

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Vaccination Assessments using the Demographic and Health Survey, 2005-2018; A Scoping Review

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039693
Article Type:	Original research
Date Submitted by the Author:	23-Apr-2020
Complete List of Authors:	Shenton, Luke; University of Michigan, Epidemiology Wagner, Abram; University of Michigan, Epidemiology Ji, Mengdi; University of Michigan, Epidemiology Carlson, Bradley; University of Michigan, Epidemiology Boulton, Matthew; University of Michigan,
Keywords:	Paediatric infectious disease & immunisation < PAEDIATRICS, Public health < INFECTIOUS DISEASES, International health services < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3	1	Vaccination Assessments using the Demographic and Health Survey, 2005-2018; A Scoping
4	2	Review
5		Keview
6	3	
7	4	Luke M. Shenton (<u>lshenton@umich.edu</u>) ^{1,*}
8 9	5	Abram L. Wagner (<u>awag@umich.edu</u>) ^{1,*, †}
9 10	6	Mengdi Ji (<u>mengdiji@umich.edu</u>) ¹
11	7	Bradley F. Carlson (<u>bcarlson@umich.edu</u>) ¹
12	8	Matthew L. Boulton (<u>mboulton@umich.edu</u>) ^{1,2}
13	9	matthew E. Bounton (<u>moountone unitenteuu</u>)
14		
15	10	
16	11	¹ Department of Epidemiology, School of Public Health, University of Michigan, 1415
17	12	Washington Heights, Ann Arbor, MI 48109, USA
18	13	
19	14	² Department of Internal Medicine, Division of Infectious Disease, University of Michigan
20	15	Medical School, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
21 22	16	
22		* E sus l'assuteillauteur
24	17	* Equal contributors
25	18	
26	19	⁺ Address correspondence to:
27	20	Abram L. Wagner, 1415 Washington Heights, Ann Arbor, MI 48109, USA [awag@umich.edu]
28	21	TEL: +001-734-763-2330 FAX: +001-734- 647-1120
29	22	
30	23	
31 32	24	Running Head: Scoping review of vaccination assessments
32 33	25	Running Heure. Scoping review of vacentation assessments
34		
35	26	
36	27	Word Count: 3,608 Abstract: 279
37	28	
38	29	
39	30	
40	31	
41 42		
42 43		
44		
45		
46		
47		
48		
49		
50		
51 52		
52 53		
55 54		
55		
56		
57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		ror peer review only interproving openion j.com/site/about/guidelines.xittin

2		
3	32	ABSTRACT
4		
5	33	
6	34	Objective: To characterize studies which have used DHS datasets to evaluate vaccination
7	35	status.
8	36	
9	37	Design: Scoping review
10		Design. Scoping review
11	38	
12	39	Data sources: Electronic databases including PubMed, EBSCOhost, and POPLINE, from 2005-
13	40	2018
14	41	
15	42	Study selection: All English studies with vaccination status as the outcome and the use of
16		
17	43	Demographic and Health Survey (DHS) data.
18 10	44	
19 20	45	Data extraction: Studies were selected using a predetermined list of eligibility criteria and data
20	46	was extracted independently by two authors. Data related to the study population, the outcome
22	47	of interest (vaccination), and commonly seen predictors were extracted.
23	48	of interest (vacentation), and commonly seen predictors were extracted.
24		
25	49	Results: A total of 125 articles were identified for inclusion in the review. The number of
26	50	countries covered by individual studies varied widely (1 to 86), with the most published papers
27	51	using data from India, Nigeria, Pakistan, and Ethiopia. Many different definitions of full
28	52	vaccination were utilized although the majority used a traditional schedule recommended in
29	53	the WHO's Expanded Program on Immunization. We found studies analyzed a wide variety of
30		
31	54	predictors, but the most common were maternal education, wealth, urbanicity, and child's sex.
32	55	Most commonly reported predictors had consistent relationships with the vaccination outcome,
33	56	outside of sibling composition.
34	57	
35	58	Conclusions: Researchers make frequent use of the DHS dataset to describe vaccination
36	59	patterns within one or more countries. A clearer idea of past use of DHS can inform the
37		
38	60	development of more rigorous studies in the future. Researchers should carefully consider
39 40	61	whether a variable needs to be included in the multivariable model, or if there are mediating
40	62	relationships across predictor variables.
42	63	
43	64	Keywords: vaccine-preventable diseases; developing countries; immunization programs;
44	65	surveys and questionnaires
45	66	surveys and questionnanes
46		
47	67	
48	68	This is an Open Access article distributed in accordance with the Creative Commons
49	69	Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix,
50	70	adapt, build upon this work non-commercially, and license their derivative works on different
51	71	terms, provided the original work is properly cited and the use is non-commercial. See:
52		
53	72	http://creativecommons.org/licenses/by-nc/4.0/
54		
55		
56		
57 58		
58 59		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
2	
4	
5	
6	
7 8	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17 18	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
47 48	
49 50	
50	

60

73 **Strengths and limitations**

- 74 The Demographic and Health Surveys (DHS) are some of the most used sources of 75 national-level vaccination data
- 76 Most DHS studies find consistent relationships between sociodemographic variables _ 77 and vaccination outcomes.
 - in: use only evel vaccinat. 78 There are large variations in how often a country's DHS dataset is used. -
 - 79 A limitation is the use only of English language material. _
 - 80 Other national-level vaccination surveys are also used. -
- 81

82 INTRODUCTION

83
84 Vaccinations have been a cost-effective method to control and achieve elimination and
85 eradication of common and sometimes deadly infectious diseases [1]. The introduction of
86 routine vaccinations in the United States, for example, has led to a >90% decline in cases of
87 diphtheria, measles, mumps, pertussis, polio, rubella, smallpox, and tetanus since the
88 prevaccine era [2]. Nevertheless, every year, more than 2.7 million individuals die from acute
89 diseases caused by common vaccine-preventable diseases [3]. The overwhelming majority of
90 vaccine-preventable deaths among children <5 years occur in low- and middle-income countries

[4].

Based on the prevalence and severity of disease and on the availability of a safe and effective vaccine, the World Health Organization (WHO) recommends that countries include nine vaccines on their publicly funded vaccine schedule for young children [5]. Referred to as the Expanded Program on Immunization (EPI), the schedule initially recommended vaccination with Bacillus Calmette-Guérin (BCG), diphtheria-tetanus-pertussis vaccine (DTP), polio vaccine, and a measles-containing vaccine (MCV). Since 2004, five additional pediatric vaccines have been added to the WHO EPI: hepatitis B vaccine (HepB), Haemophilus influenzae type b vaccine (Hib), rubella vaccine, pneumococcal conjugate vaccine (PCV), and rotavirus vaccine. Individual countries decide which vaccines to publicly fund and also to make available on the private market resulting in wide variation globally in the adoption of these vaccines. For example, in 2015, 194 countries included 3 doses of DTP and polio in their immunization schedule whereas only 84 included rotavirus [6]. Many countries now use a pentavalent vaccine, which includes DTP, HepB, and Hib vaccines in one vial. Substantial efforts on the part of the GAVI Alliance and other international agencies are devoted to logistically and financially supporting the introduction of new and underused vaccines [7]. These efforts are particularly important because a discouragingly high number of children consistently do not receive some or all of the vaccines that were first recommended by the WHO. According to the WHO, 19.4 million children have not received three doses of DTP, with a majority (11.7 million) living in just 10 countries: Nigeria, India, Pakistan, Indonesia, Ethiopia, Philippines, the Democratic Republic of the Congo, Brazil, Angola, and Vietnam [8]. With the exception of Brazil, all of these countries have vaccination coverage regularly assessed as part of the Demographic and Health Survey (DHS) program.

44 115

Nationally representative surveys, like those of the DHS program, have been essential to evaluating country- and region-specific vaccination program over time. DHS programs are funded and facilitated by the US Agency for International Development (USAID). The DHS program was launched in 1984 with a goal of advancing global understanding of health and population trends in developing countries. Since its inception it has provided technical assistance for over 300 surveys in 93 developing countries across the globe. Today, the program is known for collecting and disseminating accurate, nationally representative data on a variety of topics including fertility, family planning, maternal and child health, gender, HIV/AIDS, malaria, and nutrition. Host countries have ownership of data collection, analysis, presentation,

and use and the data is designed to ultimately be used in policy formation, program planning,and monitoring and evaluation [9].

5 ¹²⁶ 6 127

128 A large number of prior studies have amalgamated data from several different DHS datasets, or

129 have included data from many countries, but none has systematically evaluated how these past

- 10 130 studies have actually used the vaccination data provided by DHS [10–12]. Given that DHS has
- had widespread use over several decades in evaluating vaccination programs through
 identification of under-vaccinated groups, and characterizing systematic barriers to vaccina
- 12 identification of under-vaccinated groups, and characterizing systematic barriers to vaccination,
 133 a clearer idea of past use of DHS can inform the development of more rigorous studies in the
- ¹⁴ ¹⁴ ¹⁵ 134 future. The purpose of this scoping review was to characterize studies which have used DHS
- 15 135 datasets to evaluate vaccination status. Specifically we look at the global and temporal
- 135 datasets to evaluate vaccination status. Specifically we look at the global and temporal
 17 136 distribution of studies, list the predictors used in multivariable regression models, and examine
 - 137 the different definitions of "full vaccination" and how these relate to the WHO EPI
- 19 138 recommendations

140 METHODS

141
142 This scoping review was completed by following the steps outlined by the Preferred Reporting
143 Items of Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR)
144 [13].

146 Search Strategies

Searches were performed in 3 different electronic databases: PubMed/MEDLINE, PopLine, and EBSCOhost's Africa-Wide Information, Global Health, Global Health Archives, and Health Policy Reference Center databases. The search terms used were; "Vaccine" (and its variations such as vaccination and vaccinate), "Immunization" (and its variations such as immunize), "demographic and health surveys", "demographic and health survey", "DHS", "National Family Health Survey", and "NFHS". In addition, the searches were limited to only return papers published between 1 January 2005 and 31 December 2018. References from articles found to be relevant were searched in order to identify additional articles.

156 Eligibility Criteria

The titles of all papers returned through use of the search terms were initially screened for relevance. The abstracts of all remaining papers were then accessed with specific inclusion and exclusion criteria in mind. Abstracts and manuscripts were included if they met all inclusion criteria: (1) studies were conducted using DHS data from low or middle-income countries; (2) studies looked at routine vaccination coverage as the primary outcome; (3) studies were cross-sectional in design; (4) studies used either the Demographic and Health Survey (DHS) or the National Family Health Survey (NFHS), a similar study conducted only in India; (5) studies looked specifically at the vaccination outcome of children (usually aged between 0 and 60 months). A set of exclusion criteria was also created: (1) studies published before 2005 or after 2018 (though studies with an online publication in 2018 but print publication in 2019 were included); (2) studies that looked only at the vaccination outcome of adults; (3) studies that

1 2		
3	168	looked at population in high income countries; (4) studies that used modeling or projections
4	168 169	instead of just analyzing the data provided; or (5) systematic reviews.
5	170	instead of just analyzing the data provided, of (5) systematic reviews.
6 7	170	Study Selection
8	171	LS removed all duplicate and assessed all titles for relevance. Then three reviewers (LS/BC/AW)
9	172	independently assessed all abstracts and full-text publications for eligibility using the eligibility
10	173 174	criteria laid out. All disagreements were resolved by discussion between reviewers.
11 12	174	cineria iald out. An disagreements were resorved by discussion between reviewers.
13	175	Data extraction
14	170	
15	177	In addition to assessment for relevance, data was also extracted independently by three
16 17		reviewers (LS/BC/AW). A data extraction form was designed using Google Sheets and was
17 18	179	piloted before beginning data extraction. Data from 3 main categories was gathered during data
19	180	extraction. The first area was the study population, including the countries of interest, the
20	181	subpopulation of children being examined, years of the survey administration, and whether any
21	182	surveys besides DHS or NFHS were used. The second category was the outcome of interests:
22 23	183	which individual vaccines were assessed, whether full or under vaccination was examined, and
23 24	184	if full or under vaccination was examined how were they defined. Lastly, data on vaccination
25	185	predictors was gathered. We tabulated whether a given study included the most common
26	186	predictors found in a previous systematic review of vaccination timeliness [14]: maternal
27	187	education, wealth index, urbanicity, sex of child, age of mother, birth order, birth delivery
28 29	188	location, number of antenatal care (ANC) visits, media exposure, and paternal education.
30	189	
31	190	Study Methodological quality evaluation
32	191	We modified the Downs and Black checklist [15] for assessing biases in systematic reviews
33 34	192	because all eligible studies used a similar data source. The checklist included the following
34 35	193	criteria:
36	194	
37	195	Introduction / Study population
38	196	A. Is the hypothesis/aim/objective of the study clearly described? (1=Yes, 0=No)
39 40	197	B. Are the main outcomes (including defining full vaccination, if applicable) to be
41	198	measured clearly described in the introduction or methods? (1=Yes, 0=No)
42	199	C. Are the characteristics of study population eligibility criteria (including age range)
43	200	clearly described? (1=Yes, 0=No)
44 45	201	Descriptive Statistics
46	202	D. Does the paper use weighting and clustering? (1=Yes, 0=No)
47	203	E. Does the paper provide estimates of random variability (e.g., 95% confidence interval of
48	204	weighted estimates or standard errors) for the main outcomes? (1=Yes, 0=No)
49	205	Analytical Statistics
50 51	206	F. Does the paper use do a multivariable analysis? (1=Yes, 0=No)
52	207	G. Does the paper show distribution of confounders / covariates? (1=Yes, 0=No)
53	208	H. Does the paper describe how the researchers arrived at the final list of confounders? (2= <i>a</i>
54	209	priori knowledge or used DAG, 1=used P-values from crude analysis or used stepwise
55 56	210	technique, 0=did not describe or did not use multivariable analysis)
50 57		
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1							
2 3							
4	211	I. Does the paper write out P-values under 0.05? (1= Yes, or provided 95% confidence					
5	212	intervals, 0=No)					
6	213						
7	214	The quality score could range from 0-10.					
8	215						
9 10	216	Synthesis of study findings					
11	217	Given the heterogeneity of outcomes, predictors, and study populations of the included studies					
12	218	it was not possible to combine the results into a meta-analysis. Instead, we present a narrative					
13	219	summary of the data. We describe the distribution of studies by population, what predictor					
14	220	variables are used (and what direction of association they have with outcome), and how full					
15 16	221	vaccination is defined. In the discussion, we provide recommendations for future analyses of					
17	222	DHS data.					
18	223						
19	224	A choropleth map was created using freely available shapefiles from Natural Earth [16] in QGIS					
20	225	3.6 (QGIS Development Team). The map shows how many studies using data from only one					
21 22	226	country were published by country. We also show if a country's data was part of a multicountry					
22	220						
24		study, and we identify countries which had a standard DHS dataset administered between 2003					
25	228	and 2016 but which did not have a published study. The years 2003-2016 were chosen as a lag					
26	229	time of 2 years compared to the scoping review inclusion criteria to account for delays in					
27	230	publishing the data and writing up a manuscript.					
28	231						
29 30	232	Patient and public involvement					
31	233	This research was done without public involvement. Members of the public were not invited to					
32	234	comment on the study design and were not consulted, nor were they invited to contribute to					
33	235	this document to improve accessibility.					
34	236						
35 36	237	RESULTS					
37	238						
38	239	Our search terms initially yielded 938 papers; 318 from PubMed, 323 from EBSCOhost, and 211					
39	240	from POPLINE. An additional 86 papers were identified through searching the references of					
40	241	selected papers. After removing duplicates, 551 papers remained. These papers' abstracts were					
41	242	screened using the inclusion and exclusion criteria to narrow down the study pool to 143					
42 43	243	papers. However, during full text screen and data extraction another 18 studies were removed,					
44	244	which left 125 (Figure 1).					
45	245	when left 125 (Figure 1).					
46	246	The quality sum score (possible range from 0-10) was on average 6.48 with a median of 7. The					
47							
48 49	247	most commonly missed items contributing to a lower quality sum score were absence of exact					
5 0	248	P-values or confidence intervals (64% did not), not including estimates of random variability for					
51	249	the outcome (52%), and failure to account for appropriate use of clustering and weights (44%).					
52	250						
53	251	DHS has operated in a total of 92 countries since its inception, and between 2003 and 2016, has					
54 55	252	conducted surveys in 71 different countries.					
55 56	253						
57							
58							
59							

