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S.1 Details on data pre-processing

Table 1 presents information such as the first up-crossing time of 20 confirmed cases for

each country in the study. The cross-sectional ranks and integrated ranks are estimated

as per Section S.6.

The Google community mobility trends data measure how the frequency and length

of stay at different locations have changed relative to a baseline level prior to the COVID-

19 pandemic. The baseline activity level is defined as the median activity value for the

corresponding day of the week in the period of Jan. 3 to Feb. 6, 2020 during which time

most countries (excluding China) did not implement any distancing efforts. Available

categories include retail, grocery, park, transit, workplace, and residential categories.

Since these categories are highly collinear we consider just workplace mobility as an index

of social activity (see Section S.7).

Country
First up-crossing

date
Final

observation date
Rank

at t = 5
Rank

at t = 65
Integrated

rank

Luxembourg Mar 13 May 18 0.98 0.97 0.98
Iceland Mar 04 May 09 0.95 0.95 0.97
Ireland Mar 09 May 14 0.84 0.94 0.90

Switzerland Mar 01 May 06 0.83 0.89 0.89
Qatar Mar 10 May 15 0.94 0.98 0.89

Belgium Mar 04 May 09 0.81 0.91 0.87
Spain Feb 28 May 04 0.45 0.92 0.83

Portugal Mar 07 May 12 0.48 0.80 0.81
Estonia Mar 13 May 18 0.97 0.53 0.79
Austria Mar 03 May 08 0.64 0.64 0.79
Italy Feb 21 Apr 27 0.53 0.88 0.78

Norway Mar 02 May 07 0.86 0.56 0.78
Panama Mar 13 May 18 0.80 0.73 0.78

Netherlands Mar 03 May 08 0.72 0.77 0.78
Denmark Mar 06 May 11 0.91 0.66 0.76
Sweden Mar 03 May 08 0.78 0.75 0.73
Israel Mar 05 May 10 0.59 0.67 0.71

Slovenia Mar 10 May 15 0.92 0.42 0.68
France Feb 27 May 03 0.39 0.78 0.67
Serbia Mar 13 May 18 0.66 0.58 0.67
Finland Mar 08 May 13 0.88 0.50 0.64
Bahrain Feb 25 May 01 0.89 0.69 0.63

2



Germany Feb 26 May 02 0.30 0.70 0.62
Czech Rep. Mar 08 May 13 0.69 0.44 0.61
Croatia Mar 13 May 18 0.77 0.41 0.61
Chile Mar 11 May 16 0.56 0.72 0.59
Belarus Mar 13 May 18 0.47 0.84 0.57
UK Feb 28 May 04 0.25 0.81 0.56
Peru Mar 13 May 18 0.44 0.83 0.56
Iran Feb 22 Apr 28 0.36 0.52 0.55

Romania Mar 10 May 15 0.50 0.45 0.51
Albania Mar 12 May 17 0.73 0.34 0.49

US Feb 24 Apr 30 0.03 0.86 0.48
Slovakia Mar 13 May 18 0.75 0.31 0.47
Canada Feb 29 May 05 0.19 0.61 0.44
Greece Mar 05 May 10 0.58 0.27 0.43

Saudi Arabia Mar 10 May 15 0.41 0.55 0.42
Bulgaria Mar 13 May 18 0.67 0.33 0.42
Poland Mar 10 May 15 0.42 0.39 0.42
Kuwait Feb 26 May 02 0.70 0.48 0.41
UAE Feb 29 May 05 0.38 0.59 0.40

Costa Rica Mar 12 May 17 0.55 0.17 0.39
Australia Feb 29 May 05 0.34 0.30 0.37
Russia Mar 10 May 15 0.05 0.62 0.34
Georgia Mar 11 May 16 0.61 0.20 0.34
Lebanon Mar 06 May 11 0.62 0.14 0.33
Brazil Mar 08 May 13 0.12 0.47 0.29

S. Korea Feb 06 Apr 12 0.09 0.25 0.26
Singapore Feb 04 Apr 10 0.52 0.36 0.26
S. Africa Mar 13 May 18 0.31 0.28 0.25
Argentina Mar 13 May 18 0.28 0.22 0.25
Mexico Mar 13 May 18 0.17 0.38 0.24
China Jan 22 Mar 28 0.33 0.06 0.22
Algeria Mar 09 May 14 0.16 0.16 0.17
Pakistan Mar 12 May 17 0.23 0.23 0.16

Philippines Mar 09 May 14 0.20 0.12 0.15
Malaysia Feb 15 Apr 21 0.11 0.19 0.15

Iraq Mar 02 May 07 0.27 0.09 0.12
Egypt Mar 08 May 13 0.14 0.11 0.11

Indonesia Mar 10 May 15 0.06 0.08 0.07
Taiwan Feb 16 Apr 22 0.22 0.00 0.07
Thailand Feb 04 Apr 10 0.08 0.03 0.03
India Mar 04 May 09 0.00 0.05 0.02
Japan Feb 01 Apr 07 0.02 0.02 0.02

