Raman spectroscopic Stratification of Multiple Myeloma patients based on Exosomes profiling

Mario Russo^{1#}, Luca Tirinato^{1#}, Francesca Scionti², Maria Laura Coluccio¹, Gerardo Perozziello¹, Caterina Riillo², Vincenzo Mollace³, Santo Gratteri³, Natalia Malara¹, Maria Teresa Di Martino², Giuseppe Viglietto², Pierosandro Tagliaferri², Pierfrancesco Tassone², Marco Rossi^{2*} and Patrizio Candeloro^{1*}

1. BioNEM (Bio and Nano Engineering for Medicine) Laboratory, Dipartimento di Medicina Sperimentale e Clinica, Università Magna Graecia, 88100, Catanzaro, Italy.

2. Dipartimento di Medicina Sperimentale e Clinica, Università Magna Graecia, 88100, Catanzaro, Italy.

3. Institute of Research of Food Safety & Health (IRC-FSH), Dipartimento di Scienza della Salute, Università Magna Graecia, 88100, Catanzaro, Italy.

These authors equally contributed to the present work

* Corresponding auhtors. Email addresses: patrizio.candeloro@unicz.it (P. Candeloro); rossim@unicz.it (M. Rossi)

Figure S1 – Raman spectrum of Exosome Resuspension buffer

Raman spectrum of Exosome Resuspension Buffer has been measured in order to investigate potential interferences with Raman spectra of Exosome samples from patients.

Figure S1: The buffer present in the miRCURYTM Exosome Isolation Kit and used for the exosome resuspension has been measured and its spectrum is here reported. Negligible Raman signal has been detected, except for a sharp peak at 860cm⁻¹ which is however easily detectable in Raman measurements of exosomes.

Table S1 – Patients list

ID	Sample	Stage	Sex	Age (years)
CI)	MGUS	М	81
LC	GP1	MGUS	М	45
1	CA	MGUS	М	80
20	СВ	MGUS	М	54
22	CN	MGUS	F	76
24	GC	MGUS	М	61
38	SF	MGUS	F	51
48	CR	MGUS	F	53
59	SF	MGUS	F	51
8	VV	MGUS	М	58
12	BT	MGUS	F	63
36	DD	aMM	М	67
35	CL	aMM	F	73
11	VS	aMM	F	55
10	CD	aMM	F	54
IG	r	sMM	М	73
M	F	sMM	F	48
FI		sMM	F	81
A	R	sMM	F	70
SF	7	sMM	F	75
M	С	sMM	F	81
D	LM	sMM	F	61
PF	ł	sMM	М	71
ZF	7	sMM	М	69
EN	N	sMM	F	67
BI)	sMM	М	83
FF	7	sMM	М	69
D	4	sMM	М	90

List of all patients from which exosomes have been extracted. Patient sex, neoplastic stage and age are reported too. The color code is in agreement with the colors reported in the main text.

Figure S2 – Loading curve of rotated PC2

Rotated-PC2 loads, calculated after the rotation of the Principal Components in the PC1-PC2 plane.

Figure S2: Rot.PC2 loading spectrum. It is a 32° counterclockwise rotated PC2 that is able, solely, to discriminate among all the exosome groups. The assignment of most important peaks can be found in the Table S2.

Table S2 – Assignment of the main peaks of the rot.PC2 loadings

Biochemical assignment of the main important peaks present in the rot.PC2 loading spectrum (Fig.S2 above). For the References of SI please see at the end of this document.

Raman (cm ⁻¹)	Shift	Tentative Peak Assignment	Reference in SI
787		Nucleic Acids	[1]
850-86	0	Polysaccharide Structure	[2]
1003		Phenylalanine	[2]
1032		Phospholipid and/or Polysaccharide	[3]
1128		Proteins and/or Ceramides	[2]
1157		β -Carotene Accumulation	[1]
1209		Tryptophan and/or Phenylalanine	[1]
1235-12	285	Proteins and/or Nucleic Acids and/or Lipids	[3]
1316		Nucleic Acids and/or Collagen and/or Guanine	[4]
1335-1	345	Nucleic Acids (Purine Bases) and/or Tryptophan and/or Glycine Backbone and/or Proline Side Chain	[2]
1378		Carbohydrate and/or Nucleic Acids	[4]
1440-1	450	Proteins and/or Lipids	[5]
1490-1	500	Nucleic Acids	[1]
1539		Nucleic Acids	[6]
1560-1	580	Tryptophan and/or Nucleic Acids and/or Proteins and/or Carbohydrates	[7]
1672		Ceramide	[1]

Table S2: Tentative Raman assignment, from literature, of the main peaks in rot.PC2 loadings. In red are reported the peaks downregulated in the sMM EX population, while in black the upregulated ones.

