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SUMMARY
Gain-of-function (GOF) variants in K+ channels cause severe childhood epilepsies, but there are no mecha-
nisms to explain how increased K+ currents lead to network hyperexcitability. Here, we introduce a human
Na+-activated K+ (KNa) channel variant (KCNT1-Y796H) into mice and, using a multiplatform approach, find
motor cortex hyperexcitability and early-onset seizures, phenotypes strikingly similar to those of human pa-
tients. Although the variant increases KNa currents in cortical excitatory and inhibitory neurons, there is an
increase in the KNa current across subthreshold voltages only in inhibitory neurons, particularly in those
with non-fast-spiking properties, resulting in inhibitory-neuron-specific impairments in excitability and action
potential (AP) generation.We further observe evidence of synaptic rewiring, including increases in homotypic
synaptic connectivity, accompanied by network hyperexcitability and hypersynchronicity. These findings
support inhibitory-neuron-specific mechanisms in mediating the epileptogenic effects of KCNT1 channel
GOF, offering cell-type-specific currents and effects as promising targets for therapeutic intervention.
INTRODUCTION

K+ channels play essential roles in regulating the membrane

excitability of neurons, and their dysfunction causes a wide

range of neurological diseases, particularly epilepsy (Köhling

and Wolfart, 2016; Villa and Combi, 2016; Oyrer et al., 2018).

Traditionally, this mechanism has been conceptualized as loss-

of-function (LOF) variants decreasing K+ currents and leading

to neuronal hyperexcitability. Recent human gene discovery ef-

forts, however, have identified novel, neurological-disease-

associated K+ channel variants that increase peak K+ current

magnitudes when expressed in heterologous cells, suggesting

that they are gain-of-function (GOF) variants (Yang et al., 2013;

Syrbe et al., 2015; Simons et al., 2015; Millichap et al., 2017;

Du et al., 2005; Miceli et al., 2015; Lee et al., 2014). Although

these variants have been biophysically characterized, how they

function in neurons and networks to cause hyperexcitability is

unknown (Niday and Tzingounis, 2018).
C
This is an open access article under the CC BY-N
Among K+ channels, variants in the gene encoding the Na+-

activated K+ (KNa) channel KCNT1 (Slack, KNa 1.1) cause a range

of epilepsies, including early infantile epileptic encephalopathies

(EIEEs) (Ohba et al., 2015), malignant migrating partial seizures of

infancy (MMPSI) (Barcia et al., 2012), and autosomal dominant

nocturnal frontal lobe epilepsy (ADNFLE) (Heron et al., 2012;

Møller et al., 2015). These variants increase peak K+ current

magnitude, potentially by increasing the cooperativity (Kim

et al., 2014), enhancing the Na+ sensitivity, increasing the open

probability, and/or shifting the voltage dependence of themutant

KCNT1 channel (Tang et al., 2016; McTague et al., 2018). The

broad-spectrum K+ channel blocker quinidine can normalize

the increased K+ currents caused by pathogenic KCNT1 variants

(McTague et al., 2018; Milligan et al., 2014) and thus has been

tried as a precision therapy to treat KCNT1-associated neurode-

velopmental disease. Although some early caseswere promising

(Bearden et al., 2014), further reports showed limited therapeutic

benefit of quinidine in KCNT1-related epilepsy (Mullen et al.,
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2018; Chong et al., 2016; Fitzgerald et al., 2019), emphasizing

that an understanding of disease mechanisms beyond channel

biophysics is necessary to advance clinical treatment.

In normal neuronal physiology, there is evidence that the KNa

current mediated by KCNT1 can activate in three distinct activity

regimes: during bursts of action potentials (APs) to reduce

neuronal excitability and control interburst timing (Schwindt

et al., 1989; Wallén et al., 2007; Kim and McCormick, 1998;

Yang et al., 2007), after a single AP to increase afterhyperpolari-

zation (AHP) and enhance bursting (Franceschetti et al., 2003;

Liu and Stan Leung, 2004), or at subthreshold voltages to modify

intrinsic neuronal excitability (Martinez-Espinosa et al., 2015; Re-

ijntjes et al., 2019; Hage and Salkoff, 2012). The effect of a

KCNT1GOF variant on neuronal physiology and network activity

would therefore depend on which of these regimes were

affected. Following this, it has been hypothesized that KCNT1

GOF variants lead to network hyperexcitability by (1) acceler-

ating AP repolarization selectively in excitatory neurons, thereby

limiting sodium channel inactivation and causing a higher AP

firing frequency; (2) reducing membrane excitability or inducing

spike frequency adaptation selectively in inhibitory neurons, re-

sulting in disinhibition; or (3) causing developmental alterations

in synaptic connectivity, thus leading to a hyperexcitable

network (Kim and Kaczmarek, 2014; Niday and Tzingounis,

2018; Milligan et al., 2014). To test these hypotheses, we gener-

ated a mouse model with a human-disease-causing GOF variant

in theKcnt1 gene and used amultiplatform approach to identify a

time point, brain region, and neuron type that demonstrated

strong functional alterations. We found that the Kcnt1 variant

selectively increases KNa currents in inhibitory neurons at sub-

threshold voltages to reduce their intrinsic excitability and alters

synaptic connectivity to promote a hyperexcitable and hyper-

synchronous network, thus providing a paradigm for how GOF

variants in K+ channels cause neurodevelopmental disease.

RESULTS

The Kcnt1-Y777H Mouse Model Exhibits Epileptic and
Behavioral Phenotypes Similar to Those of Human
Patients
The genetic variant Y796H (c.2386T >C; p.[Tyr796His]) inKCNT1

has been identified as a heterozygous mutation causing both in-

herited and de novo cases of a severe, early-onset form of ADN-
Figure 1. Homozygous Kcnt1-Y777H Mice Have Frequent, Sleep-Asso

(A) Sanger sequencing chromatograms show theWT (top) and Y777H (bottom) all

DNA from a WT and a Kcnt1m/m mouse.

(B) Diagram of the KCNT1 protein shows location of the Y777H residue.

(C) Western blots show KCNT1 expression in Kcnt1Y777H (WT, Kcnt1m/+, and K

sponding lysates from the Kcnt1 mouse knockout Kcnt1del7 (WT, Kcnt1+/�, and
(D) Representative image shows similar gross morphology of brains dissected fro

shows that brain weight is unaltered by the Y777H variant (WT; n = 3, Kcnt1m/+;

(E) Dot plot shows the combined spontaneous generalized tonic-clonic seizure (G

three genetic backgrounds indicated by shaded dots.

(F) Scatterplot shows that seizures are more likely to occur when lights are on. E

(G1–G3) Representative EEG traces show seizure episodes from B6NJ Kcnt1m

depression (PID) episodes as noted in each panel. The traces shown are differe

electrodes.

See also Figure S1 and Table S1.
FLE (Heron et al., 2012; Mikati et al., 2015). In heterologous sys-

tems, the Y796H variant enhances the Na+ sensitivity of KCNT1

and increases the peak KNa current from 3- to 11-fold over the

WT channel (Tang et al., 2016; Milligan et al., 2014). To model

this KCNT1 GOF variant-associated intractable childhood epi-

lepsy in mice, we introduced a missense mutation (c.2329T >

C) into the endogenous Kcnt1 allele on the C57BL/6NJ (B6NJ)

strain background (Figure 1A). This mutation encodes a Y777H

(p.[Tyr777His]) alteration corresponding to Y796H that lies adja-

cent to the NAD+-binding site of KCNT1 (Figure 1B). We gener-

ated cohorts of wild-type (WT), heterozygous (Kcnt1m/+), and ho-

mozygous (Kcnt1m/m) littermates. Genetic transmission of both

alleles was normal, and no selective lethality was seen in either

mutant genotype at any age. Western blot analysis of membrane

and cytosolic protein fractions isolated from the cortices of WT,

Kcnt1m/+, and Kcnt1m/m mice detected KCNT1 only in the mem-

brane fraction from WT mice, and importantly, levels and locali-

zation of the Y777H variant were unaltered in Kcnt1m/+ and

Kcnt1m/m mice (Figure 1C). Finally, dissected brains from 10-

to 12-week-old Kcnt1m/+ and Kcnt1m/m mice appeared similar

in morphology and size to their WT littermates (Figure 1D), sug-

gesting that expression of the Kcnt1 GOF variant does not

grossly alter brain development.

Patients with KCNT1-associated ADNFLE present with

frequent, often nocturnal seizures with a variety of phenotypes,

including hypermotor, focal with tonic posturing, and secondary

generalized tonic-clonic (Gertler et al., 2018; Mikati et al., 2015;

McTague et al., 2018; Fitzgerald et al., 2019). To test for the pres-

ence of spontaneous seizures, we monitored adult mice

(R7 weeks of age) of each genotype using video electroenceph-

alography (video-EEG) recordings. Epileptiform activity was not

observed in WT (n = 3) or Kcnt1m/+ (n = 8) mice. However, 87%

(13/15) of Kcnt1m/m mice had at least one spontaneous seizure

in an average of 38 h of continuous recording (Figure 1E, black

dots). To test the impact of the Kcnt1 GOF variant on seizure ac-

tivity in a broader genetic context, we performed video-EEG on

WT, Kcnt1m/+, and Kcnt1m/m mice on a mixed background using

an FVB-based partner strain (see STAR Methods). Of the F2 and

N2 hybrid Kcnt1m/m mice, 100% (10/10) had at least one sponta-

neous seizure in an average of 47 h of continuous recording,

whereas seizures were not observed in WT (n = 1) or Kcnt1m/+

(n = 6) mice (Figure 1E, gray and white dots). Thus, although het-

erozygous expression of the Y796H variant is sufficient to cause
ciated, Spontaneous Seizures

eles obtained from direct sequencing of PCR products amplified from genomic

cnt1m/m) P0 cortices following membrane and cytosol fractioning. The corre-

Kcnt1�/�) were used as a negative control.

m 10- to 12-week-old WT, Kcnt1m/+, and Kcnt1m/m littermate mice. Bar graph

n = 4, and Kcnt1m/m; n = 3). Data are represented as mean ± SEM.

TCS) and tonic seizure (TS) frequency in WT, Kcnt1m/+, and Kcnt1m/m mice in

ach dot represents one Kcnt1m/m mouse and is shaded to indicate sex.
/m mice, including GTCS, TS, epileptiform discharges (EDs), and post-ictal

ntial recordings between front left (FL), front right (FR), and back left (BL) EEG
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frequent seizures in patients, Kcnt1-Y777H heterozygous mice

did not exhibit any detectable epileptiform activity. Therefore,

we focused the remainder of our study on Kcnt1-Y777H homo-

zygous mice to understand the contribution of K+ channel GOF

to seizure disorders.

To determine whether the seizures observed in Kcnt1m/m mice

recapitulate the signature features of those in KCNT1-associ-

ated ADNFLE patients, we analyzed the relationship between

seizure activity and sleep in Kcnt1m/m mice. Strikingly, regard-

less of mouse strain or sex, the incidence of seizure episodes

was �2-fold higher when the vivarium lights were on, corre-

sponding to the sleep period of mice (Figure 1F). Moreover, we

compared the incidence of seizures in wake, NREM sleep, and

REM sleep in seven B6NJ Kcnt1m/m mice and found that 90%

(131/145) occurred during NREM sleep (Table S1). Next, we

analyzed the video-EEG of all Kcnt1m/m mice to assess their

seizure phenotypes. Two distinct seizure types were observed:

generalized tonic-clonic seizures (GTCSs), typically lasting 30–

60 s, and tonic seizures (TSs), typically lasting 1–2 s. TSs often

preceded GTCSs (Figures 1G1 and 1G2), but TSs also occurred

without further progression, sometimes as single events but

often in clusters of two or more episodes within a few seconds

of each other (Figure 1G3). Together, these data highlight mean-

ingful parallels between pathology observed in the homozygous

mouse model and the human disease caused by the KCNT1

GOF variant, including seizure frequency, brain state-associa-

tion, and phenotype.

Because KCNT1 GOF variants are also associated with intel-

lectual disability and psychiatric conditions, including anxiety

and attention-deficit hyperactive disorder, we next performed

a series of tests to assess the effects of the Y777H variant on

mouse behavior. In an open field test, Kcnt1m/m mice exhibited

a robust hyperactivity phenotype, traveling a further distance

compared to WT littermates; however, they were not different

from WT on the elevated plus maze (Figures S1A and S1B), indi-

cating hyperactivity without changes in anxiety-like behaviors.

Kcnt1m/m mice also exhibited decreased freezing behaviors in

the contextual and cued fear conditioning tests, without changes

in post-shock freezing behavior or acoustic startle responses

(Figures S1C and S1D), suggesting learning deficits un-

confounded by sensorimotor deficits. As a global indicator of

mouse well-being, we examined nest building, which is often

reduced in neurodegenerative and psychiatric murine disease

models (Jirkof, 2014). Both Kcnt1m/m females and males were

poor nest builders comparedwithWT, as assessed using a score

of nest quality and the weight of unshredded nesting material

(Figure S1E). These data suggest that, in addition to recapitu-

lating the seizure phenotypes, Kcnt1m/m mice exhibit several

behavioral phenotypes similar to those found in ADNFLE

patients.