1		
2		
3 4	254	Overall, 23 studies used DHS datasets from multiple countries, ranging from 2 countries
5	255	[81,96,107] to 86 countries [11]. Seven studies used data from multiple African countries
6	256	[56,69,84,98,113,122,123], 4 from just Asian countries [72,81,96,135], 1 from the Americas [107],
7 8	257	and the remainder (11) used data from multiple continents [10,11,111,12,21,30,53,74,88,101,104].
9	258	For one study, we were unable to determine what exact countries were included in the analysis
10	259	[111].
11	260 261	Eigene 2 is a share aloth man showing subish soundries' DUC deteast have been used for
12 13	261 262	Figure 2 is a choropleth map showing which countries' DHS dataset have been used for
14	262 263	vaccination studies. The most frequently represented country is India (26 studies, 21%), followed by Nigeria (17, 14%), Ethiopia and Pakistan (7 each, 6%), and Bangladesh (6, 5%).
15	263 264	Notably, there are many countries (44) in the Americas, Europe, and Africa, which had one or
16 17	26 4 265	more DHS conducted between 2003 and 2016 yet for which there are no corresponding single-
18	266	country papers published using DHS data in this scoping review. However, most of these
19	267	countries were a part of multicountry studies. Only five countries' DHS datasets were not part
20 21	268	of any (single country or multicountry) DHS study: Cabo Verde, Maldives, Morocco, Sri Lanka,
21	269	and Ukraine.
23	270	
24	271	Characteristics of the papers are shown in Table 1. About half (51%) of studies included
25 26	272	children 12 to 23 or 24 months of age, and the two next most common age ranges were 12 to 59
27	273	or 60 months of age (11%) and 0 to 59 months of age (8%).
28	274	
29 30	275	Full vaccination was assessed in three-fourths (94, 75%) of papers; otherwise, the four most
31	276	common vaccines assessed one at a time were MCV (39, 31%), DTP (36, 29%), polio (33, 26%),
32	277	and BCG (27, 22%). There were at least 12 different definitions of full vaccination used in the
33	278	papers including in this scoping review. Of the 94 papers which evaluated full vaccination
34 35	279	coverage, most (66, 70%) used a traditional schedule based off of the four vaccines first
36	280	recommended for the WHO's EPI in 1974: 1 dose BCG, 3 doses polio, 3 doses DTP, and 1 dose
37	281	MCV. Five (5%) papers modified this traditional definition to include a birth dose of polio, and
38 39	282	eleven others used a pentavalent vaccine instead of DTP (of these, 3 had a 4 dose polio
40	283 284	schedule, and 8 had a 3-dose polio schedule). Other papers modified the traditional definition
41	284 285	in order to include yellow fever (in a total of 4 papers), measles-mumps-rubella vaccine (in one
42 43	285 286	paper), or to exclude certain vaccine series, like measles, polio, or BCG. Some measure of DTP was included in all definitions of full vaccination. No papers included information about PCV
45 44	280 287	or rotavirus vaccine as an outcome in a multivariable regression model, although one used
45	287	rotavirus vaccine as a predictor variable [107].
46	289	Totavinas vacenie as a predictor variable [10,].
47 48	290	Four variables were used in a majority of studies. The top 10 variables used in a study (with
49	291	their relationship shown in a model) are maternal education (in 94, or 75% of studies), wealth
50	292	index (88, 70%), urbanicity (79, 63%), child's sex (73, 58%), mother's age (60, 48%), birth order
51 52	293	(51, 41%), delivery location (42, 34%), ANC visits (34, 27%), media exposure (33, 26%), and
53	294	paternal education (32, 26%).
54	295	
55 56		
56 57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		for peer rememoning in teps, purgopenion green about guidelines, meni

The relationship between the most commonly used predictor and vaccination outcomes is shown in Figure 3. For most predictors there is a relatively clear relationship to vaccination outcome. For a majority of studies, greater vaccination coverage (across any vaccination outcome considered) was related to maternal education (in 84% of studies that considered the variable), higher wealth index (83%), more ANC visits (76%), greater media exposure (76%), an institutional birth (69%), and more paternal education (56%). For several predictors, a large proportion of studies found no significant relationship. This was especially true for child's sex (66% of studies), more paternal education (44%), and urbanicity (43%). Sibling composition was one variable for which there was no clear relationship with the outcome: in 41% of studies, having more older siblings was associated with lower vaccination coverage, in 8% it was associated with higher vaccination coverage, and for the rest of studies, there was no significant relationship (35%) or there was a significant, non-monotonic relationship (12%).

DISCUSSION

Vaccination programs enjoy wide support from many international health organizations and national governments. Vaccination has achieved the sole instance of human disease eradication - smallpox, while polio, measles, and rubella have been eliminated in some regions of the world [1,139]. Global vaccination coverage has increased in recent years but 12.8 million children in 2015 still had not yet received DTP dose 1 [6], a common marker routine immunization initiation. Regularly conducted studies on vaccination uptake are necessary to assessing population level susceptibility and immunization program reach while also ensuring that countries are on track with international guidelines for maintaining high vaccination coverage and the control or elimination of certain vaccine-preventable diseases. The DHS datasets tend to be very large, both in number of variables looked at and number of participants surveyed. This allows the examination of many possible associations with sufficient statistical power and the ability to control for a number of possible confounders.

DHS is not conducted in all LMICs, only in certain countries with a USAID presence, and it is conducted at irregular intervals. However, it is one of the most widely available surveys for assessing vaccinations globally. This systematic review found wide variation in how full vaccination was defined across 125 studies using DHS data between 2005 and 2018. However, the majority of studies did look at full vaccination and defined it according to the WHO's EPI schedule; 1 dose BCG, 3 doses polio, 3 doses DTP, and 1 dose MCV. Additionally, studies looked at similar sub-populations (children <5) and very similar predictors, with the most common being maternal education, wealth, urbanicity, and child's sex.

The vaccines commonly evaluated reflect priorities of international efforts. For example, polio is targeted for elimination by 2018 [140]. Measles is also subject to an international elimination effort [141,142], and all 6 WHO regional offices have established target dates for elimination [143]. BCG was one of the first vaccines ideally administered shortly after birth (joined more recently in certain locations with HepB and polio birth doses). And DTP dose 3 has long been used as a proxy for adherence to repeat visits to immunization appointments [144,145]. As more

vaccines are added to the vaccine schedule, not only does it become more complicated, but it likely introduces the potential j for greater diversity among countries in their respective EPI schedules. Over the past few decades, DHS has operated in 92 countries. However, a significant number of papers came from a relatively small number of countries. We note the most commonly used countries (India, Nigeria, Ethiopia, Pakistan, and Bangladesh) are among the 12 most populous countries in the world, and, with the exception of Bangladesh, are among the five countries with the most number of unvaccinated children [8]. Given that countries have control over their own vaccine policies and utilize a wide variety of socioeconomic variables across individual countries, more country-specific analyses of DHS vaccination data is important.

Recommendations for future analyses

This study identified the variables commonly used as explanatory variables in multivariable regression models. Many studies appeared to use the DHS datasets to test the significance and estimate the strength of association for many explanatory variables concomitantly. Since DHS is a cross-sectional study it cannot be used to look at causal associations between variables. However, a strength of DHS is its ability to be used as a hypothesis generating device. Associations can subsequently be examined in other types of studies, such as cohort studies.

However, given consistent relationships between commonly used predictors and outcomes, it is worth revisiting the use of DHS datasets in multivariable analyses. First, given this consistency, it is more important than ever to consider the plausible causal relationships across all variables utilized in a model. An approach widely used in epidemiology is to chart the directionality of relationships among variables through directed acyclic graphs (DAGs) [146]. Online software, like dagitty.net, can be used to build these models and assess which variables should be included in the final multivariable model. A potential problem is inclusion of so many variables in one model can obscure the mediating effects of certain variables [147]. For example, researchers examining the relationship between media exposure and vaccination status may include maternal age as a confounder. However, the parameter estimate for maternal age in this multivariable model includes the mediator media exposure. Theoretically, a model with age as the main predictor and with media exposure as a main predictor would have different sets of covariates. Although the potential impact of inappropriately controlling for mediation is context-specific, one study suggests parameter estimates may change up to 10%-25% [148].

Evolving immunization schedules mean that future studies will likely take local programmatic
considerations into account. However, to make cross country comparisons, studies could still
provide an estimate of full vaccination using the traditional BCG, 3 dose polio, 3 dose DTP, and
1 dose MCV schedule.

379 Timeliness has also emerged as an important dimension of vaccination uptake within the past
 380 two decades [149,150]. Measures of timeliness require vaccination dates [14], information
 381 missing from many individuals in the DHS datasets. For example, in the 2006-2007 Pakistan

DHS EPI immunization cards, and thus data on vaccination dates, were available for just 10% of cases [85].

Finally, researchers analyzing DHS data should be aware of its structure and limitations. Most DHS samples are stratified and based on clusters. Studies should use survey procedures and weights to ensure that estimates are representative of the national population and that standard errors are honest reflections of the sampling structure. Additionally, because DHS includes so many individuals with unknown vaccination age, any study should account for this substantial left censoring, through Turnbull estimation methods [151] or accelerated failure time models. A substantial minority of studies examined did not specify the age range of the study population. This has implications for timeliness but should be presented in studies calculating more traditional measures of vaccine uptake that do not incorporate timing or age.

The DHS provides national estimates from politically neutral sources, in countries where USAID operates. Its continued existence ensures that reliable and nationally representative data sources are publicly available. Although other surveys, like the District Level Household Survey (DLHS) and the Annual Health Survey (AHS) in India and the Multiple Indicators Cluster Survey (MICS) in over 100 countries, are not funded by USAID [152,153].

Limitations

 There are several limitations to this study. Because the study populations, use of explanatory variables, and definitions of outcomes differed among studies, we were unable to conduct a meta-analysis to compare the association of various explanatory variables on outcomes. We did not examine the grey literature or non-English language papers as part of this review, nor did we review reports which may have listed vaccination coverage, but did not include some statistical analysis. Inclusion of these types of articles could have included data from more countries. Vaccination data from the DHS is limited in that it partially comes from information contained on vaccination cards [154], and partially from parental recall – with its obvious potential for errors. However, some countries, such as Ethiopia, have attempted to combat this problem in recent years through the introduction of a Health Facility Questionnaire. This questionnaire is used to record vaccination information for all children, who were discovered to not have a vaccination card during administration of the Woman's Questionnaire [155]. In addition, since the DHS is a standardized questionnaire there is limited opportunity to modify the survey to be locally relevant and take predictors into account that may only be relevant in parts of the country. However, overall the DHS programs are widely available surveys providing researchers, policymakers, and the public with nationally representative data. These data provide a basis for evaluation of immunization programs that would either not exist or not be as robust in their absence.

