirements are met in our experimental system:

activemyosin acts as a slow, long-lasting local inhibitor that con-

trols oscillatory activity dynamics. Depletion of the activator by

diffusion of inactive GEF-H1 enables long-range inhibition to

generate patterns of cell contraction pulses in space (Figure 6A).

In the regime in which local pulses formed, GEF-H1 was pre-

sent at low concentrations and thus present in limiting amounts

(�21% active fraction at steady-state in simulation shown in

Figure 5B), which is a prerequisite for the depletion-based

long-range negative feedback (Figure 6A). In this low GEF-H1

concentration range, Rho was not limiting (�2.2% active fraction

in simulations), which can explain why the diffusion of GEF-H1 is

more critical for pattern formation than Rho. Myosin was also not

present in limiting amounts (�0.9% active fraction in simula-

tions); however, slow myosin diffusion is necessary to maintain

its function as a slow, long-lasting, short-range inhibitor.

Rho activity waves often appeared as moving spots or wave-

front fragments in both experiments and simulations (Figures 5B,

5D, and 5E). This is in contrast to symmetric, radial wave propa-

gation (Figure 6B), which is observed in simpler excitable sys-

tems such as the Belousov-Zhabotinsky reaction (Belousov,

1959; Zhabotinsky, 1964) that include short-range positive feed-

back and short-range negative feedback without the long-range

negative feedback component. The patterns that we observe are

more similar to those that were described byMeinhardt for three-

component RDSs (Meinhardt, 2004).

Sensitivity of Cell Contraction Signal Network Dynamics
to External Inputs
Wepreviously reported that contractility pulses in U2OS cells are

modulated by the elasticity of the extracellular matrix, suggest-

ing that they participate in a mechanotransduction process

(Graessl et al., 2017). Here, we used extrinsic stochastic

inputs into the myosin component as a phenomenological
Cell Reports 33, 108467, December 1, 2020 11



Figure 6. Proposed Pattern Formation Mechanism That Generates Rho Activity Pulses and Waves

(A) Slow-diffusing active Rho and myosin near the plasma membrane and fast-diffusing inactive components in the cytosol form a reaction-diffusion system

(RDS; Equations 7, 8, 9, 10, 11, and 12) that includes short-range positive and negative feedback, as well as a long-range negative feedback via substrate

depletion (green arrow). Gray arrows: diffusion; black arrows: translocations and reactions.

(B) Schematic representation of propagating focused spot-like waves and focused wave fragments, as opposed to radial wave propagation, which does not

require a long-range spatial focusing mechanism.
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approximation of biochemical or mechanical input signals. We

find that the regular activity pulses that are induced by interme-

diate GEF-H1 concentrations are insensitive to such external in-

puts and thus unlikely to be directly modulated in this state. In

contrast, at low concentrations of GEF-H1 that correspond to

its endogenous levels, external inputs can trigger focused Rho

activity pulses. This insight has important implications for the po-

tential role of Lbc-type GEFs in cell contraction signaling. While

low levels of active Lbc GEFs in unperturbed U2OS cells may

play a role in sensing external inputs, higher levels of active

Lbc GEFsmay play a role in driving cell-autonomous contraction

oscillations that are observed during embryonic development.

Our study thus provides a theoretical framework for cell

contraction pattern formation and its modulation by biochemical

and mechanical signals. Our quantitative analysis of this minimal

system that operates within subcellular areas in individual cells

provides a basis to understand how this system is interlinked

with cellular function and may thereby also help to improve our

understanding of cell contraction patterns that are observed in

more complex multicellular systems.
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DCAAX

This paper N/A

mTurquoise2-NES-eDHFR-RhoA T19N

DCAAX

This paper N/A

mCherry-Zdk1-GEF-H1 C53R This paper N/A

mTurquoise2-eDHFR-GEF-H1 (C53R) This paper N/A

mTurquoise2-eDHFR-LARG This paper N/A

pTriEx-NTOM20-CCL-moxBFP-CCL-LOV2 This paper N/A

delCMV-mCherry-Rhotekin-GBD Graessl et al., 2017 N/A

eDHFR-mCitrine Chen et al., 2017 N/A

TagBFP-Halotag-CAAX Chen et al., 2017 N/A

VSVG HaloTag-PARC Chen et al., 2017 N/A

pTriEx-NTOM20-LOV2 Wang et al., 2016 Addgene Plasmid #81009

pTriEx-mCherry-Zdk1 Wang et al., 2016 Addgene Plasmid #81057

pTriEx-NTOM20-mVenus-LOV2 Wang et al., 2016; Kind gift of Klaus Hahn N/A

mCitrine-N1 Griesbeck et al., 2001 Addgene Plasmid #54594

mCherry-C1 Clontech Cat# 632524

moxBFP Costantini et al., 2015 Addgene Plasmid #68064

EGFP-NMHCIIA Wei and Adelstein, 2000 Addgene Plasmid #11347

mCherry-NMHCIIA Dulyaninova et al., 2007 Addgene Plasmid #35687

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

EGFP-2xFKPB’-Rac1 Q61L DCAAX Liu et al., 2014 N/A

mCherry-LARG Kind gift of Oliver Rocks N/A

EGFP-GEF-H1 C53R Krendel et al., 2002 N/A

pmTurquoise2-NES Goedhart et al., 2012 Addgene Plasmid #36206

pcDNA3-EGFP-RhoAQ63L Subauste et al., 2000; Kind gift of Gary

Bokoch

Addgene Plasmid #12968

Software and Algorithms

MATLAB R2018 MathWorks https://de.mathworks.com

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/

Fiji Schindelin et al., 2012 https://imagej.net/Fiji

Graphpad Prism 7.04 for Windows GraphPad Software, Inc https://www.graphpad.com

XPPauto 7.0 http://www.math.pitt.edu/�bard/xpp/

xpp.html

Parameter fitting and posterior distribution

analysis scripts

This paper GitHub;https://github.com/ecam85/

optogenetics

custom code for bifurcation analysis, ODE,

SDE and CA simulations

This paper GitHub;https://github.com/agdehmelt/

optogenetic_tuning

Cellular automata algorithm Schmick et al., 2014 N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Leif Deh-

melt (leif.dehmelt@mpi-dortmund.mpg.de).

