Supplementary Information

Analysis of microbial compositions: A review of normalization and differential abundance analysis

Lin et al.

Supplementary Notes

Simulation settings

Fig. 3

- (a) Nominal level = 0.05
- (b) Number of simulations = 1
- (c) Sample size: $n_1 = n_2 = n_3 = 30$
- (d) Number of taxa: m = 200
- (e) Proportion of differentially abundant taxa = 25%
- (f) Proportion of structure zeros = 0% out of non-differentially abundant taxa
- (g) Absolute abundance in the ecosystem: $\log A_{ij} = b_0 + b_i^T x_j + e_i$.
 - (i) $b_0 = \log 50$ represents low abundant taxa, $b_0 = \log 200$ represents medium abundant taxa, and $b_0 = \log 10,000$ represents high abundant taxa. The proportions of low, median, and high abundant taxa are set to be 60%, 30%, 10%
 - (ii) $x_j = (x_{j1}, \ldots, x_{jp})^T$ are covariates for the j^{th} sample; $b_i = (b_{i1}, \ldots, b_{ip})^T$ are the corresponding coefficients for x_j . b_i are set to follow U(0.1, 1) \cup U(1, 10) for differentially abundant taxa
 - (iii) $e_i \sim N(0, \frac{1}{exp(b_0)})$
- (h) Observed abundance from a sample:
 - (i) Library sizes across samples: $O_{j} = p_j \max(A_{j})$, where $p_j \sim \frac{1}{U(5,10)}$
 - (ii) $O_{ij} \sim \text{BIN}(O_{j}, \gamma_{ij} = \frac{A_{ij}}{A_{j}})$

Fig. 4

Simulation settings are the same as Fig. 3 except that:

- (b) Number of simulations = 100
- (c) Sample size: $n_1 = n_2 = 30$
- (e) Proportion of differentially abundant taxa = 5%, 15%, 25%
- (f) Proportion of structure zeros = 20% out of non-differentially abundant taxa
- (h) Observed abundance from a sample:
 - (i) Library sizes across samples: $O_{j} = p_j \max(A_{j})$, where $p_j \sim \frac{1}{U(10,50) \cup U(100,500)}$

(ii)
$$O_{ij} \sim \text{BIN}(O_{j}, \gamma_{ij} = \frac{A_{ij}}{A_{j}})$$