Conclusions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	424 425 426 427 428 429 430 431 432 433 434	This scoping review of papers about vaccination published using DHS data found diversity in analyses and qualities of studies. Although certain countries – like India, Nigeria, Pakistan, and Ethiopia – have had ≥7 vaccination studies published using DHS data, there are dozens of countries whose vaccination data have not yet been published within single-country studies. Studies find consistent relationships between greater vaccination uptake and more maternal education, higher wealth index, more ANC visits, greater media exposure, and institutional delivery. The relationship between birth order and vaccination status is more varied across countries. Researchers using the DHS datasets should understand the limitations of using recorded vaccination dates, and should clarify the interpretation of estimates from multivariable analyses given the potential for mediation.
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	435 436 437	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46		
47 48 49 50 51 52 53 54 55 56 57 58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3	438	Acknowledgements
4 5	439	
6	440	We are grateful to the DHS personnel who diligently carry out their work and to USAID for
7	441	sponsoring the DHS projects.
8	442	
9 10	443	Funding
10	444	
12	445	We report no external funding.
13	446	
14 15	447	Competing Interests
15 16	448	
17	449	The authors declare no competing interests.
18	450	
19	451	Author contributions
20 21	452	
22	453	MLB conceived of the study design, helped interpret the data, and revised the manuscript
23	454	critically for important intellectual content. LMS and BFC downloaded manuscripts, assessed
24	455	their fit for this systematic review, abstracted data from the manuscripts, completed qualitative
25 26	456	synthesis, and helped revise the manuscript critically for important intellectual content. MJ
27	457	abstracted data from the manuscripts and helped revise the manuscript critically for important
28	458	intellectual content. ALW helped interpret the data, and drafted the article. All authors gave
29	459	final approval of the manuscript to be published.
30 31	460	
32	461	Data sharing statement
33	462	
34	463	The data abstracted from these studies are publicly available:
35 36	464	https://doi.org/10.6084/m9.figshare.12177135
37	465	
38	466	
39	467	
40 41	468	
42	469	
43		
44 45		
45 46		
47		
48		
49 50		
51		
52		
53		
54 55		
55 56		
57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
50		

1			
2 3	470	DEE	EDENICES
4	470 471	КСГ	ERENCES
5	472	1	Centers for Disease Control and Prevention. Ten great public health achievements, 1900–
6 7	473	T	1999: impact of vaccines universally recommended for children. <i>Morb Mortal Wkly Rep</i>
8	474		1999; 48 :243–8.
9	475	2	Roush SW, Murphy T V. Historical comparisons of morbidity and mortality for vaccine-
10	476	2	preventable diseases in the United States. JAMA 2007; 298 :2155–63.
11 12	477		doi:10.1001/jama.298.18.2155
13	478	3	Lozano R, Naghavi M, Foreman K, <i>et al.</i> Global and regional mortality from 235 causes of
14	479	U	death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of
15 16	480		Disease Study 2010. Lancet 2012; 380 :2095–128. doi:10.1016/S0140-6736(12)61728-0
17	481	4	Black RE, Cousens S, Johnson HL, <i>et al.</i> Global, regional, and national causes of child
18	482	-	mortality in 2008: a systematic analysis. <i>Lancet (London, England)</i> 2010; 375 :1969–87.
19	483		doi:10.1016/S0140-6736(10)60549-1
20 21	484	5	World Health Organization. Summary of WHO Position Papers - Recommendations for
21	485	•	Routine Immunization.
23	486		2017.http://www.who.int/immunization/policy/Immunization_routine_table1.pdf
24	487		(accessed 7 Sep 2017).
25 26	488	6	Casey RM, Dumolard L, Danovaro-Holliday MC, et al. Global Routine Vaccination
20	489		Coverage, 2015. Morb Mortal Wkly Rep 2016;65:1270–3.
28	490	7	GAVI Alliance. Vaccine goal indicators. GAVI. 2015.http://www.gavi.org/results/goal-
29	491		level-indicators/vaccine-goal-indicators/ (accessed 2 Jun 2016).
30 31	492	8	Peck M, Gacic-Dobo M, Diallo MS, et al. Global routine vaccination coverage, 2018. Morb
32	493		Mortal Wkly Rep 2019;68:937–42. doi:10.15585/mmwr.mm6645a3
33	494	9	The DHS Program. The DHS Program: Demographic and Health Surveys.
34	495		2017.https://dhsprogram.com/ (accessed 3 Oct 2017).
35 36	496	10	Arsenault C, Johri M, Nandi A, et al. Country-level predictors of vaccination coverage
37	497		and inequalities in Gavi-supported countries. Vaccine 2017;35:2479-88.
38	498		doi:10.1016/j.vaccine.2017.03.029
39	499	11	Restrepo-Méndez MC, Barros AJD, Wong KLM, et al. Inequalities in full immunization
40 41	500		coverage : trends in low- and middle-income countries. Bull World Heal Organ
41	501		2016; 94 :794–805. doi:10.2471/BLT.15.162172
43	502	12	Restrepo-Méndez MC, Barros AJD, Wong KLM, et al. Missed opportunities in full
44	503		immunization coverage: Findings from low- and lower-middle-income countries. Glob
45 46	504		<i>Health Action</i> 2016; 9 :1–6. doi:10.3402/gha.v9.30963
40	505	13	Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and
48	506		meta-analyses: the PRISMA statement. Ann Intern Med 2009;151:264–9, W64.
49 50	507	14	Masters NB, Wagner AL, Boulton ML. Vaccination timeliness in low- and middle-income
50 51	508		countries: a systematic review of the literature, 2007-2017. Hum Vaccin Immunother
52	509		2019; 15 :2790–805. doi:10.1080/21645515.2019.1616503
53	510	15	Downs SH, Black N. The feasibility of creating a checklist for the assessment of the
54	511		methodological quality both of randomised and non-randomised studies of health care
55 56	512		interventions. J Epidemiol Community Heal 1998;52:377–84.
57			
58			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60			i or peer review only intep.//binjopen.binj.com/site/about/guidennes.xittini

1 2			
3	513	16	Natural Earth. Admin 0 - Countries.
4	513 514	10	2020.https://www.naturalearthdata.com/downloads/50m-cultural-vectors/50m-admin-0-
5	515		countries-2/ (accessed 30 Mar 2020).
6 7	516	17	Bowie C, Mathanga D, Misiri H. Poverty, access and immunization in Malawi - a
8	517	17	descriptive study. Malawi Med. J. 2006; 18 :19–27. doi:10.4314/mmj.v18i1.10902
9	518	18	Choi JY, Lee S-H. Does prenatal care increase access to child immunization? Gender bias
10	518 519	10	among children in India. Soc Sci Med 2006; 63 :107–17. doi:10.1016/j.socscimed.2005.11.063
11 12	520	19	Gaudin S, Yazbeck AS. Immunization in india 1993-1999: Wealth, gender, and regional
13	520 521	17	inequalities revisited. Soc Sci Med 2006;62:694–706. doi:10.1016/j.socscimed.2005.06.042
14	522	20	Akmatov MK, Kretzschmar M, Krämer A, <i>et al.</i> Determinants of childhood vaccination
15	523	20	coverage in Kazakhstan in a period of societal change: Implications for vaccination
16 17	524		policies. Vaccine 2007; 25 :1756–63. doi:10.1016/j.vaccine.2006.11.030
18	525	21	Anand S, Bärnighausen T. Health workers and vaccination coverage in developing
19	526		countries: an econometric analysis. <i>Lancet</i> 2007; 369 :1277–85. doi:10.1016/S0140-
20 21	527		6736(07)60599-6
21	528	22	Bhandari P, Shrestha SS, Ghimire DJ. Sociocultural and geographical disparities in child
23	529		immunization in Nepal. Asia-Pacific Popul J 2007; 22 :43–64.
24	530	23	Datar A, Mukherji A, Sood N. Health infrastructure & immunization coverage in rural
25 26	531		India. <i>Indian J Med Res</i> 2007; 125 :31–42.
20	532	24	Minh Thang N, Bhushan I, Bloom E, et al. Child immunization in Vietnam: situation and
28	533		barriers to coverage. J Biosoc Sci 2007;39:41-58. doi:10.1017/S0021932006001234
29	534	25	Munthali AC. Determinants of vaccination coverage in Malawi: evidence from the
30 31	535		demographic and health surveys. <i>Malawi Med J</i> 2007; 19 :79–82.
32	536		doi:10.4314/mmj.v19i2.10934
33	537	26	Ntenda PAM, Chuang K-Y, Tiruneh FN, et al. Analysis of the effects of individual and
34	538		community level factors on childhood immunization in Malawi. Vaccine Published
35 36	539		Online First: 2017. doi:10.1016/j.vaccine.2017.02.036
37	540	27	Chidiebere ODI, Uchenna E, Kenechi OS. Maternal sociodemographic factors that
38	541		influence full child immunisation uptake in Nigeria. SAJCH South African J Child Heal
39 40	542		2014; 8 :138–42. doi:10.7196/SAJCH.661
40 41	543	28	Gatchell M, Thind A, Hagigi F. Informing state-level health policy in India: The case of
42	544		childhood immunizations in Maharashtra and Bihar. Acta Paediatr Int J Paediatr
43	545		2008; 97 :124–6. doi:10.1111/j.1651-2227.2007.00569.x
44 45	546	29	Halder AK, Kabir M. Inequalities in infant immunization coverage in Bangladesh. Heal
46	547		<i>Serv Insights</i> 2008; 1 :5–11.
47	548	30	Meheus F, Van Doorslaer E. Achieving better measles immunization in developing
48	549		countries: does higher coverage imply lower inequality? <i>Soc Sci Med</i> 2008; 66 :1709–18.
49 50	550		doi:10.1016/j.socscimed.2007.12.036
51	551	31	Patra N. Exploring the Determinants of Childhood Immunisation. <i>Econ Polit Wkly</i>
52	552	00	2008; 43 :97–104.
53	553	32	Antai D. Inequitable childhood immunization uptake in Nigeria: a multilevel analysis of
54 55	554		individual and contextual determinants. <i>BMC Infect Dis</i> 2009; 9 :181. doi:10.1186/1471-
56	555		2334-9-181
57			
58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3	556	33	Antai D. Faith and Child Survival: the Role of Religion in Childhood Immunization in
4 5	557		Nigeria. J Biosoc Sci 2009;41:57. doi:10.1017/S0021932008002861
6	558	34	Bondy JN, Thind A, Koval JJ, et al. Identifying the determinants of childhood
7	559		immunization in the Philippines. Vaccine 2009;27:169–75. doi:10.1016/j.vaccine.2008.08.042
8	560	35	Corsi DJ, Bassani DG, Kumar R, et al. Gender inequity and age-appropriate immunization
9 10	561		coverage in India from 1992 to 2006. BMC Int Health Hum Rights 2009;9 Suppl 1:S3.
11	562		doi:10.1186/1472-698X-9-S1-S3
12	563	36	Osaki K, Hattori T, Kosen S, et al. Investment in home-based maternal, newborn and
13	564		child health records improves immunization coverage in Indonesia. Trans R Soc Trop Med
14 15	565		<i>Hyg</i> 2009; 103 :846–8. doi:10.1016/j.trstmh.2009.03.011
16	566	37	Sia D, Fournier P, Kobiané J-F, et al. Rates of coverage and determinants of complete
17	567		vaccination of children in rural areas of Burkina Faso (1998-2003). BMC Public Health
18	568		2009; 9 :416. doi:10.1186/1471-2458-9-416
19 20	569	38	Antai D. Migration and child immunization in Nigeria: individual- and community-level
20	570		contexts. BMC Public Health 2010;10:116. doi:10.1186/1471-2458-10-116
22	571	39	Hong R, Chhea V. Trend and inequality in immunization dropout among young children
23	572		in Cambodia. <i>Matern Child <mark>Heal</mark>th J</i> 2010; 14 :446–52. doi:10.1007/s10995-009-0466-1
24 25	573	40	Rahman M, Obaida-Nasrin S. Factors affecting acceptance of complete immunization
26	574		coverage of children under five years in rural Bangladesh. <i>Salud Publica Mex</i> 2010; 52 :134–
27	575		40. doi:10.1590/S0036-36342010000200005
28	576	41	Sahu D, Pradhan J, Jayachandran V, et al. Why immunization coverage fails to catch up in
29	577		India? A community-based analysis. <i>Child Care Health Dev</i> 2010; 36 :332–9.
30 31	578		doi:10.1111/j.1365-2214.2009.01003.x
32	579	42	Semali IA. Trends in immunization completion and disparities in the context of health
33	580		reforms: the case study of Tanzania. BMC Health Serv Res 2010;10:299. doi:10.1186/1472-
34 25	581		6963-10-299
35 36	582	43	Abuya BA, Onsomu EO, Kimani JK, et al. Influence of maternal education on child
37	583		immunization and stunting in Kenya. <i>Matern Child Health J</i> 2011; 15 :1389–99.
38	584		doi:10.1007/s10995-010-0670-z
39	585	44	Antai D. Rural-urban inequities in childhood immunisation in Nigeria: The role of
40 41	586		community contexts. <i>African J Prim Heal Care Fam Med</i> 2011; 3 . doi:10.4102/phcfm.v3i1.238
42	587	45	Fernandez RC, Awofeso N, Rammohan A. Determinants of apparent rural-urban
43	588		differentials in measles vaccination uptake in Indonesia. <i>Rural Remote Health</i> 2011; 11 :1–14.
44	589	46	Fernandez R, Rammohan A, Awofeso N. Correlates of first dose of measles vaccination
45 46	590		delivery and uptake in Indonesia. Asian Pac J Trop Med 2011;4:140-5. doi:10.1016/S1995-
47	591		7645(11)60055-2
48	592	47	Kumar A, Mohanty SK. Socio-economic differentials in childhood immunization in India,
49	593		1992-2006. J Popul Res 2011; 28 :301–24.
50 51	594	48	Lauridsen J, Pradhan J, Kruk M, et al. Socio-economic inequality of immunization
52	595		coverage in India. <i>Health Econ Rev</i> 2011; 1 :11. doi:10.1186/2191-1991-1-11
53	596	49	Pandey S. Determinants of child immunization in Nepal : The role of women ' s
54	597		empowerment. <i>Health Educ J</i> 2011; 71 :642–53. doi:10.1177/0017896911419343
55 56	598	50	Singh A. Inequality of Opportunity in Indian Children: The Case of Immunization and
57			
58			
59			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60			for peer review only - http://binjopen.binj.com/site/about/guidelines.xhtml