Materials availability
Plasmids generated in this study are available from the lead contact upon request.

Data and code availability
The custom code for parameter fitting, posterior distribution analysis, bifurcation analysis, ODE, SDE and CA simulations is available

at: https://github.com/ecam85/optogenetics and https://github.com/agdehmelt/optogenetic_tuning.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture
Human U2OS osteosarcoma cells (ATCC HTB-96, RRID:CVCL_0042, female) were cultured in DMEM-GlutaMAX (GIBCO) supple-

mented with 10% fetal bovine serum (Pan Biotech), 50 U/ml penicillin, and 50 mg/ml streptomycin (Pan Biotech) at 37�C and 5%

CO2. For live-cell imaging, cells were plated onto collagen type I (Sigma-Aldrich) coated glass bottom dishes (1 h, 37�C, c =

0.01 mg/ml).

METHOD DETAILS

Transfection and pharmocological treatments
All plasmid DNAwas transfected using Lipofectamine2000. To stimulate RhoA activity, U2OS cells were treated with the microtubule

depolymerizing compound nocodazole (Sigma-Aldrich) (30 mM, 45–90 min). Pharmacological treatments started 14-20 h after trans-

fection of plasmid DNAs.

Plasmid construction
The Rho activity sensor delCMV-mCherry-Rhotekin-GBD was described previously (Graessl et al., 2017). delCMV-mCitrine-Rhote-

kin-GBD was generated by replacing mCherry from delCMV-mCherry-Rhotekin-GBD with mCitrine frommCitrine-N1 (Clontech) us-

ing NheI and BsrGI restriction sites. EGFP-GEF-H1 C53R was described previously (Krendel et al., 2002). mCherry-GEF-H1 C53R

was generated by replacing EGFP with mCherry from mCherry-C1 (Clontech) using NdeI and KpnI restriction sites. mCherry-

GEF-H1 PH was generated using Gibson assembly. First, the GEF-H1 PH domain (AA 438-576) was amplified via PCR adding an
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N-terminal GSGSGS linker with primers 50-accggcggcatggacgagctgtacaagggttctggaagtggatccGGGGCCCGTCTGCAGGAG-30 and
50-ccgtcgactgcagaattcgatcaCTCCCTGGATGGGCATGTG-30, followed by Gibson assembly with mCherry-C1 (Clontech) that was

cut using BsrGI and HindIII restriction sites. mCherry-GEF-H1 PH F539A-I541E was generated by site-directed mutagenesis via

the QuikChange protocol using the primers 50-CCAGGAGAAAGGGATGGCACTGGAAAGCGCAGCCCCACCTGAG-30 and 50-
GGTGGGGCTGCGCTTTCCAGTGCCATCCCTTTCTCCTGGTTGG-30. mTurquoise2-NES-eDHFR-RhoA Q63L DCAAX (abbreviated

as eDHFR-Rho Q63L) was derived from EGFP-2xFKPB’-Rac1 Q61L DCAAX (Liu et al., 2014) by first exchanging EGFP for mTur-

quoise2-NES (from Addgene Plasmid# 36206) (Goedhart et al., 2012), and exchanging Rac1 for RhoA (sequence from pcDNA3-

EGFP-RhoAQ63L; kind gift of Gary Bokoch, The Scripps Research Institute). In the resulting construct mTurquoise2-NES-

2xFKPB’-RhoA Q63L DCAAX, 2xFKPB’ was replaced by eDHFR using XhoI and XbaI restriction sites and PCR amplification of

eDHFR from eDHFR-mCitrine (Chen et al., 2017) using the primers 50-ctggactcgtacaagatatctcgagctATGATCAGTCT

GATTGCGGCGTTAGC-30 and 50-tccggatggcagccatggatctagaGGTGGATCCCCGCCGCTC-30, followed by Gibson assembly. mTur-

quoise2-NES-eDHFR-RhoA F30L DCAAX, mTurquoise2-NES-eDHFR-RhoA wt DCAAX and mTurquoise2-NES-eDHFR-RhoA T19N

DCAAX were generated from this construct by site-directed mutagenesis via the QuikChange approach using primers 50-CAT
AGTCTTCAGCAAGGACCAGCTGCCAGAGGTGTATGTGCC-30, 50-CTGTGGGCACATACACCTCTGGCAGCTGGTCCTTGCTGAAG

AC-30 and 50-CTTTGTGGGACACAGCTGGGCAGGAAGATTATGATCGCCTGAG-30, 50-GGGCCTCAGGCGATCATAATCTTCCT

GCCCAGCTGTGTCCCAC-30, and 50-GCCTGTGGAAAGAACTGCTTGCTCATAGTCTTC-30, 50-GAAGACTATGAGCAAGCAGTTC

TTTCCACAGGC30 respectively. TagBFP-Halotag-CAAX and VSVG HaloTag-PARC [mCitrine] were described previously (Chen

et al., 2017). mCherry-Zdk1-GEF-H1 C53R was generated by PCR amplification of the pTriEx-mCherry-Zdk1 (Wang et al., 2016)

backbone (Addgene Plasmid 81057) using primers 50-AAAGCTTGCGGCCGCACA-30 and 50-gaattcTTTGTCGTCGTCGTCCTTG

TAGTC-30 and PCR amplification of GEF-H1 C53R from EGFP-GEF-H1 C53R (Krendel et al., 2002), with primers 50-acaaggacgac-
gacgacaaagaattcATGTCTCGGATCGAATCC-30 and 50-gctgtgcggccgcaagctttTTAGCTCTCGGAGGCTAC-30 followed by Gibson as-

sembly. For pTriEx-NTOM20-CCL-moxBFP-CCL-LOV2 the mVenus fluorophore from pTriEx-NTOM20-mVenus-LOV2 (kind gift of