Widefield Ca2+ Imaging Reveals Network Hyperactivity
in the Secondary Motor Cortex of Kcnt1m/m Mice
To determine which cortical regions were most strongly

impacted by the Kcnt1 variant, we next crossed Kcnt1-Y777H

mice to the Snap25-GCaMP6s line to generate Kcnt1m/m;

Snap25G6s/+ and Kcnt1+/+; Snap25G6s/+ (hereafter referred to

as Kcnt1m/m-G6s and WT-G6s) littermates. We then imaged
4 Cell Reports 33, 108303, October 27, 2020
spontaneous neural activity across the dorsal cortices of awake,

head-fixed, behaving Kcnt1m/m-G6s andWT-G6s adult mice us-

ing a custom tandem-lens epifluorescence macroscope (Fig-

ure 2A). Both Kcnt1m/m-G6s and WT-G6s mice exhibited dy-

namic, spatially complex patterns of spontaneous cortical

activity. To quantify this activity, we performed event detection

and plotted the width versus prominence profile of all detected

events (Figure 2B). In all Kcnt1m/m-G6s mice (n = 6), there were

narrow, large-amplitude calcium events, similar in appearance

to previous reports of interictal epileptiform discharges (IEDs)

captured using the same technique (Steinmetz et al., 2017, Rossi

et al., 2017). Importantly, these events were rarely observed in

WT-G6s littermates (n = 5). Across Kcnt1m/m-G6s mice, these

events were consistently localized to the anterior medial cortex

(Figure 2C; Video S1), consistent with previous reports of IEDs

localized to the anterior medial cortex in human patients carrying

the Y796H variant (Mikati et al., 2015). Alignment of the activity

maps from Kcnt1m/m-G6smice to the Allen Mouse Common Co-

ordinate Framework (Allen Mouse Brain Connectivity Atlas,

Wang, 2020) showed that these events localized primarily to

the secondarymotor cortex region (M2; Figures 2C and S2), sug-

gesting a regional specificity to the interictal hyperexcitability in

Kcnt1m/m mice.

In Vivo Electrocorticography Shows Early-Onset
Cortical Network Hyperactivity in Kcnt1m/m Mouse Pups
KCNT1 epileptic encephalopathy is a childhood genetic disease;

therefore, we next tested for evidence of epileptiform activity in

mouse pups by performing acute, head-fixed, unanesthetized,

in vivo electrocorticography on a cohort of Kcnt1m/m (n = 8)

andWT (n = 5) mice at postnatal day 13 (P13) to P15. Of the eight

Kcnt1m/mpups, three showeddefinite seizure activity (Figure 3A),

and all eight exhibited waveforms consistent with IEDs (Fig-

ure 3C). Electrographic seizure patterns consisted of evolving

patterns of spike and wave discharges that had restricted spatial

distribution across the cortical surface (Figure 3A). These sei-

zures lasted from 10 to 280 s and stopped spontaneously in all

cases (Figure 3B). No WT pups exhibited electrographic seizure

activity. Identical offline IED detection algorithmswere applied to

Kcnt1m/m and WT pups, with all Kcnt1m/m pups demonstrating a

higher occurrence rate of IEDs (Figure 3D). These IEDs were

focally distributed over the surface of the cortex across

Kcnt1m/m pups and, similar to the results from widefield Ca2+ im-

aging, were more concentrated in anterior regions of the soma-

tomotor cortex (Figure 3E).

The Kcnt1-Y777H Variant Impairs Excitability and AP
Generation in Cortical GABAergic, but Nnot
Glutamatergic, Neurons
Video-EEG, widefield Ca2+ imaging, and in vivo electrocorticog-

raphy all demonstrated hyperexcitable cortical networks in

Kcnt1m/m mice, starting as early as the second postnatal week.

What are the origins of this hyperexcitability? KCNT1 and the

associated KNa current have several proposed roles in the regu-

lation of membrane excitability and AP generation, andKCNT1 is

broadly expressed in neurons (Bhattacharjee et al., 2002, 2005;

Rizzi et al., 2016), including multiple subtypes of glutamatergic

and GABAergic neurons from both human and mouse cortices



Figure 2. Interictal Epileptiform Discharges

(IEDs) in Kcnt1m/m Mice Localize to the Sec-

ondary Motor Cortex

(A1) GCaMP6s fluorescence in the brain of a

Kcnt1m/m-G6s mouse. (A2) Illustration of the grid of

regions of interest (ROIs) used in event detection

superimposed on a portion of the GCaMP6s fluo-

rescence image. (A3) DF/F peaks with a promi-

nence greater than 15% were identified in each

ROI.

(B1) Maximum event prominence plotted as a

function of width at half-maximum for WT-G6s and

Kcnt1m/m-G6s mice. Kcnt1m/m-G6s mice generate

events (narrow, high prominence) not seen in WT-

G6s. Lines at 875 ms and 30% DF/F indicate our

criteria for classifying events as IEDs. (B2) Overlaid

DF/F traces of all IEDs in all Kcnt1m/m-G6s mice

with the mean waveform in red. The Kcnt1m/m plot

was cropped to highlight the region containing

IEDs, which obscures one large event (0.52, 2.17).

(C) To investigate the cortical localization of spike-

like events, we generated a maximum projection

across all event frames for each IED. The average

of these is shown for each Kcnt1m/m-G6s mouse,

showing consistent peak localized to the anterior

medial cortex, mostly within primary and second-

ary motor cortices. Boundaries indicate cortical

regions demarcated by aligning brains to the Allen

Common Coordinate Framework (CCF) (see STAR

Methods).

See also Figure S2 and Video S1.
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(Figure S3). Thus, it has been hypothesized that KCNT1 GOF en-

hances the intrinsic excitability of glutamatergic neurons, or re-

duces that of GABAergic neurons, to generate a hyperexcitable

network. To test these hypotheses, we assessed neuron-sub-

type-specific effects of KCNT1 GOF on membrane properties

and AP firing by performing whole-cell current-clamp analysis

of cultured cortical neurons during the time frame of network hy-

perexcitability onset (days in vitro 13 [DIV13] to DIV17). The re-

corded neurons were classified as glutamatergic, fast-spiking

(FS) GABAergic, or non-fast-spiking (NFS) GABAergic, based

on expression of GFP driven by theCaMKII promoter, AP param-

eters, and evoked synaptic responses (see STAR Methods).
C

First, we assessed the membrane

excitability of Kcnt1m/m glutamatergic

neurons. If the KNa current activated at

subthreshold voltages in Kcnt1m/m neu-

rons, KCNT1 GOF would be expected to

alter the resting membrane potential

(Vrest), input resistance (Rin), AP threshold,

or theminimumamount of current needed

to trigger an AP (rheobase); however,

none of these parameters were signifi-

cantly affected by the Y777H variant in

glutamatergic neurons (Table S2; Figures

4A1 and 4A2). Alternatively, it has been hy-

pothesized that the KNa current activates

in response to AP firing and that KCNT1

GOF increases the rate of AP repolariza-
tion in glutamatergic neurons, leading to an increase in AP firing

frequency. In this case, KCNT1 GOF would be expected to alter

the AP shape; however, the AP half-width, AP repolarization rate,

and AHP were also not significantly affected by the Y777H

variant (Table S2; Figure 4A3). Accordingly, the AP firing re-

sponses to incremental current injections were also indistin-

guishable between WT and Kcnt1m/m glutamatergic neurons

(Figure 4A4). Thus, despite the reported expression of KCNT1

and KNa currents in cortical glutamatergic neurons (Budelli

et al., 2009, Rizzi et al., 2016), there were no significant alter-

ations in any of the electrophysiological parameters measured

in this neuron type.
ell Reports 33, 108303, October 27, 2020 5



Figure 3. Kcnt1m/m Mice Have Epileptic Ac-

tivity In Vivo at 2 Weeks of Age

(A) Sample raw traces from electrocorticography

array demonstrate focal, evolving ictal pattern in a

head-fixed pup.

(B) Histogram of seizure duration across Kcnt1m/m

pups. Three out of eight Kcnt1m/m pups had defi-

nite seizures, and none of the five WT pups had

seizures.

(C) Sample raw traces from surface electro-

corticography array demonstrate populations of

interictal epileptiform discharges (IEDs; orange

boxes).

(D) Histogram of IED occurrence across all func-

tioning electrocorticography channels in Kcnt1m/m

(orange) and WT (blue) pups.

(E) IED occurrence rate localized anatomically

across the electrocorticography array and pooled

across pups reveals focal distribution in mutants.

Each square represents one electrocorticography

electrode. The approximate location and scale of

the arrays on the dorsal cortical surface is shown at

left. Color map is normalized across Kcnt1m/m and

WT pups.
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An alternative hypothesis is that KCNT1 GOF selectively re-

duces the excitability of GABAergic neurons. Although, like glu-

tamatergic neurons, the Kcnt1m/m FS neurons showed no alter-

ations in Vrest, Rin, or AP threshold, they did show an increase in

the rheobase current (Table S2; Figures 4B1 and 4B2), suggest-

ing there may be an increased KNa current near AP threshold

levels in this neuron population. Other electrophysiological pa-

rameters assessed, including AP half-width, AP repolarization

rate, and AHP, were not affected by the Y777H variant in FS neu-

rons (Table S2; Figure 4B3). However, incremental current injec-

tions showed a decrease in the number of APs per current step in

Kcnt1m/m FS neurons relative to that of WT (Figure 4B4).

In contrast to glutamatergic and FS neurons, the Kcnt1m/m

NFS neurons showed drastic alterations in membrane properties

and AP generation relative to those of WT. The Kcnt1m/m NFS

neurons showed a decrease in Rin, accompanied by a large in-

crease in the rheobase (Figures 4C1 and 4C2), whereas the Vrest

and AP threshold were unchanged (Table S2). The membrane

capacitance (Cm) was also increased in Kcnt1m/m NFS neurons

(Table S2). There were several other alterations to the AP param-

eters in Kcnt1m/m NFS neurons, including a narrower AP half-

width, a faster AP repolarization rate, and a larger AHP (Table

S2; Figure 4C3). These data suggest there may be a larger in-

crease in the KNa current in this neuron population or that the

KNa current is increased across a wider voltage range. Impor-

tantly, incremental current injections showed a strong decrease
6 Cell Reports 33, 108303, October 27, 2020
in the number of APs per current step in

Kcnt1m/m NFS neurons relative to that of

WT (Figure 4C4). Overall, these data

demonstrate that the Y777H variant

selectively reduces the intrinsic excit-

ability of FS and, to a greater extent,

NFS GABAergic neurons, thus providing

a functional answer to the question of
how a variant that causes a decrease in excitability could lead

to the formation of a hyperexcitable network.

The Y777H Variant Left-Shifts the Voltage-Dependent
Activation of KCNT1 and Increases Subthreshold KNa

Currents Only in GABAergic Neurons
Why are GABAergic neurons more sensitive to the effects of a

variant in a gene that is widely expressed in neurons? To address

this question, we recorded KNa currents in cultured cortical neu-

rons by applying voltage steps to voltage-clamped neurons and

comparing the delayed outward current before and after the

addition of tetrodotoxin (TTX), as KCNT1 channels are thought

to be the major contributors to this current (Budelli et al., 2009;

Reijntjes et al., 2019; Cervantes et al., 2013). Consistent with

KCNT1-mediated currents recorded previously using the same

technique, we observed KNa currents in all three WT neuron

types, beginning at approximately �10 mV and increasing with

depolarization (Figures 5A1,2–5C1,2). At more negative potentials,

the TTX-sensitive current was often net inward (Figures 5A3–

5C3), likely due to the persistent Na+ current (INaP), which has

been shown to prime KNa for activation in some neuron types

(Budelli et al., 2009; Hage and Salkoff, 2012).

The Y777H variant altered KNa currents in ways consistent with

it being a GOF variant, but the nature of the changes was unique

to each neuron type. In allKcnt1m/m neuron types, the overall KNa

current was increased, as measured by a significant effect of



Figure 4. The Kcnt1 Y777H Variant Causes a Reduction in Membrane Excitability and AP Generation in GABAergic, but Not Glutamatergic,

Cortical Neurons

(A1–C1) Representative membrane voltage traces of WT (black) and Kcnt1m/m (colors) neurons of the indicated type in response to current injections illustrate

differences in the input resistance (Rin) and/or rheobase between WT and Kcnt1m/m GABAergic neurons.

(A2–C2) The individual values of Rin (x axis) and rheobase (y axis) for WT (gray) and Kcnt1m/m (colors) neurons. The mean and SEM for each group are indicated by

the bars next to the corresponding axis.

(A3–C3) Individual values and mean ± SEM for AP half-widths and AHP in WT (black and gray) and Kcnt1m/m (colors) neurons.

(legend continued on next page)

Cell Reports 33, 108303, October 27, 2020 7

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
genotype using a linear model, and all showed apparent in-

creases in current at positive potentials compared to those of

WT (Figures 5A2–5C2). However, pairwise comparisons at each

voltage step showed voltage-dependent differences in current

increases among the Kcnt1m/m neuron types. For Kcnt1m/m glu-

tamatergic neurons, significant increases in the KNa current were

only at very depolarized voltages, from +30 to +50 mV (Fig-

ure 5A2), whereas the currents at 0 mV and below were indistin-

guishable from those ofWT (Figure 5A3). Conversely, inKcnt1
m/m

FS neurons, significant increases in KNa currents only occurred

at more negative voltage steps, including �50, �40, and

�10 mV (Figures 5B2 and 5B3). Kcnt1
m/m NFS neurons showed

the broadest increase in KNa currents, with significant increases

at all voltage steps from �60 to +10 mV (Figures 5C2 and 5C3).

Plotting the KNa current densities (pA/pF) of NFS neurons

showed similar results (Figure S4), suggesting that the increased

Cm of Kcnt1m/m NFS neurons does not contribute to their

increased KNa currents.