1 2			
3	E00		Netrition Danuel Des Deline Der 2011.20.0(1.92 dei 10.1007/s11112.011.0214 E
4	599 600	E 1	Nutrition. Popul Res Policy Rev 2011; 30 :861–83. doi:10.1007/s11113-011-9214-5
5	600 601	51	Afzal N, Zainab B. Determinants and Status of Vaccination in Bangladesh. <i>Dhaka Univ J Sci</i> 2012; 60 :47–51. doi:10.3329/dujs.v60i1.10336
6 7	601 602	52	Antai D. Gender inequities, relationship power, and childhood immunization uptake in
8	602 603	52	Nigeria: A population-based cross-sectional study. <i>Int J Infect Dis</i> 2012; 16 :e136–45.
9	603 604		doi:10.1016/j.ijid.2011.11.004
10	604 605	52	Rammohan A, Awofeso N, Fernandez RC. Paternal education status significantly
11 12		53	
12	606 607		influences infants' measles vaccination uptake, independent of maternal education status.
14		E 4	BMC Public Health 2012;12:336. doi:10.1186/1471-2458-12-336
15	608	54	Sabarwal S, McCormick MC, Silverman JG, <i>et al.</i> Association between maternal intimate
16	609		partner violence victimization and childhood immunization in India. <i>J Trop Pediatr</i>
17 18	610		2012; 58 :107–13. doi:10.1093/tropej/fmr052
19	611	55	Singh A. Gender based within-household inequality in childhood immunization in India:
20	612		Changes over time and across regions. <i>PLoS One</i> 2012; 7 :e33045.
21	613	50	doi:10.1371/journal.pone.0035045
22 23	614	56	Wiysonge CS, Uthman OA, Ndumbe PM, <i>et al.</i> Individual and contextual factors
23	615		associated with low childhood immunisation coverage in Sub-Saharan Africa: A
25	616		multilevel analysis. <i>PLoS One</i> 2012;7. doi:10.1371/journal.pone.0037905
26	617	57	Barman D, Dutta A. Access and barriers to immunization in West Bengal, India: Quality
27	618	50	matters. J Heal Popul Nutr 2013; 31 :510–22.
28 29	619	58	Bbaale E. Factors influencing childhood immunization in Uganda. <i>J Heal Popul Nutr</i>
30	620	-0	2013; 31 :118–27. doi:10.3329/jhpn.v31i1.14756
31	621	59	Haque SMR, Bari W. Positive Role of Maternal Education on Measles Vaccination
32	622		Coverage in Bangladesh. Int J Psychol Behav Sci 2013;3:11–7.
33 34	623	6.0	doi:10.5923/j.ijpbs.20130301.02
35	624	60	Kumar A, Ram F. Influence of Family Structure on Child Health: Evidence From India. J
36	625		<i>Biosoc Sci</i> 2013; 45 :577–99. doi:10.1017/S0021932012000764
37	626	61	Moyer CA, Tadesse L, Fisseha S. The relationship between facility delivery and infant
38	627		immunization in Ethiopia. <i>Int J Gynecol Obstet</i> 2013; 123 :217–20.
39 40	628		doi:10.1016/j.ijgo.2013.06.030
41	629	62	Singh A, Singh A, Mahapatra B. The consequences of unintended pregnancy for maternal
42	630		and child health in rural India: Evidence from prospective data. <i>Matern Child Health J</i>
43	631		2013; 17 :493–500. doi:10.1007/s10995-012-1023-x
44 45	632	63	Singh K, Haney E, Olorunsaiye C. Maternal autonomy and attitudes towards gender
46	633		norms: Associations with childhood immunization in Nigeria. Matern Child Health J
47	634		2013; 17 :837–41. doi:10.1007/s10995-012-1060-5
48	635	64	Singh PK. Trends in Child Immunization across Geographical Regions in India: Focus on
49 50	636		Urban-Rural and Gender Differentials. PLoS One 2013;8. doi:10.1371/journal.pone.0073102
51	637	65	Van Malderen C, Ogali I, Khasakhala A, et al. Decomposing Kenyan socio-economic
52	638		inequalities in skilled birth attendance and measles immunization. Int J Equity Health
53	639		2013; 12 :3. doi:10.1186/1475-9276-12-3
54	640	66	Adegboye O, Kotze D, Adegboye O. Multi-Year Trend Analysis of Childhood
55 56	641		Immunization Uptake and Coverage in Nigeria. J Biosoc Sci 2014;46:225–39.
57			
58			
59			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60			i or peer review only - nttp.//binjopen.binj.com/site/about/guidelines.xhtml

1			
2 3	642		doi:10.1017/S0021932013000254
4	643	67	Bonfrer I, Van de Poel E, Van Doorslaer E. The effects of performance incentives on the
5 6	644	07	utilization and quality of maternal and child care in Burundi. Soc Sci Med 2014; 123 :96–
7	645		104. doi:10.1016/j.socscimed.2014.11.004
8	646	68	Bugvi AS, Rahat R, Zakar R, <i>et al.</i> Factors associated with non-utilization of child
9	647	00	immunization in Pakistan: evidence from the Demographic and Health Survey 2006-07.
10 11	648		BMC Public Health 2014;14:232. doi:10.1186/1471-2458-14-232
12	649	69	Canavan ME, Sipsma HL, Kassie GM, et al. Correlates of complete childhood vaccination
13	650		in East African countries. <i>PLoS One</i> 2014; 9 :1–7. doi:10.1371/journal.pone.0095709
14	651	70	Clouston S, Kidman R, Palermo T. Social inequalities in vaccination uptake among
15 16	652		children aged 0-59 months living in Madagascar: An analysis of Demographic and Health
17	653		Survey data from 2008 to 2009. Vaccine 2014;32:3533–9. doi:10.1016/j.vaccine.2014.04.030
18	654	71	Ebot JO. Place Matters : Community Level Effects of Women 's Autonomy on Ethiopian
19 20	655		Children 's Immunization Status. Etude la Popul Africaine/African Popul Stud 2014;28:1202–
20 21	656		15.
22	657	72	Grundy J, Annear P, Chomat AM, et al. Improving average health and persisting health
23	658		inequities - Towards a justice and fairness platform for health policy making in Asia.
24 25	659		Health Policy Plan 2014;29:873-82. doi:10.1093/heapol/czt068
25 26	660	73	Heaton TB, Crookston B, Forste R, et al. Inequalities in child health in Bolivia: Has
27	661		Morales made a difference? <i>Heal Sociol Rev</i> 2014; 23 :208–18.
28	662		doi:10.1080/14461242.2014.11081974
29	663	74	Helleringer S, Abdelwahab J, Vandenent M. Polio supplementary immunization activities
30 31	664		and equity in access to vaccination: Evidence from the demographic and health surveys. J
32	665		Infect Dis 2014; 210 :S531–9. doi:10.1093/infdis/jiu278
33	666	75	Javed SA, Imran W, Haider A, et al. Mothers related differentials in childhood
34 35	667		immunization uptake in Pakistan. <i>Res Humanit Soc Sci</i> 2014; 4 :62–72.
36	668	76	Luqman B, Titus Kolawole O. Mothers' health seeking behaviour and socio-economic
37	669		differentials: A factor analysis of full childhood immunization in South-Western Nigeria.
38	670		J Public Heal Epidemiol 2014; 6 :132–47. doi:10.5897/JPHE2013.0593
39 40	671	77	Malhotra C, Malhotra R, Østbye T, et al. Maternal autonomy and child health care
40	672		utilization in India: Results from the National Family Health Survey. Asia-Pacific J Public
42	673		Heal 2014; 26 :401–13. doi:10.1177/1010539511420418
43	674	78	Neupane S, Nwaru BI. Impact of prenatal care utilization on infant care practices in
44 45	675		Nepal: A National representative cross-sectional survey. <i>Eur J Pediatr</i> 2014; 173 :99–109.
46	676		doi:10.1007/s00431-013-2136-y
47	677	79	Prusty RK, Kumar A. Socioeconomic dynamics of gender disparity in childhood
48	678		immunization in India, 1992-2006. <i>PLoS One</i> 2014; 9 :1992–2006.
49 50	679	0.0	doi:10.1371/journal.pone.0104598
51	680	80	Rai RK, Singh PK, Singh L, <i>et al.</i> Individual characteristics and use of maternal and child
52	681		health services by adolescent mothers in Niger. <i>Matern Child Health J</i> 2014; 18 :592–603.
53	682	01	doi:10.1007/s10995-013-1276-z
54 55	683 (84	81	Singh PK, Parsuraman S. Sibling composition and child immunization in India and
56	684		Pakistan, 1990-2007. World J Pediatr 2014;10:145–50. doi:10.1007/s12519-014-0483-z
57			
58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
3	685	82	Singh PK, Parasuraman S, P.K. S, et al. 'Looking beyond the male-female dichotomy' -
4	686	02	sibling composition and child immunization in India, 1992-2006. Soc Sci Med
5	687		2014; 107 :145–53. doi:10.1016/j.socscimed.2014.02.017
6 7	688	83	Ushie BA, Fayehun OA, Ugal DB. Trends and patterns of under-5 vaccination in Nigeria,
8	689	00	1990-2008: What manner of progress? <i>Child Care Health Dev</i> 2014; 40 :267–74.
9	690		doi:10.1111/cch.12055
10	690 691	Q1	
11 12		84	Wagner Z, Szilagyi PG, Sood N. Comparative performance of public and private sector
12	692		delivery of BCG vaccination: Evidence from Sub-Saharan Africa. <i>Vaccine</i> 2014; 32 :4522–8.
14	693	0E	doi:10.1016/j.vaccine.2014.06.020
15	694	85	Zaidi SMA, Khowaja S, Dharma VK, <i>et al.</i> Coverage, timeliness, and determinants of
16	695		immunization completion in Pakistan: Evidence from the Demographic and Health
17 18	696	0.6	Survey (2006-07). <i>Hum Vaccines Immunother</i> 2014; 10 :1712–20. doi:10.4161/hv.28621
19	697	86	Abadura SA, Lerebo WT, Kulkarni U, <i>et al.</i> Individual and community level determinants
20	698		of childhood full immunization in Ethiopia: a multilevel analysis. BMC Public Health
21	699	~-	2015; 15 :972. doi:10.1186/s12889-015-2315-z
22	700	87	Ebot JO. 'Girl power!': The relationship between women's autonomy and children's
23 24	701		immunization coverage in Ethiopia. J Heal Popul Nutr 2015;33:1–9. doi:10.1186/s41043-
25	702		015-0028-7
26	703	88	Hajizadeh M, Heymann J, Strumpf E, et al. Paid maternity leave and childhood
27	704		vaccination uptake: Longitudinal evidence from 20 low-and-middle-income countries.
28	705		<i>Soc Sci Med</i> 2015; 140 :104–17. doi:10.1016/j.socscimed.2015.07.008
29 30	706	89	Lakew Y, Bekele A, Biadgilign S. Factors influencing full immunization coverage among
31	707		12–23 months of age children in Ethiopia: evidence from the national demographic and
32	708		health survey in 2011. BMC Public Health 2015;15:728. doi:10.1186/s12889-015-2078-6
33	709	90	McGlynn N, Wilk P, Luginaah I, et al. Increased use of recommended maternal health
34 25	710		care as a determinant of immunization and appropriate care for fever and diarrhoea in
35 36	711		Ghana: An analysis pooling three demographic and health surveys. Health Policy Plan
37	712		2015; 30 :895–905. doi:10.1093/heapol/czu090
38	713	91	Mukungwa T. Factors associated with full immunization coverage amongst children
39	714		aged 12 ???23 months in Zimbabwe. <i>Etude la Popul Africaine</i> 2015; 29 :1761–74.
40 41	715	92	Onsomu EO, Abuya B a, Okech IN, et al. Maternal Education and Immunization Status
42	716		Among Children in Kenya. Matern Child Health J 2015;19:1724–33. doi:10.1007/s10995-015-
43	717		1686-1
44	718	93	Osetinsky B, Gaydos LM, Leon JS. Predictors of completed childhood vaccination in
45	719		Bolivia. Int J Child Adolesc health 2015;8:413–23.
46 47	720	94	Prusty RK, Keshri K. Differentials in child nutrition and immunization among migrants
48	721		and non-migrants in Urban India. Int J Migr Heal Soc Care 2015;11:194–205.
49	722		doi:10.1108/IJMHSC-02-2014-0006
50	723	95	Rossi R. Do maternal living arrangements influence the vaccination status of children age
51 52	724		12-23 months? A data analysis of demographic health surveys 2010-11 from Zimbabwe.
52 53	725		<i>PLoS One</i> 2015; 10 :1–19. doi:10.1371/journal.pone.0132357
54	726	96	Schweitzer A, Krause G, Pessler F, <i>et al.</i> Improved coverage and timing of childhood
55	727		vaccinations in two post-Soviet countries, Armenia and Kyrgyzstan. BMC Public Health
56			1
57 58			
59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3	728		2015; 15 :798. doi:10.1186/s12889-015-2091-9
4	729	97	Shrivastwa N, Gillespie BW, Kolenic GE, <i>et al.</i> Predictors of Vaccination in India for
5 6	730		Children Aged 12-36 Months. Am J Prev Med 2015; 49 :S435-44.
7	731		doi:10.1016/j.amepre.2015.05.008
8	732	98	Singh K, Bloom S, Brodish P. Gender Equality as a Means to Improve Maternal and Child
9	733	90	Health in Africa. <i>Heal Care Women Int</i> 2015; 36 :57–69.
10	734		doi:doi:10.1080/07399332.2013.824971
11 12	734 735	99	Smith-Greenaway E, Madhavan S. Maternal migration and child health: An analysis of
13	736	77	disruption and adaptation processes in Benin. Soc Sci Res 2015;54:146–58.
14	737		doi:10.1016/j.ssresearch.2015.06.005
15		100	Tsawe M, Moto A, Netshivhera T, <i>et al.</i> Factors influencing the use of maternal healthcare
16 17	738 739	100	C C
17 18	739 740		services and childhood immunization in Swaziland. <i>Int J Equity Health</i> 2015; 14 :32. doi:10.1186/s12939-015-0162-2
19		101	
20	741 742	101	Arsenault C, Harper S, Nandi A, <i>et al.</i> Monitoring equity in vaccination coverage: A
21	742 742		systematic analysis of demographic and health surveys from 45 Gavi-supported
22 23	743 744	100	countries. Vaccine 2016; 35 :951–9. doi:10.1016/j.vaccine.2016.12.041
24	744 745	102	Chima CC, Franzini L. Spillover effect of HIV-specific foreign aid on immunization
25	745	100	services in Nigeria. Int Health 2016;8:108–15. doi:10.1093/inthealth/ihv036
26	746	103	Gurmu E, Etana D. Factors Influencing Children's Full Immunization in Ethiopia. <i>African</i>
27	747	104	Popul Stud 2016; 30 :2306–17.
28 29	748	104	Hosseinpoor AR, Bergen N, Schlotheuber A, et al. State of inequality in diphtheria-
30	749		tetanus-pertussis immunisation coverage in low-income and middle-income countries: A
31	750		multicountry study of household health surveys. <i>Lancet Glob Heal</i> 2016;4:e617–26.
32	751		doi:10.1016/S2214-109X(16)30141-3
33 34	752	105	Kriss JL, Goodson J, Machekanyanga Z, <i>et al.</i> Vaccine receipt and vaccine card availability
35	753		among children of the apostolic faith: analysis from the 2010-2011 Zimbabwe
36	754		demographic and health survey. <i>Pan Afr Med J</i> 2016; 24 :47.
37	755		doi:10.11604/pamj.2016.24.47.8663
38	756	106	Kumar C, Singh PK, Singh L, et al. Socioeconomic disparities in coverage of full
39 40	757		immunisation among children of adolescent mothers in India, 1990–2006: a repeated
41	758		cross-sectional analysis. <i>BMJ Open</i> 2016; 6 :e009768. doi:10.1136/bmjopen-2015-009768
42	759	107	Schweitzer A, Pessler F, Akmatov MK. Impact of rotavirus vaccination on coverage and
43	760		timing of pentavalent vaccination ??? Experience from 2 Latin American countries. <i>Hum</i>
44 45	761		Vaccines Immunother 2016; 12 :1250–6. doi:10.1080/21645515.2015.1127486
46	762	108	Adedokun ST, Uthman OA, Adekanmbi VT, et al. Incomplete childhood immunization in
47	763		Nigeria: a multilevel analysis of individual and contextual factors. BMC Public Health
48	764		2017; 17 :236. doi:10.1186/s12889-017-4137-7
49 50	765	109	Aghaji AE. Trends in Measles Vaccination in Nigeria and Implications for Childhood
50 51	766		Blindness. Int J Med Heal Dev 2017;22:82–8. doi:10.4314/jcm.v22i2.4
52	767	110	Ambel AA, Andrews C, Bakilana AM, et al. Examining changes in maternal and child
53	768		health inequalities in Ethiopia. Int J Equity Health 2017;16:152. doi:10.1186/s12939-017-
54	769		0648-1
55 56	770	111	Delprato M, Akyeampong K. The Effect of Early Marriage Timing on Women's and
57			
58			
59			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60			for peer review only - http://binjopen.binj.com/site/about/guidelines.xhtml