Klaus Hahn, UNC-Chapel Hill School of Medicine, Wang et al., 2016) was replaced by CCL-moxBFP-CCL (CCL: coiled-coil) by

PCR amplification of the backbone with primers 50-ttctgagcagcggttccggatccggtTCCTTGGCTACTACACTTG-30 and 50-TCTAGAT

TTAAAGTTCGGATCG-30 and moxBFP (Costantini et al., 2015) (Addgene Plasmid 68064) including CCL-domains with priners 50-
atccgaactttaaatctagaggatctggtagtggttccGCTAGCCTCGCAGCTGCG-30 and 50-TCCGGAACCGCTGCTCAG-30, followed by Gibson

assembly. mTurquoise2-eDHFR-GEF-H1 (C53R) was generated by PCR amplification of the mTurquoise2-NES-eDHFR backbone

from mTurquoise2-NES-eDHFR-RhoA Q63L DCAAX using primers 50-CTCAATTGTTGTTGTTAACTTG-30 and 50-GGATCTA

GAGGTGGATCCCCG-30 and PCR amplification of GEF-H1 C53R including a N-terminal linker region from mCherry-Zdk1-GEF-

H1 C53R using primers 50-ggcggggatccacctctagatccGGTGGTTCTGGTGGTAGC-30 and 50-agttaacaacaacaattgagTTAGCTCTCG

GAGGCTAC-30 followed by Gibson assembly. mTurqouise2-eDHFR-LARG was generated by replacing GEF-H1 C53R from

mTurquoise2-eDHFR-GEF-H1 C53R with LARG, using NotI and MfeI restriction sites and PCR amplification of LARG from

mCherry-LARG (kind gift of Oliver Rocks, MDC Berlin) with primers 50-aaaatctgtatttccagggcggccgctctggaagtggaAGTGGCACA

CAGTCTACTATC-30 and 50-ataaacaagttaacaacaacTCAACTTTTATCTGAGTGCTTG-30, followed by Gibson assembly.

EGFP-NMHCIIA (Wei and Adelstein, 2000) (Addgene Plasmid 11347), mCherry-NMHCIIA (Dulyaninova et al., 2007) (Addgene

Plasmid 35687), pTriEx-mCherry-ZdkI and pTriEx-NTOM20-LOV2 (Wang et al., 2016) (Addgene Plasmids #81057 and #81009) plas-

mids were obtained from Addgene. XL10-Gold� Ultracompetent Cells (Agilent Technologies) were used for transformation of all

newly generated plasmid constructs.

Microscopy and chemo-optogenetics
TIRF microscopy was performed primarily on an Olympus IX-81 microscope, equipped with a TIRF-MITICO motorized TIRF illumi-

nation combiner, an Apo TIRF 603 1.45 NA oil immersion objective and a ZDC autofocus device. On this setup, a quadruple band-

pass dichroic mirror (U-M3TIR405/445/514/561, Olympus, Hamburg) was combined with Semrock Brightline emission filters (HC

520/35 and HC 629/53, AHF Analysentechnik, T€ubingen), a 405 nm CellR diode laser (100 mW), a 445 nm CellR diode laser (200

mW), a 514 nm OBIS diode laser (150 mW) (Coherent, Inc., Santa Clara, USA) or the 514 nm line of a 400 mW Argon ion laser (model

# 543-A-A03, Melles Griot, Bensheim, Germany), and a 561 nmCellR diode laser (100mW). Photouncaging was performed using the

405 nm laser, which was focused to a spot via the FRAP mode of the TIR-MITICO motorized TIRF illumination combiner. Photoun-

caging was performed for 400 ms at 180 nW; laser power was measured at the 60x objective. As the perturbation is irreversible, only

one pulse was applied to each cell. For detection, an EMCCD camera was used at medium gain without binning. In some experi-

ments, TIRF microscopy was performed on an Eclipse Ti-E (Nikon) inverted microscope with a motorized TIRF Illuminator Unit, an

AOTF Laser Combiner and an iXon3 897 single photon detection EMCCD camera. Laser lines used for excitation of EGFP and

mCherry were 488 nm and 561 nm, respectively. Images were acquired using an Apo TIRF 100 3 1.49 NA oil immersion objective

(Nikon) with an EM-Gain of 50-100 and 2x2 binning. A dual bandpass dichroic mirror (zt488/561rpc) was used in combination

with a CSU Quad Dichroic mirror/emission filter set (405/488/568/647 nm). Acquisition was controlled by Andor IQ Software. Both

microscopes are equipped with temperature-controlled incubation chambers. Time-lapse live-cell microscopy experiments were

carried out at 37�C in CO2-independent medium (HBSS buffer, 10% FBS, 2 mM L-Glutamine, 10 mM HEPES, 1 mM MgCl2,

1 mM CaCl2) with indicated frame rates.
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Simplified molecular activity painting
Molecular activity painting was described in detail previously (Chen et al., 2017). Here, we describe a simplified variant that achieves

similar results. In particular, the complexity of the surface immobilization procedure was simplified significantly (see also Figure S2).