To better assess neuron-subtype-specific effects of the

Y777H variant on KCNT1 channel function, we plotted the

mean normalized conductances of WT and Kcnt1m/m neurons

as a function of voltage (activation curves). For glutamatergic

neurons, the activation curves were not different between the

two genotypes, as indicated by their similar membrane potential

at half-maximum (V50) values (WT: 16.5 ± 1.0 mV, Kcnt1m/m:

15.8 ± 0.6 mV, p = 0.54; Figure 5A4). These data, together with

the overlapping KNa currents observed throughout the sub-

threshold voltage range in WT and Kcnt1m/m glutamatergic neu-

rons, are consistent with the unaltered membrane properties of

Kcnt1m/m glutamatergic neurons. However, for FS and NFS

GABAergic neurons, the activation curves were significantly

left-shifted by the Y777H variant, as evidenced by a 6.5-mV

(WT: 12.1 ± 1.2 mV, Kcnt1m/m: 5.6 ± 1.4 mV, p = 0.0005; Fig-

ure 5B4) and 6.3-mV (WT: 15.7 ± 0.8 mV, Kcnt1m/m: 9.4 ±

0.8 mV, p < 0.0001; Figure 5C4) decrease in V50, respectively.

These strong GABAergic-specific left shifts in the voltage-

dependent activation of the KCNT1-Y777H channel likely

contribute to the increases in KNa currents at subthresholdmem-

brane potentials, and the increases in rheobase and decreases

in AP firing, that were observed in the FS and NFS neurons.

Glutamatergic neurons showed large increases in the KNa

current at depolarized voltages but no effects on membrane

excitability, whereas GABAergic neurons, especially NFS,

showed smaller absolute increases but large effects on mem-

brane excitability. Reasoning that the effect of the altered KNa

current on membrane excitability would depend on how

much it increased the total membrane current (Im), we plotted

Im across all voltage steps for each neuron type, WT and

Kcnt1m/m (Figures 5A5–5C5), as well as the fractional increase

in Im caused by the variant (DI/I; Figures 5A5–5C5, lower

panels). In glutamatergic neurons, the maximal DI/I was

from +20 to +50 mV, where Kcnt1m/m neurons had a �20% in-

crease compared to WT. In FS Kcnt1m/m neurons, the
(A4–C4) Example traces and summary data showing the number of APs (mean an

neurons. The lines in the current/AP plots are fits to a Boltzmann sigmoidal curve a

(f-I) slope for each group. Statistical significance was tested using generalized lin

See also Figure S3 and Table S2.
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maximum DI/I was �30%, which occurred from �10

to +30 mV. In NFS Kcnt1m/m neurons, the DI/I was 50%–60%

throughout the subthreshold voltages, reaching values as

high as 65% at �20 mV. These results are consistent with

the observed neuron-subtype-specific effects of the Kcnt1

GOF variant, with the smallest fractional increase in the K+ cur-

rent occurring in glutamatergic neurons and the largest in NFS

neurons; more specifically, the large increase in DI/I across

subthreshold voltages in Kcnt1m/m NFS neurons predict the

robust effects observed on membrane excitability, including

the decreased Rin, increased rheobase, and impaired AP firing.

To provide further evidence for the specificity of the KNa cur-

rent increases and their relationship to membrane excitability,

we recordedKNa currents and assessed alterations inmembrane

excitability in neurons with heterozygous expression of the

Y777H variant (Figure S5). Heterozygous expression of Y777H

increased KNa currents in the same voltage ranges as homozy-

gous expression in all three neuron types, and with current mag-

nitudes intermediate to those seen in corresponding WT and ho-

mozygous neurons, demonstrating a gene dosage effect of the

Kcnt1-Y777H variant on KNa current increases. Furthermore,

NFS neurons with heterozygous expression of Y777H showed

an intermediate increase in rheobase current compared with

those of WT and homozygous neurons, suggesting a tight rela-

tionship between the increase in KNa current at subthreshold

voltages and the deficit in AP generation in NFS neurons.

TheKcnt1-Y777HVariant IncreasesHomotypic Synaptic
Connectivity and Induces a Hyperexcitable and
Hypersynchronous Network
Our finding that KCNT1 GOF caused a selective reduction in

GABAergic neuron excitability is not mutually exclusive with

the third proposed hypothesis, which is that KCNT1 GOF vari-

ants cause network excitability because increases in K+ current

during development alter normal patterns of synaptic connec-

tions (Kim and Kaczmarek, 2014). Thus, we tested for altered

synaptic connectivity by performing paired recordings of gluta-

matergic (excitatory [E]) and GABAergic (inhibitory [I]) neurons

and alternatively stimulating each neuron at 0.1 Hz to test base-

line connection probability (Pc) and strength at the four possible

motifs (I-I, I-E, E-I, and E-E). Pc at the I-E and E-I motifs was not

altered in Kcnt1m/m networks (Figures 6B and 6C), indicating

grossly normal synaptic interactions between glutamatergic

and GABAergic neurons. However, Pc between both I-I and E-

E pairs was higher inKcnt1m/m networks than in those ofWT (Fig-

ures 6A and 6D). The amplitudes of the evoked postsynaptic cur-

rents (ePSCs) between connected neurons was not significantly

different between genotypes for any of the four connection types

(Figures 6A–6D). Thus, in addition to impairing the excitability of

GABAergic neurons, the Y777H variant increased synaptic con-

nectivity in the network in ways that should, theoretically, further

enhance excitation (increased E-E connections) and reduce inhi-

bition (increased I-I connections).
d SEM) per current injection step in WT (black and gray) and Kcnt1m/m (colors)

nd were used to determine the half-max current (I50) and the frequency-current

ear mixed models.



(legend on next page)

Cell Reports 33, 108303, October 27, 2020 9

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
To determine whether the increases in synaptic connectivity

were accompanied by alterations in synaptic activity, we re-

corded spontaneous postsynaptic currents (sPSCs; sponta-

neous excitatory postsynaptic currents [sEPSCs] and sponta-

neous inhibitory postsynaptic currents [sIPSCs]) onto voltage-

clamped glutamatergic and GABAergic neurons. Similar to the

increase in E-E synaptic connectivity, we observed an increase

in sEPSC frequency onto Kcnt1m/m glutamatergic neurons (Fig-

ure 6E). Interestingly, although sEPSC frequency was not altered

onto the Kcnt1m/m GABAergic neuron population as a whole, it

was increased onto those with an NFS phenotype, suggesting

there may be a compensatory increase in excitatory drive onto

Kcnt1m/m NFS neurons (Figure S6). This increased excitatory

drive may offset the effects of the decreased membrane excit-

ability of these neurons, as sIPSCs were not significantly

affected onto Kcnt1m/m glutamatergic or GABAergic neurons

(Figure 6F). Moreover, in agreement with the ePSC measure-

ments, the amplitudes and kinetics of the sPSCs were not

different between the genotypes onto either neuron group (Table

S3). Finally, to assess the net effect of altered sPSC activity onto

Kcnt1m/m neurons, we calculated the E/I ratio, taking into ac-

count the relative frequency and size of the sPSCs. E/I ratio

onto Kcnt1m/m glutamatergic neurons was significantly higher

than that ontoWT, whereas the E/I ratio ontoGABAergic neurons

was similar between the two groups (Figure 6G). Thus, the overall

balance of excitation and inhibition in in vitro Kcnt1m/m networks

is shifted toward excitation.

Finally, we tested whether in vitro networks of Kcnt1m/m neu-

rons exhibit hyperexcitable and/or hypersynchronous behavior,

effects that would be predicted downstream of the GABAergic

impairments, increased homotypic synaptic connectivity, and

altered E/I ratio. To assess these network behaviors, we made

primary cultures of cortical neurons from Kcnt1m/m and WT P0

pups and recorded spontaneous spiking activity using multi-

electrode array (MEA) analysis. We analyzed a variety of spiking

and bursting features between DIV9 and DIV27 (see STAR

Methods). Networks of Kcnt1m/m and WT neurons matured at a

similar rate, as measured by the increase in the number of active

electrodes (nAEs) per well, which reached a maximum by DIV17

(not shown), and displayed a variety of activity patterns (Fig-

ure 6H). In networks of Kcnt1m/m neurons, we observed a hyper-

excitability phenotype, characterized by an increased mean

firing rate (MFR) and an increased bursting frequency (increase

in bursts/minute and decrease in interburst interval) (Figure 6I).
Figure 5. The Y777H Variant Causes Cell-Type-Specific Increases in K

(A1–C1) Representative traces in control external solution (top), 0.5 mMTTX (middle

membrane current response to voltage steps (�80 to +50 mV) in TTX from the re

(A2–C2) Summary data show the KNa current (mean ± SEM) for each voltage step

(A3–C3) Plots of the KNa current (mean ± SEM) for each voltage step from�80 to 0

that are too small to be seen on the graphs in A2-C2.

(A4–C4) Normalized Conductance-Voltage (G-V)plots (mean ± SEM) for WT (black

Vm at half-maximum (V50; mean ± SEM).

(A5–C5) Plots of the total membrane current (mean and SEM) for each voltage step

values too small to be seen on the larger graph. Shaded red areas indicate signific

increase in the total membrane current (DI/I, mean ± SEM) caused by the Y777H

generalized linear mixed models with genotype and current step as fixed effects

p values < 0.05 are labeled on the plots in A2–C2 as asterisks and on the plots in A3

asterisks. See also Figures S4 and S5.
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We also observed an increase in synchrony at the network level,

characterized by an increased number of network bursts (Fig-

ure 6I). Together, these data suggest that KCNT1 GOF alters

intrinsic GABAergic excitability and synaptic connectivity to pro-

mote a hyperexcitable and hypersynchronous network.

Acute Cortical Slice Recordings Confirm the Reduced
Intrinsic Excitability of Kcnt1m/m NFS GABAergic
Neurons
Having identified a brain region (Figures 2 and 3) and a neuron

type (Figures 4 and 5) that were particularly sensitive to the

Kcnt1 variant, we next wanted to test whether the physiological

changes observed in cortical neuron cultures are also present in

acute slice, an experimental preparation with a more organized

network. We first performed Nissl staining of multiple, coronal

40-mm sections, each containing portions of motor cortex (Fig-

ure 7A), from P28 WT and Kcnt1m/m littermates to examine po-

tential effects of the Kcnt1GOF variant on general cortical struc-

ture and lamination. Overall, the brain structures between WT

and Kcnt1m/m mice appeared highly similar, and the cortical re-

gions in brains of Kcnt1m/m mice showed grossly normal cortical

thickness and lamination.

We next prepared acute slices containing the anterior motor

cortex from P20 to P29 WT and Kcnt1m/m mice and performed

whole-cell recordings from pyramidal neurons (Figure 7B) and

GABAergic neurons (Figure 7F) in the medial portion of the slice.

Because more superficial cortical layers are enriched for NFS

neurons (Tremblay et al., 2016; Lee et al., 2010) and have been

reported to show higher levels of KCNT1 expression (Rizzi

et al., 2016), we current-clamped neurons in layer 2/3 and in-

jected steps to elicit APs (Figures 7C and 7G). Similar to obser-

vations in cortical neuron cultures, Kcnt1m/m glutamatergic neu-

rons showed no changes in Rin or rheobase relative to those of

WT (Figure 7D). They did, however, have a more depolarized

AP threshold (Table S4), an effect that is notably opposite of

that previously reported from Kcnt1 knockout mouse models

(Martinez-Espinosa et al., 2015; Reijntjes et al., 2019). Despite

their depolarized AP threshold, Kcnt1m/m glutamatergic neurons

showed AP firing patterns similar to those of WT glutamatergic

neurons (Figure 7E).

Importantly, Kcnt1m/m NFS neurons showed a significant

reduction in Rin and large increases in rheobase (Figure 7H)

andCm (Table S4), all of whichwere changed in the samemanner

in cultured neurons, although the AP half-width and AHP were
Na Currents

), and the difference current (bottom), which was calculated by subtracting the

sponse in control, in WT (black) and Kcnt1m/m (colors) neurons.

in WT (black and gray) and Kcnt1m/m (colors) neurons.

mV inWT (black and gray) and Kcnt1m/m (colors) neurons to illustrate the values

and gray) and Kcnt1m/m (colors) neurons with Boltzmann fits. Insets show the

from�60 to +50 mV in WT (black) and Kcnt1m/m (colors) neurons. Insets show

antly higher currents in Kcnt1m/m neurons. The plots below show the fractional

variant. Statistical significance for Current-Voltage (I-V) plots was tested using

followed by pairwise comparisons at each level.

–C3 as red numbers. p values < 0.001 are labeled on the plots in A4–C4 as three
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unchanged (Table S4). Moreover, incremental current injections

demonstrated significant impairments in AP generation in NFS

neurons expressing the Y777H variant (Figure 7I). Thus, the

main finding from culture, that NFS neurons are most strongly

affected by the Kcnt1-Y777H variant, was verified in acute slices

made from a brain area with demonstrated pathology.

DISCUSSION

Classic and recent human genetic studies have provided key in-

sights into the causes of neurodevelopmental disease and se-

vere epilepsies, revealing that genetic variants in ion channels,

both ligand and voltage gated, comprise approximately one-

third of known monogenic causes of seizure disorders (Noebels,

2017). Despite the fact that molecular dysfunction of these chan-

nel variants is relatively well modeled and correctable in heterol-

ogous systems, translating these findings to therapies has faced

unexpected challenges, likely due to the developmental, cellular,

and synaptic complexity of the brain. Progress in tracing the crit-

ical steps between ion channel biophysics and pathological syn-

chronization of cortical neurons thus requires precision genetic

disease models and multi-level interrogations of their effects

(Oyrer et al., 2018; Farrell et al., 2019).