1			
2 3	771		Children's Health in Sub-Saharan Africa and Southwest Asia. Ann Glob Heal 2017;83:557–
4	772		67. doi:10.1016/j.aogh.2017.10.005
5 6	773	112	Herliana P, Douiri A. Determinants of immunisation coverage of children aged 12-59
7	774		months in Indonesia: a cross-sectional study. <i>BMJ Open</i> 2017;7:e015790.
8	775		doi:10.1136/bmjopen-2016-015790
9 10	776	113	Kazungu JS, Adetifa IMO. Crude childhood vaccination coverage in West Africa: Trends
11	777		and predictors of completeness. <i>Wellcome open Res</i> 2017; 2 :12.
12	778		doi:10.12688/wellcomeopenres.10690.1
13	779	114	KC A, Nelin V, Raaijmakers H, et al. Increased immunization coverage addresses the
14 15	780		equity gap in Nepal. Bull World Health Organ 2017;95:261–9. doi:10.2471/BLT.16.178327
16	781	115	Khan MT, Zaheer S, Shafique K. Maternal education, empowerment, economic status and
17	782		child polio vaccination uptake in Pakistan: a population based cross sectional study. BMJ
18 19	783		<i>Open</i> 2017;7:e013853. doi:10.1136/bmjopen-2016-013853
20	784	116	Mbengue MAS, Sarr M, Faye A, et al. Determinants of complete immunization among
21	785		senegalese children aged 12-23 months: evidence from the demographic and health
22 23	786	110	survey. BMC Public Health 2017;17:630. doi:10.1186/s12889-017-4493-3
23	787 789	117	Oleribe O, Kumar V, Awosika-Olumo A, <i>et al.</i> Individual and socioeconomic factors
25	788 789		associated with childhood immunization coverage in Nigeria. <i>Pan Afr Med J</i> 2017; 26 :220.
26	789 790	118	doi:10.11604/pamj.2017.26.220.11453 Singh A, Patel SK. Gender differentials in feeding practices, health care utilization and
27 28	790 791	110	nutritional status of children in Northern India. Int J Hum Rights Healthc Published Online
29	792		First: 2017. doi:10.1108/IJHRH-05-2017-0023
30	793	119	Uthman OA, Adedokun ST, Olukade T, <i>et al.</i> Children who have received no routine
31 32	794		polio vaccines in Nigeria: Who are they and where do they live? <i>Hum Vaccin Immunother</i>
33	795		2017; 13 :2111–22. doi:10.1080/21645515.2017.1336590
34	796	120	Zuhair M, Roy RB. Socioeconomic Determinants of the Utilization of Antenatal Care and
35 36	797		Child Vaccination in India. Asia-Pacific J public Heal 2017;29:649–59.
30	798		doi:10.1177/1010539517747071
38	799	121	Acharya P, Kismul H, Mapatano MA, et al. Individual- and community-level
39	800		determinants of child immunization in the Democratic Republic of Congo: A multilevel
40 41	801		analysis. PLoS One Published Online First: 2018. doi:10.1371/journal.pone.0202742
42	802	122	Adetokunboh OO, Uthman OA, Wiysonge CS. Non-uptake of childhood vaccination
43	803		among the children of HIV-infected mothers in sub-Saharan Africa: A multilevel analysis.
44 45	804		Hum Vaccin Immunother 2018;14:2405–13. doi:10.1080/21645515.2018.1502524
45	805	123	Adetokunboh OO, Uthman OA, Wiysonge CS. Effect of maternal HIV status on
47	806		vaccination coverage among sub-Saharan African children: A socio-ecological analysis.
48	807		Hum Vaccin Immunother 2018; 14 :2373–81. doi:10.1080/21645515.2018.1467204
49 50	808	124	Ashbaugh HR, Hoff NA, Doshi RH, <i>et al.</i> Predictors of measles vaccination coverage
51	809		among children 6-59 months of age in the Democratic Republic of the Congo. <i>Vaccine</i>
52	810 811	105	2018; 36 :587–93. doi:10.1016/j.vaccine.2017.11.049
53 54	811 812	125	Asuman D, Ackah CG, Enemark U. Inequalities in child immunization coverage in
55	812 813		Ghana: evidence from a decomposition analysis. <i>Health Econ Rev</i> 2018; 8 :9. doi:10.1186/s13561-018-0193-7
56	010		u01.10.1100/510001-010-0170-7
57			
58 59			
			For poor roview only, http://hmiepon.hmi.com/site/about/guidelines.yhtml

1 2			
2	814	126	Boulton ML, Carlson BF, Power LE, et al. Socioeconomic factors associated with full
4	815	120	childhood vaccination in Bangladesh, 2014. Int J Infect Dis Published Online First: 2018.
5 6	816		doi:10.1016/j.ijid.2018.01.035
7	817	127	Burroway R, Hargrove A. Education is the antidote: Individual- and community-level
8	818	12/	effects of maternal education on child immunizations in Nigeria. Soc Sci Med 2018; 213 :63–
9	819		71. doi:10.1016/j.socscimed.2018.07.036
10 11	820	128	Imran W, Abbas F, Javed SA. What is causing high polio vaccine dropout among
12	821		Pakistani children? <i>Public Health</i> 2018; 164 :16–25. doi:10.1016/j.puhe.2018.07.008
13	822	129	Khan J, Shil A, Prakash R. Exploring the spatial heterogeneity in different doses of
14 15	823		vaccination coverage in India. <i>PLoS One</i> 2018; 13 :e0207209.
15 16	824		doi:10.1371/journal.pone.0207209
17	825	130	Kols A, Gorar Z, Sharjeel M, et al. Provincial differences in levels, trends, and
18	826		determinants of childhood immunization in Pakistan. <i>East Mediterr Heal J</i> 2018; 24 :333–44.
19 20	827		doi:10.26719/2018.24.4.333
20 21	828	131	McGavin ZA, Wagner AL, Carlson BF, et al. Childhood full and under-vaccination in
22	829		Nigeria, 2013. Vaccine 2018; 36 :7294–9. doi:10.1016/j.vaccine.2018.10.043
23	830	132	Raza O, Lodhi FS, Morasae EK, et al. Differential achievements in childhood
24 25	831		immunization across geographical regions of Pakistan: analysis of wealth-related
26	832		inequality. Int J Equity Health 2018;17:122. doi:10.1186/s12939-018-0837-6
27	833	133	Shenton LM, Wagner AL, Carlson BF, et al. Vaccination status of children aged 1-4 years
28	834		in Afghanistan and associated factors, 2015. <i>Vaccine</i> 2018; 36 :5141–9.
29 30	835		doi:10.1016/j.vaccine.2018.07.020
31	836	134	Shenton LM, Wagner AL, Bettampadi D, et al. Factors Associated with Vaccination Status
32	837		of Children Aged 12–48 Months in India, 2012–2013. <i>Matern Child Health J</i> 2018; 22 :1–10.
33 34	838		doi:10.1007/s10995-017-2409-6
34 35	839	135	Sohn M, Lin L, Jung M. Effects of Maternal Decisional Authority and Media Use on
36	840		Vaccination for Children in Asian Countries. <i>Medicina (Kaunas)</i> 2018; 54 .
37	841	10(doi:10.3390/medicina54060105
38 39	842	136	Lungu EA, Biesma R, Chirwa M, <i>et al.</i> Is the Urban Child Health Advantage Declining in
40	843 844		Malawi?: Evidence from Demographic and Health Surveys and Multiple Indicator
41	844 845	107	Cluster Surveys. J Urban Health 2019;96:131–43. doi:10.1007/s11524-018-0270-6
42	845 846	137	Masters NB, Wagner AL, Carlson BF, <i>et al.</i> Childhood vaccination in Kenya:
43 44	847		socioeconomic determinants and disparities among the Somali ethnic community. <i>Int J Public Health</i> 2019; 64 :313–22. doi:10.1007/s00038-018-1187-2
45	848	138	Vyas P, Kim D, Adams A. Understanding Spatial and Contextual Factors Influencing
46	849	150	Intraregional Differences in Child Vaccination Coverage in Bangladesh. <i>Asia-Pacific J</i>
47 48	850		<i>public Heal</i> 2019; 31 :51–60. doi:10.1177/1010539518813604
40 49	851	139	Centers for Disease Control and Prevention. Achievements in public health: elimination
50	852	107	of rubella and congenital rubella syndrome-US, 1969-2004. MMWR Morb Mortal Wkly Rep
51	853		2005; 54 :279–82.
52 53	854	140	Mwenge W, Mbulu LK, Okeibunor J, <i>et al.</i> Polio Eradication Initiative: Contribution to
54	855	110	improved communicable diseases surveillance in WHO African region. <i>Vaccine</i>
55	856		2016; 34 :5170–4. doi:10.1016/j.vaccine.2016.05.060
56	-		
57 58			
59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
3	857	141	Keegan R, Dabbagh A, Strebel PM, et al. Comparing measles with previous eradication
4	858	141	programs: enabling and constraining factors. J Infect Dis 2011; 204 :S54–61.
5	859		doi:10.1093/infdis/jir119
6 7	860	142	Levin A, Burgess C, Garrison LP, <i>et al.</i> Global Eradication of Measles: An Epidemiologic
8	861	144	and Economic Evaluation. J Infect Dis 2011; 204 :S98–106. doi:10.1093/infdis/jir096
9		142	
10	862	143	Thapa A, Khanal S, Sharapov U, <i>et al.</i> Progress Toward Measles Elimination - South-East
11	863	111	Asia Region, 2003-2013. <i>MMWR Morb Mortal Wkly Rep</i> 2015; 64 :613–7.
12 13	864	144	Tsega A, Daniel F, Steinglass R. Monitoring coverage of fully immunized children.
14	865	145	<i>Vaccine</i> 2014; 32 :7047–9. doi:10.1016/j.vaccine.2014.10.057
15	866	145	Hong R, Banta JE. Effects of extra immunization efforts on routine immunization at
16	867	140	district level in Pakistan. <i>East Mediterr Heal J</i> 2005; 11 .
17 18	868	146	Krieger N, Smith GD. The tale wagged by the DAG: Broadening the scope of causal
19	869		inference and explanation for epidemiology. <i>Int J Epidemiol</i> 2016; 45 :1787–808.
20	870		doi:10.1093/ije/dyw114
21	871	147	Westreich D, Greenland S. The table 2 fallacy: Presenting and interpreting confounder
22	872	1.10	and modifier coefficients. <i>Am J Epidemiol</i> 2013; 177 :292–8. doi:10.1093/aje/kws412
23 24	873	148	Bandoli G, Palmsten K, Chambers CD, et al. Revisiting the Table 2 fallacy: A motivating
25	874		example examining preeclampsia and preterm birth. Paediatr Perinat Epidemiol
26	875		2018; 32 :390–7. doi:10.1111/ppe.12474
27	876	149	Bolton P, Hussain A, Hadpawat A, et al. Deficiencies in current childhood immunization
28 29	877		indicators. <i>Public Heal Rep</i> 1998; 113 :527–32.
30	878	150	Laubereau B, Hermann M, Schmitt HJ, et al. Detection of delayed vaccinations: a new
31	879		approach to visualize vaccine uptake. <i>Epidemiol Infect</i> 2002; 128 :185–92.
32	880	151	Shrivastwa N, Gillespie BW, Lepkowski JM, et al. Vaccination Timeliness in Children
33	881		under India's Universal Immunization Program. <i>Pediatr Infect Dis J</i> 2016; 35 :955–60.
34 35	882		doi:10.1097/INF.00000000001223
36	883	152	Dandona R, Pandey A, Dandona L. A review of national health surveys in India. Bull
37	884		World Heal Organ 2016; 94 :286–96. doi:10.2471/BLT.15.158493
38	885	153	UNICEF. Multiple Indicator Cluster Surveys. 2017.http://mics.unicef.org/ (accessed 3 Oct
39 40	886		2017).
41	887	154	Wagner AL. The use and significance of vaccination cards. <i>Hum Vaccin Immunother</i>
42	888		2019; 15 :2844–6. doi:10.1080/21645515.2019.1625647
43	889	155	Central Statistical Agency, The DHS Program. Ethiopia Demographic and Health Survey,
44 45	890		2016. 2016.
45 46	891		
47	892		
48	893		
49 50			
50 51			
52			
53			
54			
55 56			
57			
58			
59			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60			To peer review only inteps/binjopen.only.com/site/about/guidelines.xittin