Here, we coat glass-bottom dishes (8-well LabTek I, VWR) with 0.1% poly-L-lysine hydrobromide (Sigma-Aldrich) at 4�C over night,

followed by washing 3 times with DPBS. Adsorbed poly-L-lysine was biotinylated using 1 mg/ml EZ-Link Sulfo-NHS-Biotin (Fisher

Scientific) (dissolved in DPBS) for 60 min at room temperature. Subsequently, two solutions were prepared on ice: 1) a streptavidin

solution containing 2 mL streptavidin (Serva) (1 mg/ml), 1 ml streptavidin Alexa Fluor 750 (0.1 mg/ml) (Life Technologies) and 12 ml

DPBS, and 2) an antibody solution containing 3 ml biotin-labeled anti-VSVG-antibody (1 mg/ml, ab34774, Abcam) and 12 ml

DPBS. After washing the dish 3 times with DPBS, all the remaining DPBS was aspirated from the glass surface of the dish. The

two solutions were quickly mixed and individual drops of this solution (�2 ml) were added onto the dry dish glass surface to create

small circular patterns with a diameter of 1-2mm. After incubation for 2 min the dishes were washed 3 times with DPBS and stored at

4�C with DPBS until cells were added on the same day. This simplified procedure avoids the use of time-consuming specialized co-

valent DNA surface modification techniques and specialized reagents for DNA-directed immobilization, such as DNA-modified

Streptavidin. The fluorescence signal of streptavidin Alexa Fluor 750 facilitated identification of antibody functionalized areas.

Transfected U2OS cells were detached by 20-30 min incubation with 10 mM EDTA (in DPBS, pH 7.4) to avoid digestion of extra-

cellular artificial receptor domains by trypsin. The cell suspensionwaswashedwith serum-freemedia by centrifugation, followed by a

second centrifugation step and resuspension in serum-free media and plating onto the antibody-functionalized glass bottom-dishes.

After 30 min at 37�C and 5% CO2 the same volume of 20% FBS (Pan Biotech) containing media was added carefully and cells were

allowed to attach for additional 6 h. Covalent labeling for chemo-optogenetic perturbation was performed by incubation with 10 mMof

the Nvoc-TMP-Cl photocaged chemical dimerizer (Chen et al., 2017) in HEPES-stabilized imagingmedium for 60min. Excess photo-

dimerizer was removed by three consecutive wash steps with HEPES-stabilized imaging medium and a fourth wash step after an

additional 30 min incubation time.

Optogenetic tuning of cytosolic GEF-H1
To control the cytosolic concentration of GEF-H1 in living cells, we used the LOVTRAP system, which was described previously

(Wang et al., 2016). In the original method, single pulses at 445nm of varying intensity and duration were used to dissociate the inter-

action between amitochondria-targeted LOV domain and a cytosolic protein of interest fused to the dark-state binding domain Zdk1.

Here, we used a 100x neutral density filter to reduce the intensity of 422-432 nm light from theMT20 halogen lamp illumination system

(Olympus) to enable gradual release of GEF-H1 (C53R) fused to Zdk1 into the cytosol with continuous illumination. To control the level

of GEF-H1 release, we increased the output of the halogen lamp between 0% and 100% (5.33 mW) in 8 steps of 400 s via the auto-

mated filter wheel built into the MT20 device. GEF-H1 release into the cytosol was monitored by measuring the minimum intensity of

the TIRF signal. Intensity measurements via TIRF were variable in subsequent experimental repetitions. Therefore, for analysis that

included multiple cells (Figures 3F and S4E), the minimum intensity of the epifluorescence signal was measured in a cell region that

was devoid of dense mitochondria structures or the nucleus. Please note that EGFR-GEF-H1 C53R levels shown in Figures 2K and

S3E were obtained by a distinct experimental setup and therefore cannot be compared as absolute values with cytosolic GEF-H1

signals shown in panels Figures 3C–3F.

The original pTriEx-NTOM20-LOV2 construct had a tendency to generate aggregates, which made it difficult to achieve efficient

recovery of Zdk1-GEF-H1 back to mitochondria. We therefore used an optimized LOVTRAP construct (pTriEx-NTOM20-CCL-

moxBFP-CCL-LOV2) for the reversible release of GEF-H1 into the cytosol. Using this optimized construct, recovery of Zdk1-GEF-

H1 back to mitochondria was observed in �50% of all cells (16 of 31 cells from three independent experimental repetitions). Cells

that did not show a recovery were excluded from the analysis shown in Figure S4E. For release of Zdk1-GEF-H1, cells where illumi-

nated for 30 min with 57% (2.95 mW) output of the halogen lamp, followed by 10min with 3 steps of decreasing intensities and 33min

with 0% intensity for recovery (in Figure S4 intensities were normalized to 100%).

Theoretical methods
Minimal ODE model and parameter estimation

The activation and inactivation of Rho is well-known to be mediated by enzymatic reactions that are catalyzed by guanine nucleotide

exchange factors (GEFs) and GTPase activating proteins (GAPs) (Hodge and Ridley, 2016), which we implemented via Michaelis-

Menten kinetics. The inactive Rho-GDP form resides primarily in the cytosol and active Rho-GTP is primarily localized at the plasma

membrane (Garcia-Mata et al., 2011). To keep the number of components minimal, we do not explicitly implement additional mech-

anisms that are involved in Rho GTPase regulation, such as RhoGDI-mediated shuttling between the active and inactive populations

(Garcia-Mata et al., 2011). Activation and inactivation of Myosin (non-muscle Myosin-IIa, MYH9) is mediated by a multi-step enzy-

matic cascade that involves several kinases, phosphatases, and actin polymerization (Riento and Ridley, 2003). To simplify this com-

plex cascade, we approximated it by a single activating and a single inactivating Michaelis-Menten process. The motor domain of

Myosin can bind to the DH domain of GEF-H1 and thereby inactivate the nucleotide exchange activity of this GEF (Lee et al.,

2010). This closes a negative feedback loop that can inhibit Rho activation by GEF-H1. As this process is based on a simple inter-

action, it was implemented by non-enzymatic mass action kinetics. An additional, negative feedback loop that could be mediated by

Myo9b (MYO9B) (Graessl et al., 2017) is not likely to play a major role in our model system (U2OS cells), as the endogenous expres-
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sion levels of Myo9b (�500 molecules/cell) and its close relative Myo9a (< 500 molecules/cell) are very low, while Myosin-IIa is ex-

pressed at a very high level (1.24*106 molecules/cell) (Beck et al., 2011). Finally, the activation of GEF-H1 by active Rho via plasma

membrane recruitment, which closes a positive feedback loop, is based on the interaction between active Rho and the GEF-H1 PH

domain (Figure 1). Therefore, this causal relationship is implemented by non-enzymatic mass action kinetics.