Table 1: First up-crossing times during 2020 of 20+ confirmed cases and dates after the 67
days time window for each of the 64 countries in the study along with their cross-sectional
ranks at t = 5 and t = 65 days, as well as the integrated rank.
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S.2 Fitted Trajectories

Figure 1 shows the imputed curves for the confirmed cases through the FPCA method

with K = 2 eigenfunctions for the countries Brazil, Chile, India, Italy, Switzerland,

United Kingdom, and the United States. The first 2 eigenfunctions explain 97% of the

total variation and the quality of the fits suggests that including just two components in

the Karhunen-Loève expansion works well.
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Figure 1: Observed (dashed) and estimated (solid) caseload curves C(t), for selected
countries.
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S.3 Functional Concurrent Regression

For an observed response curve Y (t), functional predictor X(t) and baseline covariate U ,

the functional concurrent regression model is given by

Y (t) = β0(t) + β1(t)X(t) + β2(t)U + ε(t),

where β0(t), β1(t) and β2(t) are smooth coefficient functions and ε(t) is a zero mean

Gaussian process. Various estimation techniques are available for the intercept function

β0(t) and the slope functions β1(t) and β2(t) for both densely and sparsely observed

functional data [1, 2, 3].

For assessing the goodness of fit, one can use the dynamic coefficient of determination

R2(t) = 1− var(ε(t))

var (Y (t))
.

Larger values of R2(t) indicate that a larger fraction of the variability in the response Y (t)

is explained by the linear model in X(t) and U . A positive-valued slope function β1(t)

indicates a positive association between Y (t) and X(t) at time t, while a negative-valued

slope implies a negative association, and this also applies to the scalar covariates’ dynamic

associations with the response Y at time t.

In some cases there may be a time lag in the association between the functional

response Y (t) and the functional predictor X(t),

Y (t) = β0(t) + β1(t)X(t−∆) + β2(t)U + ε(t), (1)

for t > ∆ where ∆ ≥ 0 denotes the lag, which is usually unknown.
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When one does not have prior knowledge about ∆, its value can be selected by opti-

mizing a data-adaptive criterion, as follows: Let Yi(tj) denote the response process of the

ith subject observed at the jth time point tj and Xi(tj) be the corresponding predictor pro-

cess observed at the same time point. Let Ui be the baseline covariate associated with the

ith subject. Let Ŷ ∆
i (tj) be the fitted value for Yi(tj) obtained after fitting the functional

concurrent regression model based on ∆ in (1) using all but the ith subject’s observations.

Then the mean-normalized leave-one-out prediction error Perror(∆) is defined as

Perror(∆) =
1

n

n∑
i=1

||Yi − Ŷ ∆
i ||L2

||Yi||L2

.

The normalization factor ||Yi||L2 is included to balance the magnitude of ||Yi− Ŷ ∆
i ||L2

for situations where the response curves Yi are on different scales, which is the case in our

application. The optimal ∆ is chosen as

∆̂ = argmin
I∆

Perror(∆),

where I∆ is the set of potential candidates for ∆.

S.4 Historical Functional Linear Model

Prediction of doubling rates is based on the historical functional linear regression model

with scalar response Y and functional predictors C(s),W (s), with t− 13 ≤ s ≤ t− 1,

Y = β0 +

∫ t−1

t−13

β1(s)C(s)ds+

∫ t−1

t−13

β2(s)W (s)ds+ ε,
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where ε is a mean-zero error term. The functions β1(s), β2(s) are then estimated by

representing them in the eigenfunctions of C(s),W (s) respectively, which are assumed

to form a basis of the function space L2. Writing ξC,k, φC,k(s), ξW,k, φW,k(s) to denote

functional principal component scores and eigenfunctions of C(s) and W (s), and letting

β1(s) =
∞∑
k=1

β1,kφC,k(s),

β2(s) =
∞∑
k=1

β2,kφW,k(s),

we truncate the sum at K included terms so that the model becomes

Y = β0 +
K∑
k=1

β1,k

∫ t−1

t−13

φC,k(s)C(s)ds+
∞∑
k=1

β2,k

∫ t−1

t−13

φW,k(s)W (s)ds+ ε (2)

= β0 +
K∑
k=1

β1,kξC,k +
K∑
k=1

β2,kξW,k + ε. (3)

The β1,k can then be estimated by simply fitting a linear regression model with predictors

ξC,k, ξW,k, k = 1, 2, . . . , K. The evaluation of the model is the same as in Section S.3,

where we used R2(t) = 1− var(ε(t))
var(Y (t))

.