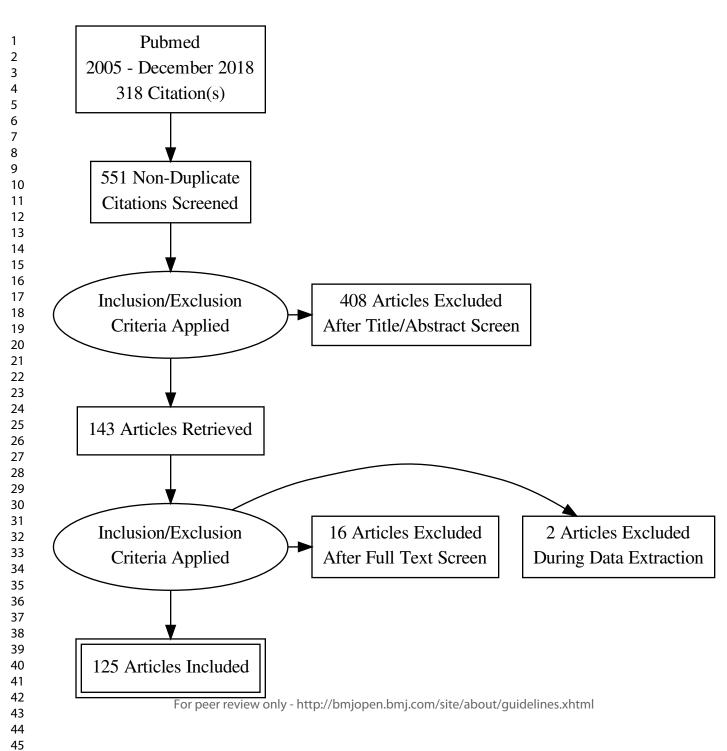
1		
2 3	894	Figure legends
3 4 5 6	895	
6 7	896	Figure 1. Diagram of studies' selection into a scoping review of vaccination studies using the
8	897 898	Demographic and Health Surveys.
9 10	899	Figure 2. Map of countries which have had Demographic and Health Survey (DHS) datasets
11	900	published in vaccination studies using only one country. Countries with a DHS between 2003-
12 13	901	2016 without studies are separately indicated.
14	902 903	Figure 3. Commonly reported predictors of vaccination status used in studies using the
15 16	904	Demographic and Health Survey.
17	905	
18 19	906 907	
20 21	507	
22		
23 24		
25		
26 27		
28 29		
30		
31 32		
33 34		
35		Figure 3. Commonly reported predictors of vaccination status used in studies using the Demographic and Health Survey.
36 37		
38 39		
40		
41 42		
43 44		
44 45		
46 47		
48		
49 50		
51 52		
53		
54 55		
56		
57 58		
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		

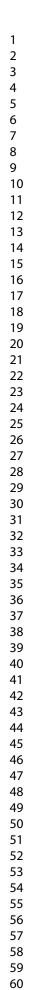
Table 1. List of papers included in a scoping review of studies assessing vaccination status using the Demographic and Health Survey (DHS).

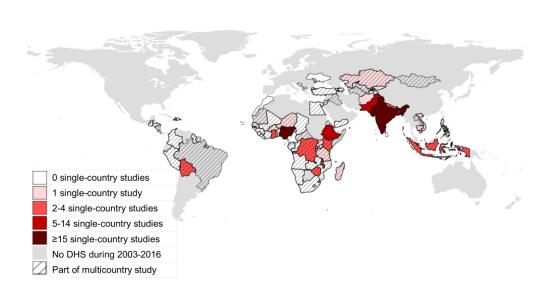
Author	Year	Countries	Age of Child	Vaccination Outcome	Quality score
Bowie [17]	2006	Malawi	12-23 months	BCG, OPV, DTP, MCV, Full (BCG + 3OPV + 3DTP + MCV)	
Choi [18]	2006	India	12-48 months	Full (BCG + 3OPV + 3DTP + MCV)	
Gaudin [19]	2006	India	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
Akmatov [20]	2007	Kazakhstan	12-60 months	Full (BCG + 4OPV + 3DTP + MCV)	
Anand [21]	2007	Multicountry	Not specified	OPV, DTP, MCV	
Bhandari [22]	2007	Nepal	12-23 months	BCG, OPV, DTP, MCV, Full (BCG + 3OPV + 3DTP + MCV)	
Datar [23]	2007	India	2-35 months	OPV, Full (BCG + 3OPV + 3DTP + MCV)	Į
Minh Thang [24]	2007	Vietnam	11-23 months	Full (BCG + 3OPV + 3DTP + MCV)	Į
Munthali [25]	2007	Malawi	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	3
Ntenda [26]	2007	Malawi	12-23 months	BCG, OPV, DTP, MCV, Full (BCG + 3DTP + 3OPV + 1MCV)	(
Chidiebere [27]	2008	Nigeria	0-23 months	Full (BCG + 4OPV + 3Penta + 1 MCV + YF)	
Gatchell [28]	2008	India	1-3 years	Full (BCG + 3OPV + 3DTP + MCV)	
Halder [29]	2008	Bangladesh	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
Meheus [30]	2008	Multicountry	12-23 months	MCV	
Patra [31]	2008	India	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
Antai [32]	2009	Nigeria	Older than 12 months	Full (BCG + 3OPV + 3DTP + MCV)	
Antai [33]	2009	Nigeria	Older than 12 months	Full (BCG + 3OPV + 3DTP + MCV)	
Bondy [34]	2009	Philippines	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	Į
Corsi [35]	2009	India	Under 5 years	BCG, OPV, DTP, MCV, Full (age dependent after 9 months)	3
Osaki [36]	2009	Indonesia	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
Sia [37]	2009	Burkina Faso	12-23 months	Full (BCG + 3OPV + 3DTP + MCV + YF)	(
Antai [38]	2010	Nigeria	12 months and older	BCG, OPV, DTP, MCV, Full (BCG + 3OPV + 3DTP + MCV)	
Hong [39]	2010	Cambodia	12-59 months	DTP	
Rahman [40]	2010	Bangladesh	12-59 months	Full (BCG + 3OPV + 3DTP + MCV)	
Sahu [41]	2010	India	Preceding 2 births in last 3 years	Full (BCG + 3OPV + 3DTP + MCV)	
Semali [42]	2010	Tanzania	12-23 months	Full (BCG + 4OPV + 3DTP + MCV)	
Abuya [43]	2011	Kenya	12-35 months	Full (BCG + 3OPV + 3DTP + MCV)	
Antai [44]	2011	Nigeria	12 months and older	Full (BCG + 3OPV + 3DTP + MCV)	
Fernandez [45]	2011	Indonesia	0-59 months	BCG, OPV, DTP, MCV, HepB	
Fernandez [46]	2011	Indonesia	0-59 months	MCV	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Kumar [47]	2011	India	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
Lauridsen [48]	2011	India	12-23 months	Full (BCG + 30PV + 3DTP + MCV)	
Pandey [49]	2011	Nepal	12-23 months	BCG, OPV, DTP, MCV, Full (BCG + 3OPV + 3DTP + MCV)	
Singh [50]	2011	India	12-48 months	Full (BCG + 30PV + 3DTP + MCV)	
Afzal [51]	2011	Bangladesh	Under 5 years	Full (BCG + 30PV + 3DTP + MCV)	
Antai [52]	2012		12-59 months	Full (BCG + 30PV + 3DTP + MCV)	
Rammohan [53]	2012	Multicountry	Not specified	MCV	
Sabarwal [54]	2012	India	12-24 months	Full (BCG + 3OPV + 3DTP + MCV)	
Singh [55]	2012	India	12-59 months	Full (BCG + 30PV + 3DTP + MCV)	
Wiysonge [56]	2012	Multicountry	12-23 months	Full (DTP3)	
Barman [57]	2012	India	12-23 months	Full (BCG + 30PV + 3DTP + MCV)	
Bbaale [58]	2013	Uganda	0-36 months (12 - 36 for full)	BCG, OPV, DTP, MCV, Full (BCG + 30PV + 3DTP + MCV)	
Haque [59]	2013	Bangladesh	9-59 months	MCV	
Kumar [60]	2013	India	0-59 months	Full (BCG + 3OPV + 3DTP + MCV)	
Moyer [61]	2013		12-24 months	BCG, OPV, DTP, MCV, Full (BCG + 3Penta + 4OPV + 1MCV)	
Singh [62]	2013	India	12-23 months	Full (BCG + 30PV + 3DTP + MCV)	
Singh [63]	2013		12-23 months	Full (BCG + 30PV + 3DTP + MCV)	
Singh [64]	2013	India	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
Van Malderen [65]	2013	Kenya	12-23 months	MCV	
Adegboye [66]	2014		12-59 months	Full (BCG + 3OPV + 3DTP + MCV)	
Bonfrer [67]	2014	Burundi	Older than 1 year	BCG, OPV, DTP, MCV	
Bugvi [68]	2014	Pakistan	12-23 months	Full (BCG + 3DTP + 4OPV + 3HepB + 1MCV)	
Canavan [69]	2014	Multicountry	12-23 months	Full (BCG + 4OPV + 1 MCV + 3Penta)	
Clouston [70]	2014	Madagascar	0-59 months	BCG, OPV, DTP, MCV, Hib	
Ebot [71]	2014	Ethiopia	12-30 months	Full (BCG + 3OPV + 3DTP + MCV)	
Grundy [72]	2014	Multicountry	Not specified	DTP	
Heaton [73]	2014	Bolivia	Not specified	Full (BCG + 3OPV + 3DTP + MCV)	
Helleringer [74]	2014	Multicountry	12-23 months	OPV, SIA participation	
Javed [75]	2014	Pakistan	12-28 months	BCG, OPV, DTP, MCV, Full (BCG + 3OPV + 3DTP + MCV)	
Luqman [76]	2014	Nigeria	12-23 months	BCG, OPV, DTP, MCV, Full (BCG + 4OPV + 3DTP + MCV)	
Malhotra [77]	2014	India	Older than 12 months	Full (BCG + 3OPV + 3DTP + MCV)	
Neupane [78]	2014	Nepal	Not specified	Full (BCG + 1DTP + 1OPV)	
Prusty [79]	2014	India	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
Rai [80]	2014	Niger	12-59 months	Full (BCG + 3OPV + 3DTP + MCV)	