On the basis of the biochemical reaction scheme, which is summarized in Figure 2A, we formulated a system of three ordinary dif-

ferential equations for the variables R(t), G(t), and M(t), that correspond to the active, plasma membrane associated form of RhoA,

GEF-H1, andMyosin, respectively. Time is represented by t. In the absence of stochastic noise or spatial inhomogeneity, this system

can be postulated as:

dR

dt
=

k1G$ðRT � RÞ
Km1 + ðRT � RÞ �

k2$R

Km2 +R
(Equation 1)
dG

dt
= k3ðGT �GÞ$R� k4G$M (Equation 2)
dM

dt
=

k5R$ðMT �MÞ
Km5 + ðMT �MÞ �

k6$M

Km6 +M
(Equation 3)

GT, RT and MT are the total concentrations of GEF-H1, Myosin and RhoA, k1 to k6 are rate constants and Km1, Km2, Km5 and Km6, are

Michaelis constants. Total concentrations of GEF-H1 (GT), RhoA (RT) and Myosin (MT) correspond to the sum of the active, plasma

membrane-associated and inactive, cytosolic forms and are assumed to be constant over time. Values for these total concentrations

in U2OS cells weremeasured previously (Beck et al., 2011). We varied the total concentration of GEF-H1 (GT), which was used as a key

bifurcation parameter, both analytically and experimentally. The range of GEF-H1 concentrations spanned low levels that are compa-

rable to measured endogenous expression levels of GEF-H1 and related Lbc-types GEFs in U2OS cells (Beck et al., 2011), up to high

levels that correspond to increased exogenous expression driven by a strong promoter.

The remaining model parameter values were obtained by a Bayesian fitting approach (Campillo-Funollet et al., 2019; Turkmann

et al., 2019). This allows us to estimate and infer the probability distribution for themodel parameters on the basis of both prior knowl-

edge and experimental observations. A sample from this probability distribution is a set of parameters for the ODE system. In this

work, it is a distribution in an eleven-dimensional space. To evaluate it, we need to solve theODE system and compute the probability

of representing the experimental data with this distribution of parameters. Therefore, it is difficult to perform this directly—as one

would do for instance with a one-dimensional Gaussian, by simply computing the density function. An alternative is to use Markov

Chain Monte Carlo (MCMC) approaches, which can be used to generate samples from a distribution. This approach takes a large

number of samples and generates a histogram, instead of representing the density function. MCMC constructs a chain of parameter

sets that overall follow the distribution of interest. The classical MCMCworks by generating candidate parameter sets from the prior,

and accepting or rejecting them by comparing their relative probabilities. The validation of the samples is done in two steps: first,

each chain is checked for convergence, by taking subsamples of the chain and checking that the mean is the same; second, we pro-

duce several chains, and compare them with each other in a similar fashion.

Here, we estimated the probability distribution for the unknownmodel parameters given the experimental measurements shown in

Table S1. As prior knowledge, we assumed reasonable ranges for all unknown parameters and represent our initial uncertainty about

these parameters as uniform distributions. For any given parameter set that we randomly sampled from these distributions, we first

analyzed the stability of the ODE system steady state and discarded parameter sets that did not generate oscillations when

increasing GT. Therefore, we used a constrained uniform prior. We approximated the posterior distribution for the parameters using

a parallelized MCMC that allows solving many instances of the ODE system in parallel in a High-Performance Computing (HPC) envi-

ronment (Campillo-Funollet et al., 2019). We verified the convergence of the algorithms by running 15 independent chains with

random initial values. All chains converged in mean to the same values, and exhibit comparable second moments. Therefore, we

conclude that the optimal set of parameter values is unique. To perform the posterior analysis, we removed the initial 10% of sam-

ples—about 105 samples—and thinned the rest of the chain to obtain 104 independent values. We computed the most probable

values, i.e., the modes of the posterior distributions, and credible regions for the parameters by finding regions that contain 95%

of the probability mass (Table S3). Posteriori analysis also showed that all chains converged to the same modes. As we add an addi-

tional constraint to the prior distributions (see above), the highest probability for many parameters is not centered in the interval, but

instead near a boundary of the parameter range that can generate oscillations. The initial parameter ranges that were used for fitting

are given in Table S2.

Bifurcation analysis
The ODE system (Equations 1, 2, and 3) that was parameterized by the MCMC approach, was investigated by bifurcation analyses

using the software package XPPauto (XPPauto webpage, http://www.math.pitt.edu/�bard/xpp/xpp.html). The bifurcation diagram

for Rho shown in Figure 2I provided the estimations for maximal and minimal concentrations of active Rho in the oscillatory regime

(0.00 to 0.34 3 106 molecules/cell), which are shown in Table 1. The maximal concentration of inactive Rho was obtained by
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subtracting the minimal concentration of active Rho from the total Rho concentration (RT). The values for the minimal and maximal

concentrations of active Myosin (0.03 to 0.243 106 molecules/cell) and the maximal concentration of inactive Myosin were obtained

from an analogous bifurcation diagram for the Myosin component and from the total Myosin concentration (MT).