Figure S3 – SERS substrates

Scanning electron microscopy (SEM) picture of SERS substrates

Figure S3: Scanning electron microscopy of SERS substrates. Microdisks containing Au nanoparticles are fabricated by means of optical lithography and Au electroless deposition.

Figure S4 – Raman spectra recorded with 633nm and 830nm excitation wavelengths

Comparison between standard Raman spectra recorded with 633nm and 830nm excitation wavelengths, in order to investigate potential wavelength-dependent effects.

Figure S4: Raman spectra recorded on one of the Multiple Myeloma derived exosomes samples using two different excitation sources at 633nm and 830nm. It can be observed that all the major Raman peaks/bands are the same for the two sources, thus proving that no wavelegnth-dependent effects are present. Moreover some minor spectral features can be better appreciated with the 830nm laser, mainly due to the smaller fluorescence effects arising with IR sources.

References of SI

- 1 Movasaghi, Z.; Rehman, S.; Rehman, I. U., Raman spectroscopy of biological tissues. *Appl. Spectrosc. Rev.* 2007, 42, (5), 493-541.
- 2 Gualerzi, A.; Niada, S.; Giannasi, C.; Picciolini, S.; Morasso, C.; Vanna, R.; Rossella, V.; Masserini, M.; Bedoni, M.; Ciceri, F.; Bernardo, M. E.; Brini, A. T.; Gramatica, F., Raman spectroscopy uncovers biochemical tissue-related features of extracellular vesicles from mesenchymal stromal cells. *Sci. Rep.* 2017, 7, 9820.
- 3 Stremersch, S.; Marro, M.; Pinchasik, B. E.; Baatsen, P.; Hendrix, A.; De Smedt, S. C.; Loza-Alvarez, P.; Skirtach, A. G.; Raemdonck, K.; Braeckmans, K., Identification of Individual Exosome-Like Vesicles by Surface Enhanced Raman Spectroscopy. *Small* 2016, 12, (24), 3292-3301.
- 4 Zhang, P.; Wang, L. M.; Fang, Y. P.; Zheng, D. W.; Lin, T. F.; Wang, H. Q., Label-Free Exosomal Detection and Classification in Rapid Discriminating Different Cancer Types Based on Specific Raman Phenotypes and Multivariate Statistical Analysis. *Molecules* 2019, 24, (16), 2947.
- 5 Yanez-Mo, M.; Siljander, P. R. M.; Andreu, Z.; Zavec, A. B.; Borras, F. E.; Buzas, E. I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; Colas, E.; Cordeiro-da Silva, A.; Fais, S.; Falcon-Perez, J. M.; Ghobrial, I. M.; Giebel, B.; Gimona, M.; Graner, M.; Gursel, I.; Gursel, M.; Heegaard, N. H. H.; Hendrix, A.; Kierulf, P.; Kokubun, K.; Kosanovic, M.; Kralj-Iglic, V.; Kramer-Albers, E. M.; Laitinen, S.; Lasser, C.; Lener, T.; Ligeti, E.; Line, A.; Lipps, G.; Llorente, A.; Lotvall, J.; Mancek-Keber, M.; Marcilla, A.; Mittelbrunn, M.; Nazarenko, I.; Nolte-t' Hoen, E. N. M.; Nyman, T. A.; O'Driscoll, L.; Olivan, M.; Oliveira, C.; Pallinger, E.; del Portillo, H. A.; Reventos, J.; Rigau, M.; Rohde, E.; Sammar, M.; Sanchez-Madrid, F.; Santarem, N.; Schallmoser, K.; Ostenfeld, M. S.; Stoorvogel, W.; Stukelj, R.; Van der Grein, S. G.; Vasconcelos, M. H.; Wauben, M. H. M.; De Wever, O., Biological properties of extracellular vesicles and their physiological functions. *J. Extracell. Vesicles* 2015, 4, 27066.
- 6 Prescott, B.; Steinmetz, W.; Thomas, G. J., Jr., Characterization of DNA structures by laser Raman spectroscopy. *Biopolymers* **1984**, 23, (2), 235-56.
- 7 Yan, Z. B.; Dutta, S.; Liu, Z. R.; Yu, X. K.; Mesgarzadeh, N.; Ji, F.; Bitan, G.; Xie, Y. H., A Label-Free Platform for Identification of Exosomes from Different Sources. ACS Sens. 2019, 4, (2), 488-497.