Singh [81]	2014	Multicountry		Full (BCG + 3OPV + 3DTP + MCV)	
Singh [82]	2014	India	12-36 months	Full (BCG + 3OPV + 3DTP + MCV)	
Ushie [83]	2014	Nigeria	Under 5 years	Full (BCG + 3OPV + 3DTP + MCV)	
Wagner [84]	2014	Multicountry	0-59 months	BCG	
Zaidi [85]	2014	Pakistan	0-5 years	OPV, DTP, MCV	
Abadura [86]	2015	Ethiopia	12-59 months	Full (BCG + 3OPV + 3DTP + MCV)	
Ebot [87]	2015	Ethiopia	12-30 months	Full (BCG + 3OPV + 3DTP + MCV)	
Hajizadeh [88]	2015	Multicountry	Under 59 months	BCG, OPV, DTP	
Lakew [89]	2015	Ethiopia	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
McGlynn [90]	2015	Ghana	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
Mukungwa [91]	2015	Zimbabwe	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
Onsomu [92]	2015	Kenya	12-23 months	BCG, OPV, DTP, MCV	
Osetinsky [93]	2015	Bolivia	24 months - 5 years	Full (BCG + 3 Polio + 3DTP + 1MMR + YF)	
Prusty [94]	2015	India	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
Rossi [95]	2015	Zimbabwe	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
Schweitzer [96]	2015	Multicountry	12-59 months	DTP, MCV	
Shrivastwa [97]	2015	India	12-36 months	Full (BCG + 3OPV + 3DTP + MCV)	
Singh [98]	2015	Multicountry	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
Smith-Greenaway	2015	Benin	1-59 months	Ever received any vaccine	
[99]					
Tsawe [100]	2015	eSwatini	Not specified	Ever received any vaccine	
Arsenault [101]	2016	Multicountry	12-23 months	DTP, MCV	
Chima [102]	2016	Nigeria	12-59 months	BCG, OPV, DTP, MCV	
Gurmu [103]	2016	Ethiopia	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
Hosseinpoor [104]	2016	Multicountry	12–23 months in most	DTP	
Kriss [105]	2016	Zimbabwe	12-23 months	BCG, OPV, DTP, MCV, Full (BCG + 3OPV + 3Penta + 1MCV	
Kumar [106]	2016	India	12-23 months	Full (BCG + 3DTP + 3OPV + 1MCV)	
Restrepo-Méndez	2016	Multicountry	12–23 months in most	Full (BCG + 3DTP + 3OPV + 1MCV)	
[11]					
Restrepo-Méndez	2016	Multicountry	12-23 months	BCG, OPV, DTP, MCV, Full (BCG + 3DTP + 3OPV + 1MCV)	
[12]					
Schweitzer [107]	2016	Multicountry	Birth - 250 weeks	DTP	
Adedokun [108]	2017	Nigeria	12-23 months	Full (BCG + 3OPV + 3Penta + MCV)	
Aghaji [109]	2017	Nigeria	12-23 months	MCV	


1 2	Ambel [110]	2017	Ethiopia	12-23 months	MCV, Full (BCG + 3DTP + 3OPV + 1MCV	4
3 4 5 6	Arsenault [10]	2017	Multicountry	12-23 months	DTP, MCV	8
	Delprato [111]	2017	Multicountry	Not specified	Full (BCG + DTP + OPV + MCV (no. unspecified))	5
	Herliana [112]	2017	Indonesia	12-59 months	Full (BCG + 3DTP + 4OPV + 1MCV + 1HepB	9
	Kazungu [113]	2017	Multicountry	12-23 months	Full (BCG + 3DTP + 3OPV + 1MCV)	7
7 8	KC [114]	2017	Nepal	Not specified	BCG, OPV, DTP, MCV, Full (BCG + 3DTP + 3OPV + 1MCV)	6
9	Khan [115]	2017	Pakistan	Under 5 years	OPV	7
10 11	Mbengue [116]	2017	Senegal	12-23 months	Full (BCG + 3Penta + 3OPV + 1MCV)	8
12 13	Oleribe [117]	2017	Nigeria	12-24 months	BCG, OPV, DTP, MCV, Full (BCG + 3DTP + 3OPV dose + 1MCV)	5
14	Singh [118]	2017	India	12-13 months	Full (Not defined)	6
15 16	Uthman [119]	2017	Nigeria	12-23 months	OPV	9
17	Zuhair [120]	2017	India	Not specified	BCG, OPV, DTP, MCV	7
18	Acharya [121]	2018	DRC	12-23 months	Full (BCG +3DTP + 3OPV + 1MCV)	9
19 20	Adetokunboh [122]	2018	Multicountry	12-23 months	DTP	6
20	Adetokunboh [123]	2018	Multicountry	12-23 months	DTP	4
22	Ashbaugh [124]	2018	DRC	6-59 months	MCV	9
23	Asuman [125]	2018	Ghana	12-59 months	Full (BCG + 3DTP + 3OPV + 1MCV)	8
24 25	Boulton [126]	2018	Bangladesh	12-24 months	BCG, OPV, DTP, MCV, Full (BCG + 3Penta + 3OPV + 1MCV)	7
26	Burroway [127]	2018	Nigeria	12-24 months	Full (BCG + 3DTP + 4OPV + 1MCV)	7
27	Imran [128]	2018	Pakistan	12-23 months	OPV	7
28 29	Khan [129]	2018	India	12-23 months	BCG, OPV, DTP, MCV, Full (BCG + 3DTP + 3 OPV + 1MCV)	9
29 30	Kols [130]	2018	Pakistan	12-23 months	BCG, OPV, DTP, MCV, Full (BCG +3DTP + 3OPV + 1MCV)	9
31	McGavin [131]	2018	Nigeria	12-24 months	Full (BCG + 3DTP + 4OPV + 1MCV)	9
32	Raza [132]	2018	Pakistan	12-23 months	Full (BCG +3DTP + 3OPV + 3HepB + 3Hib + 1MCV)	5
33 34	Shenton [133]	2018	Afghanistan	12-60 months	Full (BCG +3Penta + 3OPV + 1MCV)	10
35	Shenton [134]	2018	India	12-48 months	Full (BCG + 3OPV + 3DTP + MCV)	8
36	Sohn [135]	2018	Multicountry	Not specified	BCG, OPV, DTP, MCV	7
37	Lungu [136]	2019	Malawi	Not specified	Full (not specified)	1
38 39	Masters [137]	2019	Kenya	12-23 months	BCG, OPV, DTP, MCV, Full (BCG + 3Penta + 3OPV + 1MCV)	10
40	Vyas [138]	2019	Bangladesh	Not specified	BCG, DTP, MCV	3
41	Notes:					


Notes:

BCG, bacillus Calmette-Guérin; DRC, Democratic Republic of the Congo; DTP, diphtheria –tetanus-pertussis vaccine; HepB, hepatitis B vaccine; Hib, *Haemophilus influenzae* type b vaccine; MCV, measles-containing vaccine; MMR, measles-mumps-rubella vaccine; OPV, oral polio vaccine; Penta, pentavalent vaccine; SIA, supplementary immunization activity; YF, yellow fever

 For peer review only

Map of countries by the number of published studies using Demographic and Health Survey (DHS) datasets. Shading corresponds to number of studies using DHS data from only one country; hash marks indicate a study using multiple countries.

190x101mm (300 x 300 DPI)

1	
2	
3	
4	
5	
6	
7	More maternal education
8	
9	Higher wealth index
10	Urban vs rural
11	Male vs female sex
12	Older age of mother
13	More older children
14	Insitutional vs home delivery
15	
16	More antenatal care visits
17	Greater media exposure
18	More paternal education
19	0% 20% 40% 60% 80% 100%
20	
20	■ Inverse relationship □ No significant relationship
21	□ Another relationship (e.g., U-shaped) □ Positive relationship
22	
23	Commonly reported predictors of vaccination status used in studios using the Domographic and Health
24	Commonly reported predictors of vaccination status used in studies using the Demographic and Health Survey.
25	Sulvey.
20	190x101mm (300 x 300 DPI)
27	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #	
TITLE				
Title	1	Identify the report as a scoping review.	1	
ABSTRACT				
Structured summary	2	Provide a structured summary that includes (as applicable): background, objectives, eligibility criteria, sources of evidence, charting methods, results, and conclusions that relate to the review questions and objectives.	2	
INTRODUCTION				
Rationale	3	Describe the rationale for the review in the context of what is already known. Explain why the review questions/objectives lend themselves to a scoping review approach.	3-4	
Objectives	4	Provide an explicit statement of the questions and objectives being addressed with reference to their key elements (e.g., population or participants, concepts, and context) or other relevant key elements used to conceptualize the review questions and/or objectives.	4	
METHODS				
Protocol and registration	5	Indicate whether a review protocol exists; state if and where it can be accessed (e.g., a Web address); and if available, provide registration information, including the registration number.	N/A, 4	
Eligibility criteria	6	Specify characteristics of the sources of evidence used as eligibility criteria (e.g., years considered, language, and publication status), and provide a rationale.	4	
Information sources*	7	Describe all information sources in the search (e.g., databases with dates of coverage and contact with authors to identify additional sources), as well as the date the most recent search was executed.	4	
Search	8	Present the full electronic search strategy for at least 1 database, including any limits used, such that it could be repeated.	4	
Selection of sources of evidence†	9	State the process for selecting sources of evidence (i.e., screening and eligibility) included in the scoping review.	4-5	
Data charting process‡	10	Describe the methods of charting data from the included sources of evidence (e.g., calibrated forms or forms that have been tested by the team before their use, and whether data charting was done independently or in duplicate) and any processes for obtaining and confirming data from investigators.	5	
Data items	11	List and define all variables for which data were sought and any assumptions and simplifications made.	5	
Critical appraisal of individual sources of evidence§	12	If done, provide a rationale for conducting a critical appraisal of included sources of evidence; describe the methods used and how this information was used in any data synthesis (if appropriate).	5	

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #
Synthesis of results	13	Describe the methods of handling and summarizing the data that were charted.	6
RESULTS			
Selection of sources of evidence	14	Give numbers of sources of evidence screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally using a flow diagram.	7
Characteristics of sources of evidence	15	For each source of evidence, present characteristics for which data were charted and provide the citations.	7-8
Critical appraisal within sources of evidence	16	If done, present data on critical appraisal of included sources of evidence (see item 12).	7
Results of individual sources of evidence	17	For each included source of evidence, present the relevant data that were charted that relate to the review questions and objectives.	7
Synthesis of results	18	Summarize and/or present the charting results as they relate to the review questions and objectives.	7-8
DISCUSSION			
Summary of evidence	19	Summarize the main results (including an overview of concepts, themes, and types of evidence available), link to the review questions and objectives, and consider the relevance to key groups.	8
Limitations	20	Discuss the limitations of the scoping review process.	10
Conclusions	21	Provide a general interpretation of the results with respect to the review questions and objectives, as well as potential implications and/or next steps.	10
FUNDING			
Funding	22	Describe sources of funding for the included sources of evidence, as well as sources of funding for the scoping review. Describe the role of the funders of the scoping review.	12

JBI = Joanna Briggs Institute; PRISMA-ScR = Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews.

* Where *sources of evidence* (see second footnote) are compiled from, such as bibliographic databases, social media platforms, and Web sites.

† A more inclusive/heterogeneous term used to account for the different types of evidence or data sources (e.g., quantitative and/or qualitative research, expert opinion, and policy documents) that may be eligible in a scoping review as opposed to only studies. This is not to be confused with *information sources* (see first footnote).
‡ The frameworks by Arksey and O'Malley (6) and Levac and colleagues (7) and the JBI guidance (4, 5) refer to the

process of data extraction in a scoping review as data charting. § The process of systematically examining research evidence to assess its validity, results, and relevance before using it to inform a decision. This term is used for items 12 and 19 instead of "risk of bias" (which is more applicable to systematic reviews of interventions) to include and acknowledge the various sources of evidence that may be used in a scoping review (e.g., quantitative and/or qualitative research, expert opinion, and policy document).

From: Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann Intern Med. 2018;169:467–473. doi: 10.7326/M18-0850.

BMJ Open

Vaccination Assessments using the Demographic and Health Survey, 2005-2018; A Scoping Review

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039693.R1
Article Type:	Original research
Date Submitted by the Author:	02-Nov-2020
Complete List of Authors:	Shenton, Luke; University of Michigan, Epidemiology Wagner, Abram; University of Michigan, Epidemiology Ji, Mengdi; University of Michigan, Epidemiology Carlson, Bradley; University of Michigan, Epidemiology Boulton, Matthew; University of Michigan,
Primary Subject Heading :	Global health
Secondary Subject Heading:	Public health
Keywords:	Paediatric infectious disease & immunisation < PAEDIATRICS, Public health < INFECTIOUS DISEASES, International health services < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

2		
3	1	Vaccination Assessments using the Demographic and Health Survey, 2005-2018; A Scoping
4	2	Review
5		Keview
6	3	
7	4	Luke M. Shenton (<u>lshenton@umich.edu</u>) ^{1,*}
8 9	5	Abram L. Wagner (<u>awag@umich.edu</u>) ^{1,*, †}
9 10	6	Mengdi Ji (<u>mengdiji@umich.edu</u>) ¹
11	7	Bradley F. Carlson (<u>bcarlson@umich.edu</u>) ¹
12	8	Matthew L. Boulton (<u>mboulton@umich.edu</u>) ^{1,2}
13	9	matthew E. Bounton (<u>moountone unitenteuu</u>)
14		
15	10	
16	11	¹ Department of Epidemiology, School of Public Health, University of Michigan, 1415
17	12	Washington Heights, Ann Arbor, MI 48109, USA
18	13	
19	14	² Department of Internal Medicine, Division of Infectious Disease, University of Michigan
20	15	Medical School, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
21 22	16	
22		* E sus l'assuteillauteur
24	17	* Equal contributors
25	18	
26	19	⁺ Address correspondence to:
27	20	Abram L. Wagner, 1415 Washington Heights, Ann Arbor, MI 48109, USA [awag@umich.edu]
28	21	TEL: +001-734-763-2330 FAX: +001-734- 647-1120
29	22	
30	23	
31 32	24	Running Head: Scoping review of vaccination assessments
32 33	25	Running Heure. Scoping review of vacentation assessments
34		
35	26	
36	27	Word Count: 3,608 Abstract: 279
37	28	
38	29	
39	30	
40	31	
41 42		
42 43		
44		
45		
46		
47		
48		
49		
50		
51 52		
52 53		
55 54		
55		
56		
57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		ror peer even only inter, / on jopen on j.com/ site/ about/ guidelines.xittin

