
Supplemental documents

Figure S1. Isolation and classification of nitrate non-utilising mutants based on resistance to chlorate. For TR₃₄/L98H strain a *nia* (chlorate resistant, nitrate non-utilising, hypoxanthine and nitrite utilising) and for TR₃₄³/L98H a *cnx* (chlorate resistant, nitrate and hypoxanthine non-utilising, nitrite utilising) mutant was selected. A: Chlorate resistant mutants appear as sectors after UV radiation 60s (20 erg/mm²/sec).

B: Master plate of putative chlorate resistant mutants (from top side)

C-F: Growth test of colonies from the masterplate transferred to plates with respectively as single N-source: Urea, Hypoxathine, Nitrite and Nitrate (photograph from back side).

		N-source			
		Ure	Nitrite	Nitrate	Hypoxanthine
Γ	TR34L98H-nia	+*	+	_*	+
	TR ₃₄ ³ L98H-cnx	+	+	-	-

Table S1, The characteristics of chlorate resistant nia and cnx mutants for their ability to utilise urea, hypoxanthine, nitrite and nitrate as sole N-source.

+: growth, -no growth

Table S2. The SNPs calling between the ancestor TR₃₄/L98H (V30-40) and evolved isolate TR₃₄³/L98H. From left to right columns indicate **chromosome number** and **position** on reference genome (clinical strain AF293), **variant type** (ref allele / alternative allele), **genotype** calling (0=similar to reference, 1=alternative, in brackets: read depth of reference allele / read depth of alternative allele) for ancestor and **genotype** calling of evolved isolate (0=similar to reference, 1=alternative, in brackets: read depth of reference, 1=alternative, in brackets: read depth of reference allele / read depth of alternative allele) for ancestor and **genotype** calling of evolved isolate (0=similar to reference, 1=alternative, in brackets: read depth of reference allele / read depth of alternative allele), **gene** and **function** of gene

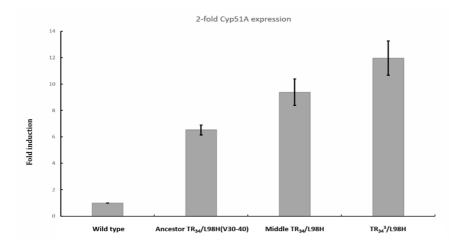

Chromosome number	Position	Variant type (change in nucleotide)	Genotype Clinical ancestor TR ₃₄ /L98H (V30- 40)	Genotype Evolved isolate TR ₃₄ ³ /L98H	Effect of variant	Gene / Function
1	1971284- 1971287	deletion TTCT / -	0 (31/0)	1 (4/23)	Glu314 Frameshift	AFUA_1G06920 Serine / threonine protein kinase/ may involve in growth
2	692713	Snp A / G	0 (51/0)	1 (0/56)	Non- synonymous Leu 147 Pro	AFUA_2G02690 AtrR transcription factor/ plays an essential role in regulating <i>cyp51A</i> expression
4	1560507	Snp C / T	0 (43/ 0)	1 (0/38)	Non- synonymous Leu 636 Phe	AFUA_5G06450 Vacuolar protein sorting protein DigA/ may involve in vacuole organization

Table S3. In vitro azole susceptibility profiles of TR₃₄/L98H, Transient TR₃₄/L98H and TR₃₄³/L98H

		MIC		
Isolate code	Туре	ITR	VOR	POS
V30-40	Ancestor TR ₃₄ /L98H(V30-40)	>16	4	0,5
V284-36	Transient TR ₃₄ /L98H	>16	>16	>8
V284-37	TR ₃₄ ³ /L98H	>16	>16	>8

A difference in resistance to VOR and POS between Transient $TR_{34}/L98H$ and its successor $TR_{34}^3/L98H$ cannot be detected in a MIC assay because both still grew at the highest concentrations of VOR and POS that can be applied.

Expression of *cyp51A* in the TR₃₄³/L98H isolate, was compared with that of the TR₃₄/L98H ancestor, Transient TR₃₄/L98H and a WT control isolate. Transient TR₃₄/L98H harboured two SNPs: the AtrR mutation and another in protein PtaB (Table S4). The level of *cyp51A*-expression of the Transient TR₃₄/L98H isolate was higher than that of the ancestor, but lower than that of TR₃₄³/L98H (Figure S1). These data suggest that the AtrR gene mutation alone could not cause the same expression level of *cyp51A* as TR₃₄³/L98H. Therefore, in the TR₃₄³/L98H, the 12-fold overexpression of *cyp51A* is likely the combined effect of the AtrR mutation and three copies of 34bp.

Figure S2. Expression of *cyp51A* in the TR₃₄³/L98H isolate, compared with ancestry isolates TR₃₄/L98H and Transient TR₃₄/L98H, and a WT control isolate.

Table S4: The gene mutations in TR ₃₄ ³ /L98H and Transient TR ₃₄ /L98H isolate compared with the TR ₃₄ /L98H (V30-
40) ancestor.

	Mutations on gene / function compared to ancestor TR ₃₄ /L98H			
Transient TR34/L98H		Non-synonymousAFUA_2G02690/ Leu24 ProAtrRtranscriptionfactor/playsanessentialroleinregulatingcyp51Aexpression		Non-synonymous AFUA_1G06920 PtaB protein Ser 390 Phe, a lim-domain binding protein in Aspergillus fumigatus which regulates biofilm formation and conidiation through
Evolved TR ₃₄ ³ /L98H	Non- synonymous AFUA_5G06450/ Leu 636 Phe Vacuolar protein sorting protein DigA/ may involve in vacuole organization	Non-synonymous AFUA_2G02690/ Leu 24 Pro AtrR transcription factor/ plays an essential role in regulating cyp51A expression	Glu 314 Frameshift, AFUA_1G06920 Serine / threonine protein kinase/ may involve in growth	distinct pathways