Simulation of the SDE system
To investigate the influence of partially stochastic biochemical and/or mechanical inputs into the Myosin component, we extended

Equation 3 of the ODE system described above by an additive noise term s dW(dt). The resulting system of stochastic differential

equations (SDE) is defined by the following equations:

dR =

�
k1G$ðRT � RÞ
Km1 + ðRT � RÞ�

k2$R

Km2 +R

�
dt (Equation 4)
dG = ðk3ðGT �GÞ $R� k4G $MÞdt (Equation 5)
�

dM=

k5R$ðMT �MÞ
Km5 + ðMT �MÞ �

k6$M

Km6 +M

�
dt + s$dW

with : dW = r$
ffiffiffiffiffi
dt

p
:

(Equation 6)

Here, r are normally distributed random numbers with mean value 0 and standard deviation of 1. s corresponds to the term Noise-

Myosin andwas set between 0 (no noise) and 0.0025. All other parameters were kept identical to theODE system Equations 1, 2, and 3.

Simulations were performed by the Euler-Maruyama method (Platen, 1999), which calculates the change in the active Rho, GEF and

Myosin components with discrete, constant time steps. In our simulations, we used a time step of 0.05 s. To prevent noise-driven

crossing of variables below the value 0, an adaptive time step algorithm was used that reduced the time step by 50% until positive

numbers were obtained.

Cellular automata simulations
The spatio-temporal simulations were performed using cellular automata as described previously (Schmick et al., 2014). In this model

we consider a 2-dimensional surface that represents local subcellular regions of the plasma membrane and the cytosol. This surface

is subdivided into discrete spatial regions that are referred to as ‘‘cells.’’ We consider reactions between the system components

inside each individual cell, and their diffusion by simulating mass transfer between cells. Simulations were initialized with a homoge-

neous distribution of reaction components, with a low-level of noise that was added to each cell. Simulations were performed in a

100 3 100 cell array corresponding to 50mm x 50mm, with a time step of 0.25 s and cyclic boundary conditions. Reactions were im-

plemented using the same equations used for the SDE model above, with the modification that inactive and active species were im-

plemented separately with corresponding terms for their diffusion, resulting in the following equations:

dRactive =

�
k1Gactive$Rinactive

Km1 +Rinactive

� k2$Ractive

Km2 +Ractive

+ DR;active $V
2Ractive

�
dt (Equation 7)
dGactive =
�
k3Ginactive $Ractive � k4Gactive $Mactive + DG;active $V

2Gactive

�
dt (Equation 8)
dMactive =

�
k5Ractive$Minactive

Km5 +Minactive

� k6$Mactive

Km6 +Mactive

+ DM;active $V
2Mactive

�
dt + s$dWt (Equation 9)
dRinactive = �
�
k1Gactive$Rinactive

Km1 +Rinactive

� k2$Ractive

Km2 +Ractive

+ DR;inactive $V
2Rinactive

�
dt (Equation 10)
dGinactive = � �
k3Ginactive $Ractive � k4Gactive $Mactive + DG;inactive $V

2Ginactive

�
dt (Equation 11)
dMinactive = �
�
k5Ractive$Minactive

Km5 +Minactive

� k6$Mactive

Km6 +Mactive

+DM;inactive$V
2Minactive

�
dt � s$dWt

with : dWt = r$
ffiffiffiffiffi
dt

p
:

(Equation 12)
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Here, DR,active, DR,inactive, DG,active, DG,inactive, DM,active and DM,inactive are the diffusion coefficients for the active, plasma membrane-

associated and the inactive cytosolic states of the Rho GTPase, GEF-H1 and Myosin components. For simplification, we assumed

that the cytosolic species are always inactive and plasmamembrane-associated species are always active. The diffusion coefficients

of the active plasma membrane-associated and inactive cytosolic Rho species were based on previous measurements of Rho

mobility (Weitzman, 2013). Here, the predominant, fast diffusing fractions were used (inactive Rho D = 9.28 mm2/s; active Rho D =

0.28 mm2/s). Experimental data were also available for the diffusion of a cytosolic non-muscle Myosin-II isoform (NMY-2; D =

0.9 mm2/s) (Petrásek et al., 2008). In that study, plasmamembrane-associatedMyosin-II did not show typical diffusive behavior, how-

ever, its measured mobility was much lower compared to the cytosolic Myosin-II isoform (Petrásek et al., 2008). In our experiments,

Myosin dependent contractile flow points toward the highest Myosin concentrations and thus operates opposite to diffusion. We

therefore used a very slow diffusion coefficient for the plasma membrane-associated Myosin component (D = 0.03 mm2/s). Diffusion

of GEF-H1 in the cytosol was measured using fluorescence correlation spectroscopy (FCS) as described earlier and found to be

indistinguishable from diffusion of cytosolic Rho. Diffusion of plasma membrane-associated GEF-H1 was assumed to be similar

to diffusion of plasma membrane associated RhoA due to their interaction. In these simulations, the non-negativity of solutions is

enforced.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of signal network dynamics in cells
Kinetics of Rho, GEF or Myosin fluorescence signal changes after perturbations via chemo-optogenetics were measured at the local

perturbation region as described previously (Chen et al., 2017). The fluorescence signal profiles of the measured perturbation and

response signals shown in Figures 2D and S3D are normalized to minimum and maximum values, and therefore absolute amounts

of signals cannot be compared.

As unbiased measures for local signal network dynamics in all central regions of the cell attachment area, we determined the

average peak amplitude and the standard deviation of local Rho signal using ImageJ as described previously (Graessl et al.,

2017). The coefficient of variation of interpeak distance of Rho activity pulses in U2OS cells was determined using MATLAB and Im-

ageJ via a similar, unbiased approach. In brief, image sequences were obtained at a frame rate of 3 per minute and scaled down by a

factor of 15 using the averaging command in ImageJ to reduce noise. Individual cells in image sequences were isolated, masked, and

corrected for background intensity. The peripheral pixels were removed using a single application of the binary erode filter with neigh-

borhood count of 1 to avoid measurements of signal changes that originate from dynamic cell protrusion and to perform analysis of

signal dynamics in central cell attachment areas. In each pixel, intensity changes were determined over time and analyzed as follows:

The baseline was corrected by fitting and subtracting a 6-th order polynomial. Peaks were identified in baseline corrected time series

using the MATLAB findpeaks function with a prominence threshold of 40% of the maximum and minimum values of the timeseries.