To address this, we created a mouse model with a missense

mutation in a KNa channel gene orthologous to a human

missense mutation that causes an early-onset seizure disorder

(ADNFLE). Homozygous expression of this GOF variant caused

an epileptic phenotype with strong parallels to the human dis-

ease, and electrocorticography analysis showed epileptiform

activity in Kcnt1m/m mice by P14. Early childhood seizures are

a common feature of KCNT1-associated (and numerous other)

genetic epilepsies, but seizure phenotyping is rarely done at

this age in rodents, even though early phenotyping has the po-

tential to uncover seizure phenotypes not present in adults (Loz-

ovaya et al., 2014) and improve our understanding of how well

genetic models recapitulate human diseases. Likewise, wide-

field Ca2+ imaging pinpointed the M2 region as the cortical

source of IEDs. These results do not rule out the involvement

of other cortical areas in seizure generation or speak to the

strong possibility that cortical interactions with subcortical struc-

tures are critical for seizure generation. In fact, the finding that

seizures in our model are most likely to happen during NREM
Figure 6. Increases in Synaptic Connectivity in Kcnt1m/m Networks Co

(A–D) Evoked postsynaptic currents (PSCs) recorded from neuron pairs (glutama

type indicated on the left and recording the response in the neuron type indicate

traces of evoked ePSCs. Middle: summary data (mean ± SEM) of the connection p

peak evoked PSC amplitudes of connected pairs.

(E) Individual values and mean ± SEM of the spontaneous excitatory postsynap

excitatory neurons (WT, black; Kcnt1m/m, orange).

(F) Individual values and mean ± SEM of the sEPSC or sIPSC frequency onto inh

(G) The E/I ratio onto excitatory neurons, but not inhibitory neurons, is increased

(H) Raster plots of multi-electrode array (MEA) data showingWT andKcnt1m/m cor

DIV23. The black bars indicate spikes, and the red bars indicate bursts.

(I) Graphs plotting measures of spontaneous activity as a function of DIV on MEA

cortical neurons. Mean firing rate (MFR) per active electrodes, number of bursts p

themean ±SEM. Permutated p values for mature DIV17 to DIV27 neurons calculat

the graphs.

See also Figure S6 and Table S3.
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sleep, coupled with the fact that ADNFLE is also caused by var-

iants in genes that encode nicotinic acetylcholine receptor sub-

units (Phillips et al., 1995; Sutor and Zolles, 2001), suggests that

thalamic input or cholinergic transmission may play a key role in

seizure generation (Klaassen et al., 2006).

The multiplatform, in vivo phenotyping of the KCNT1 GOF

mouse model focused our cellular studies on a discrete time

and place. Results from these in vitro and ex vivo studies support

amodel in which the Kcnt1-Y777H variant increases the KNa cur-

rent over different voltage ranges in the three major neuron types

of the cerebral cortex; glutamatergic, FS GABAergic, and NFS

GABAergic. In GABAergic neurons, because it occurs at sub-

threshold voltages, the KNa current increase impairs membrane

excitability and AP generation, changes that are especially

strong in the NFS neurons. The reduced excitability of

GABAergic neurons is accompanied by increases in E-E and I-I

synaptic connectivity, and together, these alterations likely

interact to promote both hyperactivity and hypersynchrony in

the cortical circuits, especially in cortical region M2, which leads

to epileptiform discharges and seizures. This model provides a

strong framework for understanding how GOF variants in

KCNT1 lead to epilepsy; however, it remains to be seen if this

model will generalize to other GOF variants in K+ channels, or

even other variants within the KCNT1 gene.

Prior to this study, two other studies were published charac-

terizing KCNT1 GOF variants, both of which are associated

with MMPSI, an earlier onset and more severe form of epilepsy

than ADNFLE. Using a knockin mouse model, Quraishi et al.

showed that heterozygous expression of the Kcnt1-R455H

variant results in spontaneous seizure activity in four out of seven

mice (Quraishi et al., 2020). However, there were no reports of

the effects of the R455H variant on KNa currents or neuronal

physiology, making it difficult to compare with mechanistic

data from our model. In the other study, homozygous expression

of the P942L variant in human induced pluripotent stem cell

(iPSC)-derived neurons increases the KNa current, but only at

voltages above +40 mV (Quraishi et al., 2019). Similar to our

data, they reported a decrease in AP width and increase in

AHP; however, in contrast to our data, the P942L variant in-

creases the peak AP firing rate in what are presumably immature

glutamatergic neurons. This discrepancy in AP generation iden-

tified downstream of the Y796H and P942L variants may be
ntribute to Hyperexcitability and Hypersynchrony

tergic [excitatory (E)] and GABAergic [inhibitory (I)]) by stimulating the neuron

d on the right (WT, black; Kcnt1m/m E, orange; Kcnt1m/m I, blue). Left: example

robability (Pc) between motifs. Right: individual pair values and mean ± SEM of

tic current (sEPSC) or inhibitory postsynaptic current (sIPSC) frequency onto

ibitory neurons (WT, black; Kcnt1m/m, blue).

. Individual values and mean ± SEM of the E/I ratios are shown.

tical network firing across the 16 electrodes of a well of a representative plate at

s of WT (gray, n = 65 wells, 5 mice) and Kcnt1m/m (orange, n = 66 wells, 5 mice)

er minute, number of network bursts, and interburst interval are each shown as

edwith aMann-WhitneyU test followed by 1,000 permutations are indicated on
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because the KCNT1 GOF mechanism is variant and/or disease

dependent. Alternatively, we also observed an increased KNa

current at suprathreshold voltages in Kcnt1m/m glutamatergic

neurons. Thus, it is possible that early effects in cortical glutama-

tergic neuron excitability have resolved by the time we per-

formed our electrophysiology on more mature glutamatergic

neurons but could contribute to our observed increase in E-E

connectivity (Figure 6A). Future mechanistic studies using

knockin mouse models of additional KCNT1 GOF variants

should help resolve these discrepancies and clarify the general-

ity of our findings.

A caveat of our mouse model is that although a heterozygous

GOF mutation in KCNT1 is sufficient to cause ADNFLE in hu-

mans, we only detected seizures in homozygous mice. Unfortu-

nately, this caveat is not unique to our model, as several at-

tempts to generate mouse models of heterozygous LOF

mutations in K+ channel genes associated with epilepsy in hu-

mans have failed to result in a seizure phenotype in the heterozy-

gous state in mice (Oyrer et al., 2018). Nevertheless, some of

these models in the homozygous state, such as Kcna1 null

mice and knockin LOF Kcnq2 and Kcnq3 mice, display seizure

phenotypes highly similar to those of human patients (Smart

et al., 1998; Glasscock et al., 2010; Singh et al., 2008) and

have been used successfully to model the human disease and

initiate therapeutic studies (Fenoglio-Simeone et al., 2009;

Roundtree et al., 2016). Similarly, the strong parallels observed

in both the behavior and seizure phenotypes between the homo-

zygous Y777Hmousemodel and the Y796H-associated disease

suggest analogous underlying mechanisms and indicate that the

homozygous Y777H mice are a valid preclinical model. More-

over, during the preparation and review of this article, we

observed seizures in two Kcnt1-Y777H heterozygous mice,

one during a widefield Ca2+ imaging experiment and the other

during a video-EEG experiment. Thus, heterozygous expression

can result in seizures in a rodent model, but apparently at amuch

lower frequency than that observed with homozygous expres-

sion, and studies are ongoing to further characterize the hetero-

zygous Kcnt1-Y777H phenotype.

A somewhat perplexing finding from our study was that the

decreased excitability of Kcnt1m/m GABAergic neurons did not

lead to decreased sIPSC frequency onto cultured cortical gluta-

matergic or GABAergic neurons; however, there are several po-
Figure 7. NFS GABAergic Neurons in Layer 2/3 of Acute Slices from

Generation

(A) Representative images of 10-week-old, Nissl-stained coronal sections at thre

1 mm.

(B) Schematic shows the experimental approach of recording glutamatergic neu

(C) Representative membrane voltage traces of glutamatergic WT (black) and Kc

jections.

(D) Individual neuron values, mean, and SEM of the Rin and rheobase of WT and

(E) Number of APs (mean ± SEM) per current injection step in WT and Kcnt1m/m

(F) Schematic shows the experimental approach of recording NFS GABAergic ne

(G) Representative membrane voltage traces of NFS GABAergic WT (black) and K

injections.

(H) Individual neuron values, mean, and SEM of the Rin and rheobase of WT and

(I) Number of APs (mean ± SEM) per current injection step in WT and Kcnt1m/m NF

sigmoidal curve that were used to determine the I50. Statistical significance was

See also Table S4.
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tential explanations for this inconsistency. First, the large litera-

ture on Dravet syndrome (DS), another childhood epilepsy

disorder, has demonstrated that LOFmutations in the Na+ chan-

nel gene Scn1a decrease the excitability of inhibitory neurons.

Despite this consensus, electrophysiological recordings in slices

have sometimes failed to find reductions in sIPSC frequencies

(De Stasi et al., 2016), especially when Scn1a deletion is

restricted to NFS GABAergic neurons (Rubinstein et al., 2015),

which is likely due to the fact that a large portion of NFS

GABAergic neurons target the distal dendrites of neurons, far

from where sIPSCs are measured at the soma. Moreover, in vivo

studies of DS models have not shown a decrease in GABAergic

neuron firing rates (De Stasi et al., 2016; Tran et al., 2020), even

though SCN1A loss causes a more severe phenotype in mice

than KCNT1GOF in our model. Finally, in this study, we also pro-

vided experimental evidence that sEPSC frequency onto

Kcnt1m/m NFS GABAergic neurons is increased (Figure 6H),

which likely compensates for their reduced membrane excit-

ability and normalizes sIPSC frequency. Thus, the lack of a

decrease in sIPSC frequency is not strong evidence against

the hypothesis that inhibitory neuron dysfunction due to

KCNT1 GOF contributes to epilepsy.

Kcnt1mRNA and protein expression in the CNS are thought to

be widespread and present in both glutamatergic and

GABAergic neurons, indicating that the differential effects we

found in these neuron populations are likely not due to selective

expression of KCNT1 (Figure S3). In support of this, we found

that the Y777H variant increases KNa current in all neuron types

analyzed; however, the voltage dependence of these increased

currents in each neuron type resulted in drastically different ef-

fects on neuronal physiology. In cortical glutamatergic neurons,

the KNa current was increased in the +30 to +50 mV range, but

the effects of this increase on physiology were extremely limited.

This lack of an effect may be due to the fact that in normal phys-

iology, neurons only reach these voltages (30–50mV) at the peak

of the AP and remain there for less than amillisecond, whichmay

not allow for activation of KNa, as the time constant for full activa-

tion of KCNT1 channels has been estimated at 25–60 ms (Joiner

et al., 1998; Chen et al., 2009). Moreover, the KNa current was

increased at negative potentials in both Kcnt1m/m GABAergic

neuron types, but not in Kcnt1m/m glutamatergic neurons. The

reasons for the lack of a KNa current increase at subthreshold
Motor Cortex of Kcnt1m/m Mice Show a Strong Impairment in AP

e matched bregma levels from WT (left) and Kcnt1m/m (right) mice. Scale bar,

rons in layer 2/3 of the motor cortex.

nt1m/m (orange) neurons in response to �100, +140, and +240 pA current in-

Kcnt1m/m glutamatergic neurons.

glutamatergic neurons.

urons in layer 2/3 of the motor cortex.

cnt1m/m (green) neurons in response to�100, +100, +180, and +300 pA current

Kcnt1m/m NFS GABAergic neurons.

S GABAergic neurons. The lines in the current/AP plots are fits to a Boltzmann

tested using generalized linear mixed models.
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voltages in glutamatergic neurons will require further study; how-

ever, candidate mechanisms include glutamatergic-specific

expression of alternative splice forms of KCNT1, which have

been shown to have different activation kinetics, and coexpres-

sion of other channels, such as KCNT2, which can form hetero-

mers with KCNT1 and alter its biophysical properties (Chen et al.,

2009; Joiner et al., 1998), thus protecting glutamatergic neurons

from the more severe effects of KCNT1 GOF.

In GABAergic neurons, we observed the strongest effects of

the Y777H variant on KNa currents at voltages between �60

and +10mV. The role of the KNa current in neurons, at subthresh-

old voltages in particular, has been controversial, largely

because early studies suggested that the Na+ concentration

needed to activate KNa was higher than that normally found in

neurons. However, recent studies have shown that KNa can be

activated by a persistent Na+ (NaP) current present at voltages

as low as �90 mV (Hage and Salkoff, 2012). Consistent with

this subthreshold role for KCNT1, multiple studies have shown

that mouse sensory neurons lacking a KNa current, due to

Kcnt1 knockout, have no alterations in AHP or AP repolarization

but instead show decreases in AP threshold and rheobase and

increases in AP firing (Martinez-Espinosa et al., 2015; Reijntjes

et al., 2019; Lu et al., 2015). These KCNT1 LOF effects on

neuronal physiology nicely complement our GOF effects, and

taken together, these data support a central role for KCNT1-

mediated currents in regulating neuronal excitability at sub-

threshold potentials.

Among GABAergic neurons, we identified strong KCNT1 GOF

effects on the NFS subtype, which are still electrically, molecu-

larly, and morphologically diverse, with subclasses performing

distinct roles in circuit function (Markram et al., 2015). The

similar, yet more subtle, effects on the FS subtype suggest

that there is likely not one particular subclass of inhibitory neu-

rons that is uniquely affected. What cell type differences could

account for the stronger effects of KCNT1 GOF on NFS than

FS GABAergic neurons? First, as proposed for the differential ef-

fect of the variant on glutamatergic neurons, NFS and FS

GABAergic neurons may express different KCNT1 isoforms

and/or interacting channels and proteins that alter the functional

effects of the variant. Alternatively, FS neurons already show a

large K+ conductance at subthreshold voltages. This is reflected

in their low Rin, fast time constant, and high rheobase and

caused by high expression of K+ leak channels (Okaty et al.,

2009). The relatively small effect of KCNT1 GOF on FS neurons

may simply reflect the fact that adding a KCNT1-mediated K+

conductance on top of an already large K+ conductance may

have little effect.