S.5 Empirical Dynamics

The foundation of FDA relies on the assumption that the observed sample of trajectories is

generated from an underlying smooth and square integrable process. We also assume that

derivatives exist that can then be utilized to study the underlying dynamics of the process

[4, 5, 6]. For both functional and longitudinal data, empirical dynamics [7] provides a

principled approach to learn and quantify the dynamics. The motivation for empirical

dynamics is the fact that for a differentiable Gaussian process Y (t) with mean µ(t) one
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has the decomposition

d

dt
[Y (t)− µ(t)] = β(t) (Y (t)− µ(t)) + Z(t),

where β(t) = d
dt

log[var{Y (t)}] is a smooth dynamic coefficient function and Z(t) is a

random drift process independent of Y (t). This leads to the linear model formulation

E

(
d

dt
[Y (t)− µ(t)]|Y (t)

)
= β(t)(Y (t)− µ(t)) (4)

that can be analyzed under the functional concurrent regression framework described in

Section S.3. For non-Gaussian processes, model (4) yields effective approximations in the

least squares sense, where one can use the coefficient of determination

R2(t) = 1− var(Z(t))

var
(
d
dt
Y (t)

)
to gauge the fraction of variance in d

dt
Y (t) explained linearly by Y (t). On domains where

R2(t) is large, the linear term β(t)(Y (t) − µ(t)) in model (4) plays a significant role in

explaining the dynamics of Y (t), while otherwise the random drift process Z(t) becomes

the major component.

The coefficient function β(t) summarizes the characteristics of the dynamics of the

underlying process. If β(t) < 0, one observes centripetality or dynamic regression to the

mean. That is to say, a trajectory which lies away from the mean function tends to move

closer toward the mean function as time progresses. If on the other hand β(t) > 0, one

has centrifugality or dynamic explosive behavior, since deviations from the mean at time

t tend to result in further departures from the mean as t increases.
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Functional concurrent regression, described in Section S.3, can be used to add addi-

tional functional predictors and baseline covariates in model (4) which allows practitioners

to study empirical dynamics of the observed trajectories while simultaneously controlling

for other predictors (with or without time lags) and baseline covariates. For a functional

predictor X(t) and a baseline covariate U , the linear model

E

(
d

dt
[Y (t)− µ(t)]

∣∣∣ Y (t)

)
= β1(t)(Y (t)− µ(t)) + β2(t)X(t−∆) + β3(t)U + Z(t) (5)

provides a systematic approach to study simultaneously the empirical dynamics of Y (t)

and the dependence on other baseline or functional covariates. The lag ∆ can either be

set to zero for a truly concurrent approach, or may be selected using a data adaptive

criterion as described in Section S.3 to model a relationship that involves a time delay.

For analyzing empirical dynamics, one needs to estimate derivatives given the obser-

vations Yi(tj), with notation borrowed from Section S.3. For our applications, we choose

to estimate derivatives by local quadratic smoothing [8, 9] using the Epanechnikov kernel

and a bandwidth of 2 days.

S.6 Rank dynamics

For functional data, cross-sectional ranks and their temporal dynamics may be investi-

gated through the rank processes and summary statistics for rank dynamics as per [10].

For a generic stochastic process Y : T → R, our starting point is the cross-sectional

distribution P (Y (t) ≤ z) =: Ft(z), for each t ∈ T . Without loss of generality, we consider

T = [0, 1]. The rank processes Si associated with trajectories Yi are then given by

Si(t) = Ft(Yi(t)). (6)
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To summarize the overall rank of each trajectory and quantify how each rank trajectory

varies with time, we consider two summary measures for rank processes, individual-specific

integrated rank ρi and rank volatility νi, defined as

ρi =

∫
T
Si(t)dt, and νi =

∫
T

(Si(t)− ρi)2dt, (7)

respectively. For the COVID-19 data, as described before, the caseload trajectories C(t)

are observed on the same time grid T = [0, 66] for each country. A straightforward esti-

mate for the rank processes in (6) is then given by replacing the cross-sectional distribution

function Ft by its empirical counterpart, i.e.,

Ŝi(Tj) =
1

n

∑
l 6=i

1{Yl(Tj)≤Yi(Tj)}. (8)

Hence, individual-specific integrated rank ρi and rank volatility νi in (7) can be estimated

by plugging in the estimated rank processes in (8) and taking numerical integration. The

results are shown in Figure 2.
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Figure 2: Integrated ranks ρi versus rank volatility νi as per (7) for empirical ranks during
the first 67 days since exposure.

S.7 Mobility Data

Figure 3 and 4 display the trends pertaining to different categories from the Google

community mobility data for selected countries.
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Figure 3: Mobility Patterns: Argentina-Lebanon
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Figure 4: Mobility Patterns: Luxembourg - US
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[2] Damla Şentürk and Hans-Georg Müller. Functional varying coefficient models for

longitudinal data. Journal of the American Statistical Association, 105(491):1256–

1264, 2010.

[3] Jianhua Z. Huang, Colin O. Wu, and Lan Zhou. Polynomial spline estimation and

inference for varying coefficient models with longitudinal data. Statistica Sinica,

pages 763–788, 2004.

[4] James O. Ramsay. Differential equation models for statistical functions. Canadian

Journal of Statistics, 28(2):225–240, 2000.

[5] Jim O. Ramsay, Giles Hooker, David Campbell, and Jiguo Cao. Parameter estimation

for differential equations: a generalized smoothing approach. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 69(5):741–796, 2007.
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