Only time series that contain at least 10 peakswere included in the subsequent analysis. To obtain the coefficient of variation, the time

interval between subsequent, detected peaks was determined and the standard deviation of all intervals was divided by its mean

value. The oscillation frequency was also measured in each pixel of the masked and scaled down image sequences by applying

the fast Fourier transform function fft that is built into MATLAB. The corresponding GEF-H1 expression levels were measured by

calculating the average of the widefield signal in the entire cell at the start and the end of the video.

Analysis of dynamics in simulations
The baseline of simulations converged to a stable average value, and therefore correction via polynomial fitting was not necessary.

Instead, peaks were directly identified in the raw time series using the MATLAB findpeaks function with a prominence threshold of

10% of the maximum and minimum values of the timeseries. Detected peaks were used to determine the coefficient of variation of

interpeak distance, as well as the average and maximal peak amplitude. The spatial width of Rho activity pulses in cellular automata

simulations weremeasured using the ICSMATLAB image correlation spectroscopy functions (https://github.com/stevekochscience/

Image-Correlation-Spectroscopy). In brief, the 2D image correlation functions were calculated using corrfunction for each frame of a

100x100 pixel time series, and themean correlation functionwas determined by averaging each pixel of the resulting correlation func-

tions. The center pixels were selected via the autocrop function and fitted to a 2DGaussian using the gaussfit function. The average of

the two fitted sigma values was calculated and the full width at half maximum was determined by multiplying the average sigma with

2 3 sqrt(2 3 ln2).

Statistical Analysis
All statistical analyses were computed using Prism (GraphPad). Plots were generated with Prism or XPP (XPPauto webpage, http://

www.math.pitt.edu/�bard/xpp/xpp.html). Image panels were prepared with ImageJ (Rasband, W.S., ImageJ, U. S. National Insti-

tutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997–2018.). The type of statistical tests, number and type

of repeats, precision measures, and significance levels are indicated in the respective figure legends.
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Supplemental	Information	
	
Supplemental	Figures:	
	

	
Supplemental Figure 1 (related to Figure 1): Direct investigation of Rho-dependent GEF-H1 
plasma membrane recruitment. A: Quantification of the RhoA plasma membrane recruitment 
and Rho activity sensor/GEF-H1 co-recruitment. B: Quantification of GEF-H1 PH domain co-
recruitment with active RhoA Q63L. F539A/I541E: PH domain mutant that is deficient in its 
interaction with active Rho.  (A-B: % increase above average intensity before photoactivation at 
t=0s with standard error of the mean (SEM); n ≥ 14 (A) or n ≥ 21 (B) cells from three experiments; 
****, P ≤ 0.0001; ***, P ≤ 0.001; **, P ≤ 0.01; *, P ≤ 0.05; paired t test before and 10 s after 
photoactivation); 
 

 



 
Supplemental Figure 2 (related to Figure 2): Schematic summary of improved “Molecular 
Activity Painting” technique to acutely introduce stable perturbations at the plasma 
membrane of living cells. A: Experimental workflow and time considerations. B: Schematics for 
step-wise construction of perturbation system. This figure was created using Servier Medical Art 
templates, which are licensed under a Creative Commons Attribution 3.0 Unported License; 
https://smart.servier.com  



 
Supplemental Figure 3 (related to Figure 2): Rho activity and myosin cell cortex recruitment 
response to Lbc-type GEF perturbation. A: TIRF images of immobilized GEF-H1 C53R 
perturbation and Myosin response (see also Video 2). B-C: TIRF images of immobilized LARG 
perturbation and Rho activity sensor (B) or Myosin (C) response (see also Video 2). D: Kinetics of 
Rho activity sensor and Myosin cell cortex recruitment response to acute chemo-optogenetic LARG 
perturbations (n ≥ 23 cells from three experiments, mean with SEM). E: Dependence of Rho 
activity dynamics on the effective cytosolic concentration of GEF-H1 C53R. Activity dynamics 
were measured by determining the standard deviation of the local Rho activity sensor signal (n=124 
cells from three experiments; mean and SEM; One way ANOVA, Dunnett’s post test, *: P<0.05, 
****: P<0.0001). % indicates percentage of mean intensity. Scale bars: 10μm.  



 
Supplemental Figure 4 (related to Figure 3): GEF-H1 concentration-dependent switching of 
Rho activity dynamics by reversible optogenetic tuning. A-D: Analysis of two representative 
cells that demonstrate either reversible activation (A,B) or reversible saturation (C,D) of Rho 
activity dynamics during subsequent increase and decrease of the effective cytosolic concentration 
of GEF-H1 via photoactivation (PA) of the LOVTRAP system. A,C: Top: TIRF images of 
mCherry-Zdk1-GEF-H1(C53R) and the Rho sensor (see also Video 5). Bottom: Kymographs 
corresponding to green arrows in top panel. Yellow arrows point to Rho activity pulses or Rho 
activity waves. B,D: Cytosolic mCherry-Zdk1-GEF-H1(C53R) levels obtained as the minimum 
signal in green boxed regions in A or C, and measurements of the Rho activity sensor signal over 
the time course of the experiment. E: Local standard deviation of Rho activity signals at low (<300) 
or high (>300) levels of mCherry-Zdk1-GEF-H1(C53R) from all analyzed cells (n = 16 cells from 
three experiments, mean and SEM; unpaired t-test, *: P<0.05). Columns represent the change of the 
average local standard deviation of Rho activity signals induced by the release of GEF-H1 from 
mitochondria (comparing the time ranges -5 to 0 min before PA with 25 – 30 min during PA) or 
induced by the recovery of GEF-H1 to mitochondria (comparing the time ranges 25 – 30 min 
during PA with 25 – 30 min after PA). % indicates percentage of mean intensity. PA: 
photoactivation. Scale bars: 10μm.  