KCNT1 and other K+ channel GOF epilepsies are typically

treatment resistant, and the use of quinidine, which inhibits

most KCNT1 GOF variant currents in heterologous neurons,

has shown limited success in treating KCNT1-related epilepsy

in humans. Here, we show that Kcnt1m/m neurons, networks,

and mice all display clear pathology at 2 weeks of age. In addi-

tion to the changes in membrane excitability, which may be

correctable by blocking KCNT1 or other ion channel currents,

we also found increases in Cm and synaptic Pc at multiple synap-

tic motifs, which likely play a role in the generation of abnormal

network activity. These structural changes would be more diffi-
cult to reverse by modulating ion channel currents, unless

perhaps the modulation occurred prior to their occurrence,

which would argue for earlier treatment with quinidine (Dilena

et al., 2018). Alternatively, if the NaP current activates the

increased KNa current and results in reduced interneuron excit-

ability, drugs that inhibit the NaP current could have the dually

useful effect of mitigating aberrant activation of the KNa current

in NFS GABAergic neurons while still providing general damp-

ening of membrane excitability in glutamatergic neurons. NaP
current inhibitors are currently available and have been used

with success in preclinical models of Na+ channel dysfunction

(Baker et al., 2018; Anderson et al., 2014). Our data suggest

that the way forward to designing optimal treatment strategies

for genetic epilepsies is a better understanding of the complex

interactions among neuron-subtype-specific membrane cur-

rents, circuit development, and synaptic connections.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

mouse monoclonal anti-KCNT1 (S3-26) Abcam Cat# ab94578; RRID:AB_10674494

goat anti-mouse IgG polyclonal, HRP-conjugated Santa Cruz Biotechnology Cat# sc-2005; RRID:AB_631736

mouse monoclonal anti-b-Actin (C4) Santa Cruz Biotechnology Cat# sc-47778 HRP; RRID:AB_2714189

Bacterial and Virus Strains

AAV-CaMKIIa-GFP, serotype 8 UNC Gene Therapy

Center – Vector Core

N/A

Chemicals, Peptides, and Recombinant Proteins

NlaIII NEB Cat# R0125S

0.5% Trypsin-EDTA GIBCO Cat# 25300-054

DMEM media supplemented with Glutamine GIBCO Cat# 10569-010

Fetal bovine serum GE Healthcare Cat# SH3008803

MITO+ Serum Extender Corning Cat# 355006

Penicillin/Streptomycin GIBCO Cat# 15140-122

Collagen I Corning Cat# 354236

Poly-D-lysine Sigma-Aldrich Cat# P6407

Papain Worthington Biochemical Cat# LS003126

Trypsin inhibitor, Ovomucoid Worthington Biochemical Cat# LS003085

Neurobasal-A medium GIBCO Cat# 10888-022

GlutaMAX GIBCO Cat# 35050-061

B27 supplement GIBCO Cat# 17504-044

Tribromoethanol Sigma-Aldrich Cat# T48402

NBQX disodium salt Tocris Cat# 1044

Bicuculine Methiodide Hello Bio Cat# HB0893

Tetrodotoxin Citrate Abcam Cat# ab120055

Poly-D-lysine Sigma-Aldrich Cat# P0899-50MG

Hibernate A solution GIBCO Cat# A1247501

Papain-for MEA protocol Worthington Biochemical Cat# LK003178

DNase I Worthington Biochemical Cat# LK003172

HEPES GIBCO Cat# 15630-080

Fetal bovine serum-for MEA protocol GIBCO Cat# 26140-079

Laminin Sigma-Aldrich Cat# L2020

Critical Commercial Assays

My Taq Bioline Cat# BIO-25041

Pierce BCA Protein Assay Kit Thermo Fisher Scientific Cat# 23225

NeuroGrid Intan Technologies Cat# RHD2000

Classic MEA 48 Axion Biosystems Cat# M768-KAP-48

Experimental Models: Cell Lines

Primary astrocyte feeder layer This paper N/A

Primary cortical neurons This paper N/A

Experimental Models: Organisms/Strains

Mouse: Kcnt1em1(Y777H)Frk This paper N/A

Mouse: C57BL/6NJ The Jackson Laboratory Cat# JAX:005304; RRID:IMSR_JAX:005304

Mouse: FVB.129P2-Pde6b+ Tyrc-ch/AntJ The Jackson Laboratory Cat# JAX:004828; RRID:IMSR_JAX:004828

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: B6.Cg-Snap25tm3.1Hze/J The Jackson Laboratory Cat# JAX:025111; RRID:IMSR_JAX:025111

Mouse: C57BL/6J The Jackson Laboratory Cat# JAX:000664; RRID:IMSR_JAX:000664

Oligonucleotides

Primer: Kcnt1 Forward:

50-CTAGGGCTGCAAACACAACA-30
This paper N/A

Primer: Kcnt1 Reverse:

50-TCAAGCAGCAACACGATAGG-30
This paper N/A

Software and Algorithms

NIS Elements Software Nikon Instruments RRID:SCR_014329

Med-PC V Software Suite, 64-bit Med Associates Cat# SOF-736

SR-LAB Startle Response System Software San Diego Instruments N/A

Video Freeze Software Med Associates Cat# SOF-843; RRID:SCR_014574

Profusion EEG 5 Software Compumedics N/A

SVD code University College

London – Cortex Lab

https://github.com/cortex-lab/widefield

MATLAB MathWorks RRID:SCR_001622

pCLAMP Clampex Software (10.3 or 10.5) Molecular Devices RRID:SCR_011323

Axograph X Software Axograph Scientific RRID:SCR_014284

AxIS Software v2.4 Axion Biosystems RRID:SCR_016308

R package - meaRtools Gelfman et al., 2018 https://cran.r-project.org/web/packages/

meaRtools/

NeuroExplorer Software Nex Technologies RRID:SCR_001818

Prism 7 GraphPad RRID:SCR_002798

SPSS IBM RRID:SCR_002865
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Matthew

C. Weston (mcweston@uvm.edu).

Materials Availability
The Kcnt1Y777H mouse line is available from the Lead Contact, Matthew C. Weston (mcweston@uvm.edu), with a completed Mate-

rials Transfer Agreement.

Data and Code Availability
This study did not generate datasets or code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All mice were bred, and procedures were conducted at the Jackson Laboratory, at Columbia University Irving Medical Center, or at

the University of Vermont. Each institution is fully accredited by the Association for Assessment and Accreditation of Laboratory An-

imal Care, and all protocols were approved by their respective Institutional Animal Care and Use Committees. All experiments were

performed in accordance with respective state and federal Animal Welfare Acts and the policies of the Public Health Service. The

animal protocol numbers for Columbia University were: AC-AAAU8484, AC-AAAZ8450, AC-AAAR4414, AC-AAAU8476, and AC-

AAAT6474, and the University of Vermont were: 16-001 and 19-034.

Kcnt1Y777H knockinmice (formal gene and allele symbol:Kcnt1em1(Y777H)Frk) were generated in the C57BL/6NJ (B6NJ)mouse strain

(The Jackson Laboratory, JAX: 005304) using CRISPR/Cas9 and an oligonucleotide donor sequence as part of the Jackson

Laboratory Center for Precision Genetics program (JCPG, https://www.jax.org/research-and-faculty/research-centers/

precision-genetics-center), and maintained by backcrossing heterozygous males to wild-type B6NJ females. Kcnt1Y777H

mice were genotyped using PCR amplification primers (Kcnt1 forward primer: 50-CTAGGGCTGCAAACACAACA-30; Kcnt1 reverse
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primer: 50-TCAAGCAGCAACACGATAGG-30) with standard thermocycler amplification conditions using MyTaq master mix (Bioline,

BIO-25041), and the annealing temperature set at 58�C. Following amplification, a restriction cut was performed with the enzyme

NlaIII (NEB, R0125S) to distinguish mutant (127 and 44 bp products after cut) from wild-type alleles (171 bp product). For some ex-

periments, as noted in the text, male mutant mice were crossed with FVB.129P2-Pde6b+ Tyrc-ch/AntJ (The Jackson Laboratory,

JAX: 004828) dams to generate cohorts of N2 or F2 hybrid mice.

The following additional mouse lines and strains were used for these studies: Snap25-2A-GCaMP6s-D knockin (B6.Cg-

Snap25tm3.1Hze/J, The Jackson Laboratory, JAX: 025111) and C57BL/6J (The Jackson Laboratory, JAX: 000664). Mice were main-

tained in ventilated cages at controlled temperature (22–23�C), humidity�60%, and 12-h light: 12-h dark cycles (lights on at 7:00 AM,

off 7:00 PM). Mice had access to regular chow and water, ad libitum. For all experiments, male and female littermates were used for

each genotype. The ages of the mice for each experiment are indicated in the Method Details section.

Primary Astrocyte Feeder Layer Culture
Astrocyte feeder layers, to support the growth and maintenance of primary neurons, were generated as previously described (Bar-

rows et al., 2017). Briefly, cortices were dissected from P0-1WT C57BL/6J mice of either sex. The cortices were incubated in 0.05%

trypsin-EDTA (GIBCO, 25300-054) for 15min at 37�C in a Thermomixer (Eppendorf) with gentle agitation (800 rpm). Then, the cortices

were mechanically dissociated with a 1-mL pipette tip, and the cells were plated into T-75 flasks containing filter-sterilized astrocyte

media [DMEMmedia supplemented with glutamine (GIBCO, 10569-010), 10% fetal bovine serum (FBS, GEHealthcare, SH3008803),

1X MITO+ Serum Extender (Corning, 355006), and 0.2X penicillin/streptomycin (GIBCO, 15140-122)]. After the astrocytes reached

confluency, they were washed with PBS and incubated for 5 min in 0.05% trypsin-EDTA at 37�C, washed, and then resuspended in

astrocyte media. Astrocytes were added to 6-well plates containing 25-mm coverslips (Carolina Biological, 633037) precoated with

coating mixture [0.7 mg/ml collagen I (Corning, 354236) and 0.1 mg/ml poly-D-lysine (Sigma-Aldrich, P6407) in 10 mM acetic acid].

Primary Cortical Neuron Culture for Electrophysiology
For the primary neuron culture, the dorsomedial cortices fromP0-1WT andKcnt1m/mmice of either sexwere dissected in cold HBSS.

The tissue was then digested with papain (Worthington Biochemical, LS003126) for 60-75 min and treated with an ovomucoid inhib-

itor solution (Worthington Biochemical, LS003085) for 10 min, both while shaking at 800 rpm at 37�C in a Thermomixer (Eppendorf).

The cells were then mechanically dissociated and counted. The dissociated cells were added at 200,000 cells/well to 6-well plates

containing astrocyte-coated coverslips in filter-sterilized NBA plus [Neurobasal-A medium (GIBCO, 10888-022) supplemented with

1X GlutaMAX (GIBCO, 35050-061), 1X B27 supplement (GIBCO, 17504-044), and 0.2X penicillin/streptomycin (GIBCO, 15140-122)].

After plating (12-24 h), approximately 43 1010 genome copies (GC) of AAV8-CaMKIIa-GFP, serotype 8 (UNC Gene Therapy Center -

Vector Core) was added to each well to fluorescently label glutamatergic neurons. Every 3-4 days, 20%–40% of the media was re-

placed with fresh NBA plus.

METHOD DETAILS

Western Blotting
For crude membrane/cytosol fractioning, P0 cortices of either sex were homogenized in the following homogenization buffer: 0.32 M

sucrose, 10 mMHEPES pH 7.4, 2 mM EDTA in H2O, containing a protease, and a phosphatase, inhibitor cocktail. The samples were

homogenized with amotor-driven homogenizer and centrifuged at 10003 g for 15min at 4�C to remove the pelleted nuclear fraction.

The supernatant was further centrifuged at 16000 rpm for 20 min at 4�C to yield the cytosolic fraction in the supernatant and the pel-

leted membrane fraction. The pellet was resuspended in homogenization buffer. Protein concentrations were determined with the

Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, 23225) using BSA as a standard. Sample protein (10 mg) was mixed with

4X LDS Sample Buffer (NuPAGE, NP0007), and 10X Sample Reducing Agent (NuPAGE, NP0009), heated for 10 min at 70�C, sepa-
rated on a 4%–12% Bis-Tris Mini Gel (NuPAGE, NP0321), and transferred to a PVDF membrane (Millipore, ISEQ00010). Nonspecific

binding was blocked for 1 h at RT with 5%BLOTTO (Bio-Rad, 1706404) in Tris-buffered saline with 0.1% Tween (TBST). Membranes

were incubated overnight at 4�C with the primary antibody mouse anti-KCNT1 (1:1000, Abcam, ab94578), washed 3 3 10 min with

TBST, incubated with the secondary antibody HRP-conjugated goat anti-mouse (1:10000, Santa Cruz Biotechnology, sc-2005) in

5%BLOTTO for 1 h at RT, and washed again 33 10min with TBST. Blots were incubated for 5 min with Pierce ECLWestern Blotting

Substrate (Thermo Fisher Scientific, 32106) and developedwith a Kodak X-OMAT 2000A Processor. Blots were stripped for 15min at

RT in ReBlot Plus Strong Solution (Millipore. 2504), blocked for 30 min in 5% BLOTTO, incubated for 1 h at RT with an HRP-conju-

gated mouse anti-b-actin antibody (1:5000, Santa Cruz Biotechnology, sc-47778) in 5% BLOTTO, and developed as previously

described. b-actin was used as a loading control.

Mouse Brain Morphology and Histology
WT, Kcnt1m/+, and Kcnt1m/m littermate mice of either sex were anesthetized with 1.5%–2.5% isoflurane and oxygen at P28, or 10-

12 weeks of age, and transcardially perfused with PBS, followed by 4% paraformaldehyde in PBS (pH 7.4). Brains were dissected

and then post-fixed overnight in 4% paraformaldehyde at 4�C. Next, brains from 10-12-week-old mice were washed with PBS,

weighed, and imaged to assess gross morphology. Then, all brains were cryoprotected with 30% sucrose until sectioning. To sec-
Cell Reports 33, 108303, October 27, 2020 e3
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tion, brains were frozen in Tissue-Plus O.C.T. Compound (Fisher, 23-730-571) and sectioned into 40-mm coronal slices using a cryo-

stat. Brain sections were stored in a cryoprotectant solution with 30% ethylene glycol, 20% glycerol, and 50% 1X PBS until use.

