Supplementary Information

A human tissue map of 5-hydroxymethylcytosine exhibits tissue specificity through gene and enhancer modulation

Xiao-Long Cui^{1,2,7}, Ji Nie^{1,2,7}, Jeremy Ku^{3,7}, Urszula Dougherty⁴, Diana C. West-Szymanski^{2,4}, Francois Collin³, Christopher K. Ellison³, Laura Sieh^{1,2}, Yuhong Ning³, Zifeng Deng⁴, Carolyn W.T. Zhao^{1,2}, Anna Bergamaschi³, Joel Pekow⁴, Jiangbo Wei^{1,2}, Alana V. Beadell^{1,2}, Zhou Zhang⁵, Geeta Sharma⁶, Raman Talwar³, Patrick Arensdorf³, Jason Karpus^{1,2}, Ajay Goel⁶, Marc Bissonnette⁴, Wei Zhang⁵, Samuel Levy³, Chuan He^{1,2,*}

¹Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA

²Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA

³Bluestar Genomics Inc., San Diego, CA, USA

⁴Department of Medicine, University of Chicago, Chicago, IL, USA

⁵Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

⁶City of Hope Comprehensive Cancer Center, Duarte, CA, USA

⁷These authors contributed equally to this work

*Correspondence: chuanhe@uchicago.edu (C.H.)

Supplementary Figure 1. Quality control of 5hmC-Seal profiles. **a**, Genome browser view of 5hmC genomic distributions at the HOXA gene cluster for each donor of bladder tissue (n = 5) and skin tissue (n = 5). **b**, Density plot showing correlations of 5hmC-Seal data with TAB-Seq data across 2-Mb genomic bins in prostate. ρ represents the Spearman correlation coefficient. **c**, Scatter plots of 5hmC RPKM against CpG numbers across 2-Mb genomic bins in different tissues. R represents the Pearson correlation coefficient.

Supplementary Figure 2. Characteristics of 5hmC peaks. a, Numbers of 5hmC peaks across different tissues. Individual dots on the lines indicate different donor samples. **b**, Saturation curves showing 5hmC peak numbers against uniquely mapped reads for different tissues. **c**, Distributions of p-values and fold enrichments of 5hmC peaks in independent and merged prostate samples. **d**, Conservation status of 5hmC peaks minus control peaks based on PhastCons score. N= 5 biologically independent samples were used (n=4 for hypothalamus and n=6 for sigmoid and transverse colon). For all boxplots, center line represents median, bounds of box represent 25th and 75th percentiles and whiskers are Tukey whiskers. **e**, Top significant motifs under 5hmC peaks across different tissues. **f**, t-SNE clustering of genomic 5hmC distributions on 5hmC peaks for all donor tissue samples. Colored symbols indicate the organ/tissue associated with each 5hmC profile.

Supplementary Figure 3. Distribution patterns of 5hmC and 5mC. a, Methylation level (5mC + 5hmC) distributions across 5hmC peaks in 8 representative tissue types. N = 22,511 high-quality 5hmC peaks were used for colon, n = 35,828 for heart, n = 51,959 for liver, n = 30,063 for lung, n = 77,029 for ovary, n = 57,519 for pancreas, and n = 21,755 for stomach. For all boxplots, center line represents median, bounds of box represent 25th and 75th percentiles and whiskers are Tukey whiskers. **b**, 5hmC signals across different categories of the genome based on bisulfite sequencing. Canyons: DNA methylation canyons; cUMRs: control unmethylated regions; PMD: partially methylated domains; LMR: lowly methylated regions.

Supplementary Figure 4. Tissue-specific genes identified by 5hmC profiles and RNA-Seq. a, Shared membership amongst different tissue-specific 5hmC modified genes. **b**, Fold enrichment of tissue-specific, 5hmC-modified genes with tissue-specific expressed genes from Human Protein Atlas. Bars with black boxes are concordant tissue types from Human Protein Atlas. **c**, t-SNE clustering of expression profiles on gene bodies for all donor tissue samples.

Colored symbols indicate the organ/tissue associated with each expression profile. **d**, Enrichment of our tissue-specific expressed genes via RNA-seq with those defined by Human Protein Atlas project.

-3.0

TSS

RPKM

5

3.0Kb

TES

10

Supplementary Figure 5. Enrichment of 5hmC on tissue-specific genes. a, Overlaps between transcription factor genes and tissue-specific genes defined by 5hmC-Seal or RNA-seq. **b**, Multiclass regression models generated from 5hmC profiles and RNA-seq expression profiles for each of the 19 tissue types. The heatmap shown indicates different probability of model prediction. **c**, Correspondence at the top (CAT) plot showing percentages of gene overlap against top percentages of 5hmC-modified genes and H3K36me3-modified genes. **d**, Heatmaps showing tissue-specific, promoter lowly-methylated genes possessing the highest 5hmC signals in liver and pancreas tissues. Colors indicates RPKM values. TSS, transcription start site. TES, transcription end site.

Supplementary Figure 6. Correlations of 5hmC profiles with other epigenomic data. Scatter plots for 2-Mb bins across the genome are shown.