Supplemental tables 	
 
 
Experimental measurement Measured values 
GEF-H1 perturbation rate constant 
(mono-exponential fit to grey 
curve in Figure 2D)  
 

0.0789 +/- 0.006 s-1 (with Rho sensor; left 
panel) 
0.0397 +/- 0009 s-1 (with Myosin; right panel) 

Rho and Myosin response kinetics 
 

Simulations were fitted to all time points shown 
in Figure 2D 

Period of Rho activity pulses 
 

248 +/- 95 s (n=10 cells; in the presence of 
active GEF-H1 C53R, this work) 

Time shift Myosin after Rho 
 

39.5 +/- 14.7 s (n=37 cells; Graessl et al.) 

Time shift Rho after GEF-H1 2.5 +/- 5.6 s (n=68 cells; Graessl et al.) 
 
 
Supplemental Table 1: Experimental data used to parameterize the ODE system (related to 
Figure 2). The ODE system is given in Eq.(1-3). 
 
	 	



Parameter  Lower bound 
for fitting 

Upper bound for 
fitting 

Concentrations 

in 106 molecules/cell: 
 

  

GT (oscillatory regime) 0.142 20 
GT (perturbation/Rho response) 0.0142 1 

GT (perturbation/Myosin response) 
 

0.0142 1 

RT (all regimes; fixed value based on12) 0.443 0.443 
MT (all regimes; fixed value based on12) 1.24 1.24 

 
 

  

Rate constants: 
 

  

k1/Km1 in s-1(106 molecules/cell) -2 0.316 31.6 
k2/Km2 in s-1(106 molecules/cell) -1 0.15 150 
k3 in s-1(106 molecules/cell) -2 0.15 15 
k4 in s-1(106 molecules/cell) -2 0.015 15 
k5/Km5 in s-1(106 molecules/cell) -2 0.005 5.00 
k6/Km6 in s-1(106 molecules/cell) -1 0.000844 2.67 
   

 
Michaelis constants 
in 106 molecules/cell: 
 

  

Km1 0.0475 47.5 
Km2 0.01 10 
Km5 0.003 3.00 
Km6 0.0563 5.63 
 
 
Supplemental Table 2: Parameters of the ODE system and their prior distributions for fitting 
to experimental data (related to Figure 2). The ODE system is given by Eq.(1-3). The 
distributions are defined by the given ranges with equal probability. 
 
 
 
 
 
 
  



 
Physical parameter Estimated 

value (mode 
of 
distribution) 

95% lower 
bound 

95% upper 
bound 

Total concentrations 

in 106 molecules/cell: 
 

   

GEF-H1 (GT); 
oscillatory regime 

0.179 0.178 4.64 

GEF-H1 (GT); 
perturbation regime; 
Rho response 

0.0858 0.0491 0.175 

GEF-H1 (GT); 
perturbation regime; 
Myosin response 

0.233 0.0203 0.234 

Rho (RT); all 
regimes; fixed value 
based on12 

0.443   

Myosin (MT); all 
regimes; fixed value 
based on12 

1.24   

 
 

   

Rate constants: 
 

   

k1/Km1 in s-1(106 
molecules/cell) -1 

3.88 1.09 5.37 

k2/Km2 in s-1 2.04 0.880 3.83 
k3 in s-1(106 
molecules/cell) -1 

1.19 0.723 3.34 

k4 in s-1(106 
molecules/cell) -1 

3.98 3.97 14.9 

k5/Km5 in s-1(106 
molecules/cell) -1 

0.417 0.074 0.718 

k6/Km6 in s-1 0.00509 0.000904 0.00510 
    

 
Michaelis constants 
in 106 molecules/cell: 
 

   

Km1 2.42 0.0886 2.43 
Km2 0.0745 0.0741 0.564 
Km5 0.014 0.00733 0.0658 
Km6 0.786 0.258 1.83 
 
 
Supplemental Table 3: Parameters of the ODE system and their estimations obtained via 
fitting to experimental data (related to Figure 2). The ODE system is given by Eq.(1-3). The 
values correspond to the mode of the posterior distribution. The lower and upper bounds correspond 
to the highest posterior density region, containing 95% of the posterior probability mass. 
 


	CELREP108467_annotate_v33i9.pdf
	Optogenetic Tuning Reveals Rho Amplification-Dependent Dynamics of a Cell Contraction Signal Network
	Introduction
	Results
	Direct Experimental Investigation of Rho Amplification
	Derivation and Parameterization of a Quantitative Temporal Model for Cell Contraction Signal Network Dynamics
	Model Predictions: Dependence of System Dynamics on the Concentration of the Feedback Mediator GEF-H1
	Switching of Cell Contraction Signal Network Dynamics in Single Cells by Optogenetic Tuning of the Cytosolic GEF-H1 Concent ...
	Influence of External Inputs into the Myosin Component on Rho Activity Dynamics
	Spatial Patterning of Rho Activity Dynamics Is Dependent on Slow Diffusion of Membrane-Associated GEF-H1

	Discussion
	Rho Activity Amplification Mediated by Lbc-type RhoGEFs
	Simplifications in the Core Signal Network
	Emergence of Spatiotemporal Cell Contraction Patterns
	Sensitivity of Cell Contraction Signal Network Dynamics to External Inputs

	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Resource Availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental Model and Subject Details
	Cell culture

	Method Details
	Transfection and pharmocological treatments
	Plasmid construction
	Microscopy and chemo-optogenetics
	Simplified molecular activity painting
	Optogenetic tuning of cytosolic GEF-H1
	Theoretical methods
	Minimal ODE model and parameter estimation

	Bifurcation analysis
	Simulation of the SDE system
	Cellular automata simulations

	Quantification and Statistical Analysis
	Analysis of signal network dynamics in cells
	Analysis of dynamics in simulations
	Statistical Analysis