Brain sections from P28mice were stained with a NeuroTrace fluorescent Nissl stain (1:50, Molecular Probes, N-21482), according

to the manufacturer’s instructions, andmounted in Fluoromount-GMountingMedium, with DAPI (Fisher, 00-4959-52). Nissl-stained,

whole coronal section images were continuously captured with a motorized stage and automatically stitched using a 4X objective on

a Nikon-A1R-ER confocal laser microscope with NIS Elements software (eight images, 10% overlap/section).

Mouse Behavioral Tasks – Open Field Exploration
Each mouse was gently placed in the center of a clear Plexiglas arena (7.313 27.313 20.32 cm, Med Associates, ENV-510) lit with

dim light (�5 lux), and allowed to ambulate freely for 60 min. Infrared (IR) beams embedded along the X, Y, Z axes of the arena auto-

matically tracked distance moved, horizontal movement, vertical movement, stereotypies, and time spent in center zone. At the end

of the test, the mouse was returned to the home cage and the arena was cleaned with 70% ethanol followed by water drying.

Mouse Behavioral Tasks – Elevated Plus Maze
The elevated plus maze test was conducted as described previously (Yang et al., 2012). The elevated plus maze consisted of two

open arms (30 3 5 cm) and two closed arms (30 3 5 x 15 cm) extending from a central area (5 3 5 cm). Photo beams embedded

at arm entrances registered movements. Room illumination was approximately 5 lux. The test began by placing the subject mouse

in the center, facing a closed arm. The mouse was allowed to freely explore the maze for 5 min. Time spent in the open arms and

closed arms, the junction, and number of entries into the open arms and closed arms, were automatically scored by the MED-PC

V 64-bit software (Med Associates, SOF-736). At the end of the test, the mouse was gently removed from the maze and returned

to its home cage. The maze was cleaned with 70% ethanol and wiped dry between subjects.

Mouse Behavioral Tasks – Acoustic Startle Response
Acoustic startle responsewas tested using the SR-LABStartle Response Systemwith SR-LAB software (SanDiego Instruments, San

Diego, CA) as described previously (Yang et al., 2012). Test sessions began by placing themouse in the Plexiglas holding cylinder for

a 5-min acclimation period. For the next 8 min, mice were presented with each of six trial types across six discrete blocks of trials, for

a total of 36 trials. The intertrial interval was 10–20 s. One trial type measured the response to no stimulus (baseline movement). The

other five trial types measured startle responses to 40 ms sound bursts of 80, 90, 100, 110, or 120 dB. The six trial types were pre-

sented in pseudorandom order such that each trial type was presented once within a block of six trials. Startle amplitude was

measured every 1 ms over a 65 ms period beginning at the onset of the startle stimulus. The maximum startle amplitude over this

sampling period was taken as the dependent variable. A background noise level of 70 dB was maintained over the duration of the

test session.

Mouse Behavioral Tasks – Fear Conditioning
Training and conditioning tests were conducted in two identical chambers (Med Associates) that were calibrated to deliver identical

footshocks. Each chamber was 303 243 21 cm with a clear polycarbonate front wall, two stainless side walls, and a white opaque

back wall. The bottom of the chamber consisted of a removable grid floor with a waste pan underneath. When placed in the chamber,

the grid floor connected with a circuit board for delivery of scrambled electric shock. Each conditioning chamber was inside a sound-

attenuating environmental chamber (Med Associates). A camera mounted on the front door of the environmental chamber recorded

test sessions, which were later scored automatically using the Video Freeze software (Med Associates, SOF-843). For the training

session, each chamber was illuminated with a white house light. An olfactory cue was added by dabbing a drop of imitation almond

flavoring solution (1:100 dilution in water) on the metal tray beneath the grid floor. The mouse was placed in the test chamber and

allowed to explore freely for 2 min. A pure tone (5 kHz, 80 dB), which serves as the conditioned stimulus (CS), was played for 30

s. During the last 2 s of the tone, a footshock (0.5 mA) was delivered as the unconditioned stimulus (US). Each mouse received three

CS-US pairings, separated by 90 s intervals. After the last CS-US pairing, the mouse remained in the chamber for another 120 s,

during which freezing behavior was scored by the Video Freeze software. Themouse was then returned to its home cage. Contextual

conditioning was tested 24 h later in the same chamber, with the same illumination and olfactory cue present but without footshock.

Eachmouse was placed in the chamber for 5 min, in the absence of CS and US, during which freezing was scored, and then returned

to its home cage. Cued conditioning was conducted 48 h after training. Contextual cues were altered by covering the grid floor with a

smooth white plastic sheet, inserting a piece of black plastic sheet bent to form a vaulted ceiling, using near infrared light instead of

white light, and dabbing vanilla instead of banana odor on the floor. The session consisted of a 3 min free exploration period followed

by 3min of the identical CS tone (5 kHz, 80 dB). Freezing was scored during both 3min segments. Themousewas then returned to its

home cage, and the chamber thoroughly cleaned of odors between sessions using 70% ethanol and water.

Mouse Behavioral Tasks – Nesting
The nesting test was performed as previously described (Deacon, 2006). Briefly, mice were placed in individual cages at 6 pm, with a

piece of nestlet weighing 2.5 g. The next morning, the remaining unshredded nestlet was weighed and a nesting score between 1 (no

nest) and 5 (perfect nest) was attributed depending on nest quality.
e4 Cell Reports 33, 108303, October 27, 2020
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Video-Electroencephalogram
Electrode implantation of adult (> 7 weeks of age) male and femalemice was performed surgically as recently described (Asinof et al.,

2016). Mice were anesthetized with tribromoethanol (250 mg/kg i.p., Sigma-Aldrich, T48402). Three small burr holes were drilled in

the skull (1 mm rostral to the bregma on both sides and 2 mm caudal to the bregma on the left) 2 mm lateral to the midline. One hole

was drilled over the cerebellum as a reference. Using four teflon-coated silver wires soldered onto the pins of a microconnector

(Mouser electronics, 575-501101), the wires were placed between the dura and the brain and a dental cap was then applied. The

mice were given a post-operative analgesic of carprofen (5 mg/kg subcutaneous Rimadyl injectable) and allowed a 48-h recovery

period before recordings were taken. To record EEG signals, mice were connected to commutators (Plastics One) with flexible

recording cables to allow unrestrictedmovements within the cage. Signal (200 samples/s) was acquired on aGrael II 48 EEGamplifier

(Compumedics), and the data were examined in Profusion EEG 5 software (Compumedics). Differential amplification recordingswere

recorded pairwise between all three electrodes, as well as referential, providing a montage of six channels for each mouse. Mouse

activity was captured simultaneously by video monitoring using a Sony IPELA EP550 model camera, with an infrared light to allow

recordings in the dark. We recorded continuously for 24-72 h.

For sleep analysis, we used a custom-written MATLAB program to classify wake, NREM sleep, and REM sleep, and to detect

GTCS and TS events. The program first used fast Fourier transform (FFT) to calculate the power spectrum of the EEG using a 5 s

sliding window, sequentially shifted by 2 s increments. Then it semi-automatedly classified into different brain states using the

following criteria: NREM sleep, high power at low frequencies (1-4 Hz) and low EMG activity; REM sleep, high power at theta fre-

quencies (6-9 Hz) and low EMG activity; GTCS and TS, high power at ‘‘seizure’’ frequencies (19-23 Hz); and wake, the remaining

(or default) state.We chose the 19-23Hz band to detect seizures based on its clear separation from normal brain oscillatory activities.

The classification was followed by manual inspection to further refine the scoring. Brain states prior to each GTCS/TS event were

used in Table S1.

Widefield Calcium Imaging
Male and female mice that were heterozygous for the Snap25-GCaMP6s construct (Madisen et al., 2015) (Jackson Labs Stock No:

025111) and either homozygous Y777H or WT at the Kcnt1 locus were generated. To gain optical access to the dorsal cortex, the

animal’s scalp and the underlying periosteum were removed before coating the dorsal skull with UV cure cyanoacrylate (Loctite

4305) and attaching a custom aluminum headplate to the skull. This headplate framed the glue covered skull and allowed the animal

to be secured on a 20-cm diameter Styrofoam treadwheel during imaging sessions. In one homozygous mutant mouse the dorsal

skull was removed entirely and replaced with a glass window (Labmaker, Crystal Skull) following a previously described protocol

(Kim et al., 2016). Imaging was performed using a custom tandem-lens epifluorescence macroscope built according to a design pre-

viously described (Wekselblatt et al., 2016). This macroscopewas configured for 2.1Xmagnification using a Nikon Nikkor 50mm f/1.2

lens paired with a Nikon 105mm f/1.8 lens. During all sessions, images were acquired at 40 Hz with an Andor Zyla 5.5 10-tap sCMOS

camera set to 4 3 4-pixel binning. Successive frames were illuminated with blue and green light, and the green reflectance images

were used to estimate changes in fluorescence resulting from hemodynamic factors and correct for them in GCaMP images. For blue

illumination, we used an X-Cite 120 LED (Lumen Dynamics, XT120L) with a filter set consisting of an ET470/40x excitation filter, a

T495lpxr dichroic, and an ET525/50m emission filter (Set 49002, Chroma Technology, Bellows Falls, VT). Total blue light power deliv-

ered to the implant typically ranged from 18-21mW. For green illumination, we used a 530 nm 6.8 mW Thorlabs LED (M530F2) driven

by a Thorlabs tcube (LEDD1B) coupled to a fiber optic obliquely pointed at the brain. To switch illumination sources between frames,

we relied on an Arduino Uno R3 (A000066) microcontroller operating on the Zyla ‘expose’ signal. At the beginning of each session, we

exposed a dark frame in which no illumination was used. This frame was subtracted from all illuminated frames in the session as the

first processing step. Subsequently, reflectance and GCaMP images were deinterleaved and linearly interpolated from 20 to 40 Hz.

We calculated DF/F for each pixel in the image that covered the brain, as defined by a hand-drawn mask. We estimated F for each

pixel as the average of the bottom 20th percentile of fluorescent values over the entire session. Following DF/F calculation, we sub-

tracted fractional green fluorescence (DF/Fmean) with Fmean calculated over the full session. Finally, we performed Singular Value

Decomposition (SVD) on the DF/F image stacks and reconstructed images using the first 50 singular values for all subsequent anal-

ysis. The SVD code was a modification of that provided by the Cortex Lab group at University College London. To rigidly align area

borders derived from the Allen Common Coordinate Framework v3 to each brain, we relied on the landmark-based strategy previ-

ously described (Musall et al., 2019).

Mouse Pup Electrocorticography
Eight Kcnt1m/m and five WT pups of either sex at P13-15 were used for in vivo electrophysiology. All experiments were performed in

accordance with protocols approved by IACUC at Columbia University Irving Medical Center. Pups were anesthetized using isoflur-

ane and electromyography (EMG) electrodes were placed for real-time monitoring of respiratory rate, heart rate, and muscle activity.

The animals were then given systemic and local analgesia, head-fixed, and a craniotomywasmade over the dorsal cortical surface of

one hemisphere. This craniotomywas centered over somatomotor cortex, spanning 2.5mm in themediolateral direction and 3.5mm

in the anterioposterior direction between bregma and lambda. A NeuroGrid (ultra-conformable, biocompatible surface electrocorti-

cography array, 119 electrodes, 177 mm pitch) array was placed on the surface of the dura and covered with a piece of sterile com-

pressed sponge. The pup was transferred to a temperature and humidity-controlled enclosure and allowed to recover for 30 min,
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after which recording commenced. Signals were amplified, digitized continuously at 20 kHz using a head-stage directly attached to

the NeuroGrid (RHD2000, Intan Technology), and stored for offline analysis with 16-bit format. Data were analyzed using MATLAB

(MathWorks) and visualized using Neuroscope. At the completion of electrophysiological recording, pups were euthanized.

Neurophysiologic recordings were synchronized with the EMG signals to facilitate identification and elimination of any epochs with

artifacts from subsequent analysis. Ictal patterns were identified using a line length algorithm and confirmed with visual screening of

the raw data. Interictal epileptiform discharges were detected using previously employed frequency and duration features (Gelinas

et al., 2016).

Cortical Neuron Culture Electrophysiology
Whole-cell recordings were performed with patch-clamp amplifiers (MultiClamp 700B; Molecular Devices) under the control of

pClamp Clampex 10.3 or 10.5 software (Molecular Devices). Data were acquired at 20 kHz and low-pass filtered at 6 kHz. The series

resistance was compensated at 70%, and only cells with series resistances maintained at less than 15 MU were analyzed. Patch

electrodes were pulled from 1.5-mm o.d. thin-walled glass capillaries (Sutter Instruments, BF150-86-75) in five stages on a micro-

pipette puller (model P-97; Sutter Instruments). Internal solution contained the following: 136 mM K-gluconate, 17.8 mM HEPES,

1mMEGTA, 0.6mMMgCl2, 4mMATP, 0.3mMGTP, 12mMcreatine phosphate, and 50U/ml phosphocreatine kinase. Alternatively,

internal solution contained: 136 mm KCl, 17.8 mm HEPES, 1 mm EGTA, 0.6 mm MgCl2, 4 mm ATP, 0.3 mm GTP, 12 mm creatine

phosphate, and 50 U/ml phosphocreatine kinase. The pipette resistance was between 2 and 4 MU. Standard extracellular solution

contained the following (in mM): 140 NaCl, 2.4 KCl, 10 HEPES, 10 glucose, 4MgCl2, and 2CaCl2 (pH 7.3, 305mOsm). All experiments

were performed at room temperature (22–23�C). Whole-cell recordings were performed on cortical neurons from control and mutant

groups in parallel on the same day (day 13–16 in vitro). All experiments were performed by two independent investigators blinded to

the genotypes. Electrophysiology data were analyzed offline with AxoGraph X software (AxoGraph Scientific).

For current-clamp experiments, the intrinsic electrophysiological properties of neurons were tested by injecting 500-ms square

current pulses incrementing in 20 pA steps, starting at �100 pA. Resting membrane potential (Vm) was calculated from a 50 ms

average before current injection. The membrane time constant (Tau, t) was calculated from an exponential fit of current stimulus

offset. Input resistance (RIn) was calculated from the steady state of the voltage responses to the hyperpolarizing current steps. Mem-

brane capacitance (Cm) was calculated by dividing the time constant by the input resistance. Action potentials (APs) were evoked

with 0.5 s, 20 pA depolarizing current steps. AP threshold was defined as the membrane potential at the inflection point of the rising

phase of the AP. AP amplitude was defined as the difference in membrane potential between the AP peak and threshold, and the

afterhyperpolarization was the difference between the AP threshold and the lowest Vm value within 50 ms. The AP half-width was

defined as the width of the AP at half-maximal amplitude. The maximum depolarization and repolarization rates were determined

by differentiating the AP waveform and finding the peak values. To obtain the neuron’s maximum firing frequency, depolarizing cur-

rents in 20-pA steps were injected until the number of APs per stimulus reached a plateau phase. Rheobase was defined as the min-

imum current required to evoke an AP during the 500ms of sustained somatic current injections. AP half-width adaptation was deter-

mined by dividing the half-width of the last AP of a train at steady state frequency by the first. AP frequency adaptation was

determined by dividing the mean interspike interval of the last four APs by the minimum. The membrane potential values were not

corrected for the liquid junction potential. GABAergic neurons were classified as fast spiking (FS) if their maximum mean firing

rate reached above 60 Hz and their AP half-widths increased by less than 25% during the AP train (Casale et al., 2015; Avermann

et al., 2012). All others were considered non-fast spiking (NFS).

For voltage-clamp experiments to measure synaptic currents, two neurons were patched simultaneously and held at �70 mV,

except for evoked IPSC measurements, for which postsynaptic neurons were held at 0 mV. PSCs were triggered by a 2 ms somatic

depolarization to 0mV. The shape of the evoked response, the reversal potential and the effect of receptor antagonists [10 mMNBQX

(Tocris, 1044) or 20 mM bicuculline (BIC, Hello Bio, HB0893)] were analyzed to verify the glutamatergic or GABAergic identities of the

currents. Neurons were stimulated at 0.1 Hz in standard external solution to measure basal-evoked synaptic responses. Sponta-

neous synaptic potentials were recorded in control solution with either NBQX or bicuculline to isolate EPSCs or IPSCs, respectively.

Data were filtered at 1 kHz and analyzed using template-basedminiature event detection algorithms implemented in the AxoGraph X.

The threshold for detection was set at three times the baseline SD from a template of 0.5 ms rise time and 3 ms decay. The E/I ratio

was calculated as the product of the sEPSC frequency and charge over the sum of the sEPSC frequency and charge and the product

of the sIPSC frequency and charge.

KNa Current Measurements
For voltage-clamp experiments to measure the sodium-activated K+ current, neurons were held at �70 mV and given 1 s voltage

pulses in 10 mV steps over a range of �80 to +50 mV. Recordings were obtained for each cell in standard extracellular solution

or extracellular solution containing 0.5 mM Tetrodotoxin (TTX, Abcam, ab120055). To minimize rundown, experiments were started

only after test pulses produced stable delayed outward currents. After steps in standard solution, TTX was applied directly on the

recorded neuron with a custom-built fast flow perfusion system capable of complete solution exchange in less than 1 s. After

30 �40 s in TTX, the step protocol was repeated. Current traces from the TTX solution were then subtracted from the current traces

obtained from the standard solution to obtain the difference current. The difference current over the 100 ms at the end of the voltage

pulse was considered the steady state KNa current. Conductance (G) was calculated by dividing the current at each step by the
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driving force for K+. Activation curves were created by normalizing the G values to the maximum for each cell. The resulting curves

were fit with a Boltzmann sigmoid function with the bottom constrained to 0 to obtain the voltage at half max conductance (V50). Un-

constrained fits excluding values at voltage steps below 0 mV to minimize the effect of the TTX-sensitive inward current showed the

same significant left-shifts in FS and NFS Kcnt1m/m GABAergic neurons while glutamatergic neurons were not different. Slope was

not significantly different for any tests.

Multi-electrode Arrays
One to seven days before isolation of cortical neurons, 48-well MEA plates (Axion Biosystems, M768-KAP-48) were coated with

50 mg/mL poly-D-lysine (Sigma-Aldrich, P0899-50MG) in borate buffer, then washed three times with PBS and stored in PBS at

4�C until use. Prior to use, PBS was aspirated, and plates were dried in a sterilized hood. Cortices were dissected from the brains

of P0 C57BL/6NJ WT or Kcnt1m/m mice of either sex. Pups were decapitated, weighed, and genotyped. The entire cerebral cortex

was rapidly dissected and cut into small pieces under sterile conditions in cold Hibernate A solution (GIBCO, A1247501). Cortices

from two WT or Kcnt1m/m pups were pooled together. The dissected cortices were then enzymatically digested in 20 U mL-1 Papain

plus DNase (Worthington Biochemical, LK003178 and LK003172) diluted in Hibernate A for 20 min at 37�C. Cells were pelleted by

centrifugation at 300RCF for 5 min, and then the digestion was neutralized by aspirating off the supernatant and adding warm Hiber-

nate Amedia. Cells were mechanically dissociated by trituration and counted using a hemocytometer with Trypan blue counterstain.

Cells were pelleted by centrifugation at 300RCF for 5 min and resuspended at a density of 6,000 cells/ml in warm Neurobasal-A

(GIBCO, 10888-022) + 1X B27 supplement (GIBCO, 17504-044) + 1X GlutaMax (GIBCO, 35050-061) + 1% HEPES (GIBCO,

15630-080) + 1% Penicillin/Streptomycin (GIBCO, 15140-122) + 1% FBS (GIBCO, 26140-079) + 5 ug/mL Laminin (Sigma-Aldrich,

L2020). 50,000 cells were plated on a pre-coated 48-well MEA plate in a 40 mL drop. The day after plating (DIV1), 100% of the media

was removed and replaced with warm Neurobasal-A + 1X B27 supplement + 1X GlutaMax + 1% HEPES + 1% Penicillin/Strepto-

mycin (NBA/B27 medium). Glial growth was not chemically suppressed. Cultures were maintained at 37�C in 5% CO2. Media was

50% changed every other day with fresh, warm NBA/B27 starting on DIV3, after each recording session.

MEA recordings were conducted on media change days prior to media change starting on DIV5. Plates were equilibrated for 5 min

then recorded for 15 min/day using an Axion Biosystems Maestro 768 channel amplifier (Axion Biosystems) at 37�C in a CO2 gas-

controlled chamber with Axion Integrated Studios (AxIS) software v2.4 (Axion Biosystems). Each well of a 48-well plate is comprised

of 16 electrodes on a 4 3 4 grid, with each electrode capturing activity of nearby neurons. A Butterworth band-pass filter (200-

3000 Hz) and an adaptive threshold spike detector set at 7X the standard deviation of the noise was used during recordings. Raw

data and spike list files were collected. Spike list files were used to extract additional spike, burst, and network features, using a

custom MEA analysis software package for interpretation of neuronal activity patterns, meaRtools, based on rigorous permutation

statistics that enables enhanced identification of over 70 activity features (Gelfman et al., 2018). Specifically, we analyzed spiking and

bursting rates, burst duration, and the time between bursts (i.e., interburst interval, IBI), as well as synchronicity of the network. We

determined the parameters for detecting neuronal bursts and network events based on published reports and experimentation (Mack

et al., 2014; McConnell et al., 2012). Activity data were inspected to remove inactive electrodes and wells. For an electrode to be

considered active, we required that at least five spikes/min were recorded. Wells in which fewer than 4 electrodes were active for

> 50% of the days of recording were considered inactive and removed from analyses. For synchronous network events, at least 5

electrodes (> 25% of the total in a well) were required to participate in a network event for the network event to qualify as a network

spike or burst. Eventswith fewer participating electrodeswere filtered. Bursts were detected using themaximum interval burst detec-

tion algorithm (NeuroExplorer software, Nex Technologies) implemented in the meaRtools package. We required that a burst consist

of at least 5 spikes and last at least 0.05 s, and that themaximum duration between two spikes within a burst be 0.1 s at the beginning

of a burst and 0.25 s at the end of a burst. Adjacent bursts were further merged if the duration between them was less than 0.8 s.

These parameters were chosen based on literature and on in-house experimentation (Mack et al., 2014). To analyze data over

time, we performed permutedMann-Whitney U tests. The values for each well for the chosen DIVs were combined and aMann-Whit-

ney U (MWU) test was performed. The labels for each well (WT versus Kcnt1m/m) were then shuffled and permuted 1,000 times to

create 1,000 datasets that were tested for significance using an MWU test. We report the permuted p values as the rank of the

true p value within the distribution of permuted p values. We also report the combined p value of the plates, calculated using an

R script developed in-house.

Slice Electrophysiology
P20–29male and femalemicewere deeply anesthetizedwith isoflurane and decapitated. The brain was removed and 350 mmcoronal

slices of frontal cerebral cortex were cut in ice-cold cutting solution (126 mM NaCl, 25 mM NaHCO3, 10 mM d-glucose, 3.5 mM KCl,

1.5 mM NaH2PO4, 0.5 mM CaCl2, 10.0 mM MgCl2) with a Leica VT1000S. Slices were then transferred to a storage chamber with

fresh artificial cerebrospinal fluid (aCSF) containing 126 mM NaCl, 3.5 mM KCl, 1.0 mM MgCl2, 2.0 mM CaCl2, 1.5 mM NaH2PO4,

25 mM NaHCO3, and 10 mM d-glucose, pH 7.3-7.4, and were incubated at 37�C for 30 min. The slices were then incubated at

room temperature for at least another 30 min before recording. All solutions were continuously bubbled with 95% O2 and 5% CO2.

Whole-cell current-clamp and recordings were obtained from cortical layer 2/3 pyramidal cells and interneurons at 32�C using a

Multiclamp 700B and Clampex 10.5 software (Molecular Devices). Individual slices were transferred to a recording chamber located

on an upright microscope (BX51; Olympus) and were perfused with oxygenated aCSF (2 mL/min). Neurons were visualized using IR-
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differential interference contrast microscopy. Layer 2/3 pyramidal cells were distinguished from interneurons by their triangular

morphology, large soma, and pronounced apical dendrite. NFS GABAergic cells were distinguished from pyramidal neurons by their

typical ovoid-shaped cell bodies and were finally confirmed by electrophysiological recordings as displaying shorter AP half-widths

and higher peak AP frequency (Avermann et al., 2012). Intracellular solution contained (in mM): 136 mM K-gluconate, 17.8 mM

HEPES, 1 mM EGTA, 0.6 mM MgCl2, 4 mM ATP, 0.3 mM GTP, 12 mM creatine phosphate, and 50 U/ml phosphocreatine kinase,

pH 7.2. When patch electrodes were filled with intracellular solution, their resistance ranged from 4–6 MU. Access resistance was

monitored continuously for each cell. The protocols and determination of electrophysiological parameters were conducted as

described above for the culture recordings. All experiments were performed and analyzed by an investigator blinded to the animal

genotypes.

QUANTIFICATION AND STATISTICAL ANALYSIS

Prism 7 (GraphPad Prism, RRID:SCR_002798) was used to perform statistical tests on adult behavioral tests and to create all graphs.

Multiple group comparisons were done using two-tailed t test with correction using the Holm-Sidakmethod,Mann-Whitney U test, or

two-way repeated-measures ANOVA with correction using the Sidak’s test, as indicated. Statistics for MEA data and seizure fre-

quency were performed in R using a Mann-Whitney U test with 1,000 permutations.

To test for statistical significance for all whole cell electrophysiology experiments, we used generalized linear mixed models

(GLMM) in SPSS (26.0 Chicago, III (IBM, RRID:SCR_002865), which allows for within-subject correlations and the specification of

the most appropriate distribution for the data. Because neurons and animals from the same culture or animal are not independent

measurements, culture or litter was used as the subject variable, and animals and neurons were considered within-subject measure-

ments. All data distributions were assessed with the Shapiro-Wilk test. Datasets that were significantly different from the normal dis-

tribution (p < 0.05) were fit with models using the gamma distribution and a log link function, except for synaptic connection prob-

ability, which was fit with the binomial distribution and probit link. Normal datasets were fit with models using a linear distribution and

identity link. We used the model-based estimator for the covariance matrix and goodness of fit was determined using the corrected

quasi likelihood under independencemodel criterion and by the visual assessment of residuals. All values reported in the text, figures,

and tables are estimated marginal means ± standard error.
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Figure S1 
 

Figure S1. Behavioral phenotypes in Kcnt1m/m mice. (A) Line graphs show results from the Open Field 
test, including distance traveled, vertical exploration, and center time, in 10 min increments for 60 min. 
***p<0.001; Two-way repeated measures ANOVA. (B) For the Elevated Plus Maze test, the percent of 
time spent in open arms, closed arms, or at the junction (left), as well as the total number of entries in 
the arms (right), is shown. Unpaired two-tailed t-test with Holm-Sidak correction. (C) For the Fear 
Conditioning test, freezing behavior was measured to assess cued and contextual memory. **p<0.01; 
Mann-Whitney U test. (D) For the Acoustic Startle Response test, startle responses (maximal amplitude) 
were measured across increasing sound bursts (dB). Two-way repeated measures ANOVA. (E) For the 
Nesting Behavior tests, the nest quality (left; nesting score) and weight of remaining intact nesting 
material (right) are shown. n = 8 WT female, 10 WT males, 13 Kcnt1m/m females, and 11 Kcnt1m/m males. 
*p<0.05; ***p<0.001; Unpaired two-tailed t-test with Holm-Sidak correction. n.s., not significant. 
Related to Figure 1. 



Figure S2 
 

 
Figure S2. Cortical areas mapped using the Allen Mouse Brain Common Coordinate Framework (CCF). 
Map areas numbered in red were imaged, at least partially, in all sessions by widefield calcium imaging. 
Alignment of the activity maps from Kcnt1m/ m-G6s mice to the Allen Mouse CCF showed that the 
interictal epileptiform discharges localized primarily to the secondary motor cortex region (area 1), 
suggesting a regional specificity to the interictal hyperexcitability in Kcnt1m/ m mice. Related to Figure 2. 
 
 
 

 
 
 
 
 
 



Figure S3 

 
Figure S3. KCNT1 expression in glutamatergic and GABAergic neurons from mouse and human cortex.  
(A) RNA-seq data from the Allen Cell Types Database for mouse cortex (https://portal.brain-
map.org/atlases-and-data/rnaseq/mouse-whole-cortex-and-hippocampus-smart-seq). The heat map 
shows the median Kcnt1 transcript levels (top row) for all GABAergic neuron clusters and excitatory 
pyramidal cell clusters in layer 2/3. Each vertical bar represents a cluster. Below are markers for 
GABAergic (Gad1) and glutamatergic (Vglut1) neurons, as well as markers for subpopulations of 
GABAergic neurons showing relatively high expression of Kcnt1 in Sst and Pvalb-expressing neurons. 
(B) RNA-seq data from the Allen Cell Types Database for human cortex (https://portal.brain-
map.org/atlases-and-data/rnaseq/human-multiple-cortical-areas-smart-seq). The heat map shows the 
trimmed mean KCNT1 transcript levels (top row) for all GABAergic neuron clusters and all excitatory 
pyramidal cell clusters that contain layer 2/3 neurons. Each vertical bar represents a cluster. Below are 
markers for GABAergic (GAD1) and glutamatergic (VGLUT1) neurons, as well as markers for 
subpopulations of GABAergic neurons showing relatively high expression of KCNT1 in SST and PVALB-
expressing neurons. Related to Figures 4, 5, and 7. 
 



Figure S4 

 
Figure S4. The changes in Kcnt1m/m NFS neuron KNa currents are not due to alterations in neuron size. 
(A and B) Current-voltage plots of the membrane current (mean ± SEM) normalized to the capacitance 
recorded in control (blue), and 0.5 µM TTX (green) -containing, extracellular solution from WT (A) and 
Kcnt1m/m NFS (B) neurons. The difference current (yellow) was calculated by subtracting the membrane 
current in TTX from the response in control external solution for each neuron. (C) Comparison of the 
TTX-sensitive current density (mean ± SEM) for each voltage step from -80 to 50 mV in WT and Kcnt1m/m 
NFS neurons. (D) Comparison of the TTX-sensitive current density (mean ± SEM) for each voltage step 
from -80 to 0 mV in WT and Kcnt1m/m NFS neurons to illustrate the values that are too small to be seen 
on the plot in panel C. Statistical significance for I-V plots was tested using Generalized Linear Mixed 
Models with genotype and current step as fixed effects, followed by pairwise comparisons at each level. 
P-values < 0.05 are labeled on the plot in panel C as red asterisks. Related to Figure 5. 

 
 
 



Figure S5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S5. Heterozygous expression of the Y777H variant causes intermediate effects on KNa currents 
in all neuron types, but increases rheobase only in NFS GABAergic neurons. (A) Current-voltage plot of 
KNa current recorded in WT, Kcnt1m/+, and Kcnt1m/m glutamatergic neurons. (B) Individual values and 
mean ± SEM for the rheobase current in WT, Kcnt1m/+, and Kcnt1m/m glutamatergic neurons. (C) Current-
voltage plot of KNa current recorded in WT, Kcnt1m/+, and Kcnt1m/m FS GABAergic neurons. (D) Individual 
values and mean ± SEM for rheobase current in WT, Kcnt1m/+, and Kcnt1m/m FS GABAergic neurons. (E) 
Current-voltage plot of KNa current recorded in WT, Kcnt1m/+, and Kcnt1m/m NFS GABAergic neurons. (F) 
Individual values and mean ± SEM for rheobase current in WT, Kcnt1m/+, and Kcnt1m/m NFS GABAergic 
neurons. Related to Figure 5. 



Figure S6 

Figure S6. Spontaneous EPSCs are increased onto Kcnt1m/m excitatory and NFS neurons, but not FS 
neurons. Example traces of sEPSCs recorded in WT (black) and Kcnt1m/m(colors) neurons of the indicated 
subtypes. The bar graph on the right shows the mean frequencies ± SEM. Significance values are labeled 
if p<0.05 as determined by Generalized Linear Mixed Models. Related to Figure 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S1  
 
  Number of GTCS or TS Sleep Analysis 

Mouse ID Total Wake NREM REM 
Wake 

(min/24h) 
NREM 

(min/24h) 
REM 

(min/24h) 

1 25 0 23 2 677.8 693.3 49.65 

2 0 0 0 0 711.3 666.5 50.3 

3 11 0 9 2 776.1 598.6 64.8 

4 19 0 19 0 798.9 601.1 30.5 

5 12 2 7 3 681.9 671.6 86.6 

6 46 1 45 0 655.55 747.55 27.55 

7 32 3 28 1 616 765.65 45.95 

 
Table S1. Seizures in Kcnt1 mutant mice predominately happen during NREM sleep. Shown are the 
numbers of GTCS or TS events in wake, NREM sleep, and REM sleep in 7 Kcnt1 homozygous mutant 
mice. Note the majority of seizure events occurred during NREM sleep. EEG and EMG were recorded for 
1-3 days. The amount of wake, NREM sleep, and REM sleep time were normalized to a 24-h period. 
Related to Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table S2 
 

 
Table S2. Electrophysiological parameters of current clamp recordings from neuronal cultures. For an 
explanation of the parameters, see Methods (thresh. = threshold, amp. = amplitude, h.w. = half-width, 
depol. = depolarization, repol. = repolarization, AHP = afterhyperpolarization, I50 = current injection 
needed to achieve half-maximal AP rate, n.d. = not determined). Values shown are estimated marginal 
means ± the standard error as determined by implementing a Generalized Linear Mixed Model. P-values 
< 0.05 are in bold type. The n values are the number of neurons obtained from 16 mice (8 WT, 8 
Kcnt1m/m) from 7 litters. Related to Figure 4. 

 
 
 
 
 

 Glutamatergic                Fast Spiking GABA                 Non-Fast Spiking GABA 
WT Kcnt1m/m                                 WT Kcnt1m/m                                 WT Kcnt1m/m                                 
n = 33 n = 34 p n = 29 n = 31 p n = 34 n = 31 p 

Vrest (mV) -56.7±1.4 -59.8±1.5 0.07 -50.7±1.5 -52.1±1.5 0.46 -51.0±1.6 -52.0±1.6 0.62 

Rin (MΩ) 155±12 187±16 0.09 91±8 84±7 0.43 184±14 127±10 0.001 

Tau (ms) 38.6±3.7 39.6±3.7 0.83 15.7±1.5 15.5±1.5 0.96 25.0±2.4 20.9±2.1 0.15  

Cm (pF) 243±14 230±13 0.42 172±10 190±11 0.14 146±8 171±10 0.026 

AP thresh. 
(mV)  

-28.0±1.1 28.4±1.2 0.82 -24.8±1.2 -27.1±1.2 0.13 -26.9±1.3 -25.7±1.3 0.49 

AP amp. 
(mV) 

76.8±1.4 73.2±1.5 0.09 68.8±1.4 71.6±1.4 0.15 66.8±1.4 67.7±1.5 0.66 

AP h.w. 
(ms) 

2.18±0.12 2.40±0.14 0.09 0.89±0.05 0.91±0.05 0.80 1.19±0.06 0.99±0.05 0.001 

Depol. rate 
(mV/ms) 

169±10 173±10 0.75 223±14 243±15 0.22 177±11 185±12 0.50 

Repol. rate 
(mV/ms) 

32.5±2.0 32.6±2.0 0.95 88.4±5.6 91.3±8.7 0.64 61.9±3.7 75.1±4.7 0.005 

Rheobase 
(pA) 

151±29 142±31 0.81 364±29 464±28 0.007 189±27 350±29 0.00014 

AHP (mV) 12.1±0.5 12.2±0.7 0.92 26.0±0.8 26.6±0.9 0.34 21.2±0.5 24.7±1.9 0.025 

f-I slope 
(Hz/nA) 

40±6 40±6 0.97 30±3 26±3 0.34 24±3 12±2 0.004 

I50 (pA) 133 ± 9 121 ± 11 0.44 646 ± 24 737 ± 28 0.017 231 ± 45 354 ± 23 0.007 

H.w. adap. n.d n.d  1.11±0.01 1.10±0.02 0.55 1.53±0.06 1.47±0.08 0.23  

AP rate 
(Hz) 

26.3±3.6 23.2±3.1 0.21 78.9±4.2 80.6±8.8 0.71 36.0±4.7 34.4±4.6 0.63 

Frequency 
adaptation 

2.17±0.15 2.28±0.15 0.47 1.35±0.09 1.34±0.05 0.88 2.07±0.14 1.82±0.13 0.09 



Table S3 

 

 

 

                    

 

 

 

 

 

 

 

Table S3. Synaptic current data from neuronal cultures. For an explanation of the parameters, see 
Methods (freq. = frequency, amp. = amplitude, E/I = excitation inhibition). Values shown are estimated 
marginal means ± the standard error as determined by implementing a Generalized Linear Mixed Model. 
P-values < 0.05 are in bold type. The n values are the number of neurons obtained from 4 litters and 8 
mice (4 WT, 4 Kcnt1m/m). GABAergic neurons were not subclassified for sIPSC measurements because the 
internal solution to measure sIPSCs alters many AP parameters. Related to Figure 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Excitatory neurons               Inhibitory neurons 
WT Kcnt1m/m                     WT Kcnt1m/m                     
n = 56 n = 57 p n = 37 n = 45 p 

sEPSC freq. 
(Hz) 

3.0±0.86 5.6±0.76 0.001 10.4±2.0 11.4±2.0 0.93 

sEPSC 
amp. (pA) 

17.6±1.2 20.1±1.4 0.16 30.8±2.2 32.2±2.0 0.60 

sEPSC 
decay (ms) 

3.5±0.07 3.5±0.07 0.83 2.7±0.08 2.9±0.09 0.19 

 n = 28 n = 25  n = 21 n = 26  

sIPSC freq. 
(Hz) 

2.1±0.3 2.7±0.4 0.09 2.6±0.4 2.9±0.4 0.20 

sIPSC amp. 
(pA) 

27.4±2.3 32.5±2.5 0.17 25.8±2.5 27.6±2.4 0.63 

sIPSC 
decay (ms) 

18.4±1.3 19.5±1.3 0.17 16.5±1.4 17.0±1.3 0.57 

E/I ratio 0.34±0.05 0.45±0.06 0.037 0.74±0.09 0.66±0.08 0.36 



Table S4 
 

 Glutamatergic                Non-Fast Spiking GABA 
WT Kcnt1m/m                     WT Kcnt1m/m                     
n = 13 n = 12 p n = 14 n = 13 p 

Vrest (mV) -65.5±2.4 -63.7±2.4 0.60 -60.9±2.2 -65.5±2.4 0.16 

Rin (MΩ) 124±26 106±24 0.38 299±59 161±37 0.013 

Tau (ms) 21.3±2.3 14.3±2.4 0.04 18.6±2.3 14.5±2.3 0.20 

Cm (pF) 163.9±28 133.6±24 0.28 66.1±11 105.8±19 0.032 

AP thresh. (mV) -32.6±1.8 -25±1.9 0.006 -32.1±1.6 -31.5±1.9 0.82 

AP amp. (mV) 77.5±4.1 74.2±4.6 0.59 65.3±4.3 75.2±5.1 0.08 

AP h.w. (ms) 2.29±0.14 2.52±0.16 0.30 1.26±0.07 1.33±0.08 0.49 

Rheobase (pA) 158.5±23 206.7±24 0.16 94±22 228±23 0.003 

AHP (mV) 7.2±1.3 7.4±1.2 0.91 9.8±1.2 8.8±1.4 0.57 

f-I slope (Hz/nA) 24±5 18±3 0.35 67±14 25±6 0.023 

I50 (pA) 149 ± 32 180 ± 39 0.54 136 ± 9  294 ± 20 0.001 

H.w. adaptation 1.69±0.08 1.64±0.08 0.64 1.33±0.08 1.33±0.08 0.98 

AP rate 22.9±2.5 22.3±2.6 0.87 37.1±2.5 35.2±2.9 0.63  

Freq. adaptation 1.71±0.42 1.84±0.77 0.88 3.64±0.56 4.41±0.77 0.15 

 
Table S4. Electrophysiological parameters of current clamp recordings from acute slices. For an 
explanation of the parameters, see Methods (thresh. = threshold, amp. = amplitude, h.w. = half-width, 
I50 = current injection needed to achieve half-maximal AP rate). Values shown are estimated marginal 
means ± the standard error as determined by implementing a Generalized Linear Mixed Model. P-values 
< 0.05 are in bold type. The n values are the number of neurons obtained from 16 mice (9 WT, 7 
Kcnt1m/m) from 8 litters. Related to Figure 7. 
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