2		
3	32	ABSTRACT
4	33	
5		Objective. To share staring attribution which have used DUC detects to evolute to evolute to evolution
6	34	Objective: To characterize studies which have used DHS datasets to evaluate vaccination
7	35	status.
8	36	
9 10	37	Design: Scoping review
10	38	
12	39	Data sources: Electronic databases including PubMed, EBSCOhost, and POPLINE, from 2005-
13	40	2018
14		2018
15	41	
16	42	Study selection: All English studies with vaccination status as the outcome and the use of
17	43	Demographic and Health Survey (DHS) data.
18	44	
19	45	Data extraction: Studies were selected using a predetermined list of eligibility criteria and data
20		
21	46	was extracted independently by two authors. Data related to the study population, the outcome
22	47	of interest (vaccination), and commonly seen predictors were extracted.
23	48	
24 25	49	Results: A total of 125 articles were identified for inclusion in the review. The number of
25 26	50	countries covered by individual studies varied widely (1 to 86), with the most published papers
20 27	51	using data from India, Nigeria, Pakistan, and Ethiopia. Many different definitions of full
28	52	vaccination were utilized although the majority used a traditional schedule recommended in
29		
30	53	the WHO's Expanded Program on Immunization. We found studies analyzed a wide variety of
31	54	predictors, but the most common were maternal education, wealth, urbanicity, and child's sex.
32	55	Most commonly reported predictors had consistent relationships with the vaccination outcome,
33	56	outside of sibling composition.
34	57	
35	58	Conclusions: Researchers make frequent use of the DHS dataset to describe vaccination
36		
37	59	patterns within one or more countries. A clearer idea of past use of DHS can inform the
38	60	development of more rigorous studies in the future. Researchers should carefully consider
39	61	whether a variable needs to be included in the multivariable model, or if there are mediating
40 41	62	relationships across predictor variables.
41	63	
43	64	Keywords: vaccine-preventable diseases; developing countries; immunization programs;
44	65	surveys and questionnaires
45		surveys and questionnanes
46	66	
47	67	
48	68	This is an Open Access article distributed in accordance with the Creative Commons
49	69	Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix,
50	70	adapt, build upon this work non-commercially, and license their derivative works on different
51	71	terms, provided the original work is properly cited and the use is non-commercial. See:
52		
53	72	http://creativecommons.org/licenses/by-nc/4.0/
54 57		
55 56		
50 57		
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5 6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 20	
20	
21	
23	
24	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	

60

1

73 **Strengths and limitations**

- 74 The Demographic and Health Surveys (DHS) are some of the most used sources of 75 national-level vaccination data
- 76 Most DHS studies find consistent relationships between sociodemographic variables _ 77 and vaccination outcomes.
- 78 There are large variations in how often a country's DHS dataset is used. -
- 79 A limitation is the use only of English language material. _
- 80 Studies using other national-level vaccination surveys were not included. _

.ion. use only .ner national.

INTRODUCTION

Vaccinations have been a cost-effective method to control and achieve elimination and eradication of common and sometimes deadly infectious diseases [1]. The introduction of routine vaccinations in the United States, for example, has led to a >90% decline in cases of diphtheria, measles, mumps, pertussis, polio, rubella, smallpox, and tetanus since the prevaccine era [2]. Nevertheless, every year, more than 2.7 million individuals die from acute illnesses caused by common vaccine-preventable diseases [3]. The overwhelming majority of vaccine-preventable deaths among children <5 years occur in low- and middle-income countries [4].

Based on the prevalence and severity of disease and on the availability of a safe and effective vaccine, the World Health Organization (WHO) recommends that countries include nine vaccines on their publicly funded vaccine schedule for young children [5]. Referred to as the Expanded Program on Immunization (EPI), the schedule initially recommended vaccination with Bacillus Calmette-Guérin (BCG), diphtheria-tetanus-pertussis vaccine (DTP), polio vaccine, and a measles-containing vaccine (MCV). Since 2004, five additional pediatric vaccines have been added to the WHO EPI: hepatitis B vaccine (HepB), Haemophilus influenzae type b vaccine (Hib), rubella vaccine, pneumococcal conjugate vaccine (PCV), and rotavirus vaccine. Individual countries decide which vaccines to publicly fund and also to make available on the private market resulting in wide variation globally in the adoption of these vaccines. For example, in 2015, 194 countries included 3 doses of DTP and polio in their immunization schedule whereas only 84 included rotavirus [6]. Many countries now use a pentavalent vaccine, which includes DTP, HepB, and Hib vaccines in one vial. Substantial efforts on the part of Gavi The Vaccine Alliance and other international agencies are devoted to logistically and financially supporting the introduction of new and underused vaccines [7]. These efforts are particularly important because a discouragingly high number of children consistently do not receive some or all of the vaccines that were first recommended by the WHO. According to the WHO, 19.4 million children have not received three doses of DTP, with a majority (11.7 million) living in just 10 countries: Nigeria, India, Pakistan, Indonesia, Ethiopia, Philippines, the Democratic Republic of the Congo, Brazil, Angola, and Vietnam [8]. With the exception of Brazil, all of these countries have vaccination coverage regularly assessed as part of the Demographic and Health Survey (DHS) program.

Nationally representative surveys, like those of the DHS program, have been essential to evaluating country- and region-specific vaccination programs over time. DHS programs are funded and facilitated by the US Agency for International Development (USAID). The DHS program was launched in 1984 with a goal of advancing global understanding of health and population trends in developing countries. Since its inception it has provided technical assistance for over 300 surveys in 93 developing countries across the globe. Today, the program is known for collecting and disseminating accurate, nationally representative data on a variety of topics including fertility, family planning, maternal and child health, gender, HIV/AIDS, malaria, and nutrition. Host countries have ownership of data collection, analysis, presentation,

and use and the data is designed to ultimately be used in policy formation, program planning, and monitoring and evaluation [9]. A large number of prior studies have amalgamated data from several different DHS datasets, or have included data from many countries, but none has systematically evaluated how these past studies have actually used the vaccination data provided by DHS [10–12]. Given that DHS has had widespread use over several decades in evaluating vaccination programs through identification of under-vaccinated groups, and characterizing systematic barriers to vaccination, a clearer idea of past use of DHS can inform the development of more rigorous studies in the future. The purpose of this scoping review was to characterize studies which have used DHS datasets to evaluate childhood vaccination status. Specifically we report on the global distribution of studies, list the predictors used in multivariable regression models, and examine the different definitions of "full vaccination" across studies and how these relate to the WHO EPI recommendations. **METHODS** This scoping review was completed by following the steps outlined by the Preferred Reporting Items of Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) [13]. **Search Strategies** Searches were performed in 3 different electronic databases: PubMed/MEDLINE, PopLine, and EBSCOhost's Africa-Wide Information, Global Health, Global Health Archives, and Health Policy Reference Center databases. The search terms used were; "Vaccine" (and its variations such as vaccination and vaccinate), "Immunization" (and its variations such as immunize), "demographic and health surveys", "demographic and health survey", "DHS", "National Family Health Survey", and "NFHS". Within PubMed the exact search was the following: ("demographic and health surveys" OR "demographic and health survey" OR "DHS" OR "National Family Health Survey" OR "NFHS") AND (immuniz* OR Vaccin*) AND ("2000/01/01"[PDAT] : "3000/12/31"[PDAT]) In addition, the searches were limited to only return papers published between 1 January 2005 and 31 December 2018. References from articles found to be relevant were searched in order to identify additional articles. **Eligibility Criteria** The titles of all papers returned through use of the search terms were initially screened for relevance. The abstracts of all remaining papers were then accessed with specific inclusion and exclusion criteria in mind. Abstracts and manuscripts were included if they met all inclusion criteria: (1) studies were conducted using DHS data from low or middle-income countries; (2) studies looked at routine vaccination coverage as the primary outcome; (3) studies were cross-

BMJ Open

2	
3	167
4	
5	168
6	169
7	170
8	171
9	172
10	
11	173
12	174
13	175
14 15	176
15 16	177
17	178
18	
19	179
20	180
20 21	181
22	182
23	183
24	184
25	
26	185
27	186
28	187
29	188
30	189
31	
32	190
33	191
34	192
35	193
36	194
37	
38	195
39	196
40	197
41 42	198
42 43	199
44	200
45	
46	201
47	202
48	203
49	204
50	
51	205
52	206
53	207
54	208
55	
56	
57	
58	

167	sectional in design; (4) studies	used either the Demographic and	Health Survey (DHS) or the

- National Family Health Survey (NFHS), a similar study conducted only in India; (5) studies 68 69
- looked specifically at the vaccination outcome of children (usually aged between 0 and 60 70 months). A set of exclusion criteria was also created: (1) studies published before 2005 or after
- 71 2018 (though studies with an online publication in 2018 but print publication in 2019 were
- 72 included); (2) studies that looked only at the vaccination outcome of adults; (3) studies that
- 73 looked at population in high income countries; (4) studies that used modeling or projections
- 74 instead of just analyzing the data provided; or (5) systematic reviews. 75

76 **Study Selection**

77 LS removed all duplicates and assessed all titles for relevance. Then three reviewers 78 (LS/BC/AW) independently assessed all abstracts and full-text publications for eligibility using 79 the eligibility criteria laid out. All disagreements were resolved by discussion between 80 reviewers.

82 **Data extraction**

In addition to assessment for relevance, data was also extracted independently by three 83 84 reviewers (LS/BC/AW). A data extraction form was designed using Google Sheets and was 85 piloted before beginning data extraction. Data from 3 main categories was gathered during data 86 extraction. The first area was the study population, including the countries of interest, the 87 subpopulation of children being examined, years of the survey administration, and whether any 88 surveys besides DHS or NFHS were used. The second category was the outcome of interests: 89 which individual vaccines were assessed, whether full or under vaccination was examined, and 90 if full or under vaccination was examined how were they defined. Lastly, data on vaccination 91 predictors was gathered. We tabulated whether a given study included the most common 92 predictors found in a previous systematic review of vaccination timeliness [14]: maternal 93 education, wealth index, urbanicity, sex of child, age of mother, birth order, birth delivery 94 location, number of antenatal care (ANC) visits, media exposure, and paternal education.

59

60

96 Study Methodological quality evaluation

97 We modified the Downs and Black checklist [15] for assessing biases in systematic reviews 98 because all eligible studies used a similar data source. The checklist included the following 99 criteria:

201 Introduction / Study population

- A. Is the hypothesis/aim/objective of the study clearly described? (1=Yes, 0=No)
- B. Are the main outcomes (including defining full vaccination, if applicable) to be measured clearly described in the introduction or methods? (1=Yes, 0=No)
 - **C.** Are the characteristics of study population eligibility criteria (including age range) clearly described? (1=Yes, 0=No)

207 **Descriptive Statistics**

D. Does the paper use weighting and clustering? (1=Yes, 0=No)

1		
2 3	200	
4	209	E. Does the paper provide estimates of random variability (e.g., 95% confidence interval of
5	210	weighted estimates or standard errors) for the main outcomes? (1=Yes, 0=No)
6	211	Analytical Statistics
7	212	F. Does the paper use do a multivariable analysis? (1=Yes, 0=No)
8 9	213	G. Does the paper show distribution of confounders / covariates? (1=Yes, 0=No)
9 10	214	H. Does the paper describe how the researchers arrived at the final list of confounders? $(2=a)$
11	215	<i>priori</i> knowledge or used directed acyclic graph (DAG), 1=used P-values from crude
12	216	analysis or used stepwise technique, 0=did not describe or did not use multivariable
13	217	analysis)
14	218	I. Does the paper write out P-values under 0.05? (1= Yes, or provided 95% confidence
15 16	219	intervals, 0=No)
17	220	
18	221	The quality score could range from 0-10, and we describe the average values with a mean and
19	221	
20		median quality score among all studies.
21	223	
22	224	Synthesis of study findings
23 24	225	Given the heterogeneity of outcomes, predictors, and study populations of the included studies
25	226	it was not possible to combine the results into a meta-analysis. Instead, we present a narrative
26	227	summary of the data. We describe the distribution of studies by population, what predictor
27	228	variables are used (and what direction of association they have with outcome), and how full
28	229	vaccination is defined. In the discussion, we provide recommendations for future analyses of
29	230	DHS data.
30 31	231	
32	232	A choropleth map was created using freely available shapefiles from Natural Earth [16] in QGIS
33	233	3.6 (QGIS Development Team). The map shows how many studies using data from only one
34	234	country were published by country. We also show if a country's data was part of a multicountry
35	235	study, and we identify countries which had a standard DHS dataset administered between 2003
36	236	and 2016 but which did not have a published study. The years 2003-2016 were chosen as a lag
37 38		time of 2 years compared to the scoping review inclusion criteria to account for delays in
39	237	
40	238	publishing the data and writing up a manuscript.
41	239	
42	240	Patient and public involvement
43	241	This research was done without public involvement. Members of the public were not invited to
44 45	242	comment on the study design and were not consulted, nor were they invited to contribute to
46	243	this document to improve accessibility.
47	244	
48		
49		
50		
51 52		
52 53		
54		
55		
56		
57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Author	Year	Countries	Age of Child	Vaccination Outcome	Quality score
Bowie [17]	2006	Malawi	12-23 months	BCG, OPV, DTP, MCV, Full (BCG + 3OPV + 3DTP + MCV)	4
Choi [18]	2006	India	12-48 months	Full (BCG + 3OPV + 3DTP + MCV)	6
Gaudin [19]	2006	India	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	3
Akmatov [20]	2007	Kazakhstan	12-60 months	Full (BCG + 4OPV + 3DTP + MCV)	8
Anand [21]	2007	Multicountry	Not specified	OPV, DTP, MCV	3
Bhandari [22]	2007	Nepal	12-23 months	BCG, OPV, DTP, MCV, Full (BCG + 3OPV + 3DTP + MCV)	5
Datar [23]	2007	India	2-35 months	OPV, Full (BCG + 3OPV + 3DTP + MCV)	5
Minh Thang [24]	2007	Vietnam	11-23 months	Full (BCG + 3OPV + 3DTP + MCV)	5
Munthali [25]	2007	Malawi	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	3
Ntenda [26]	2007	Malawi	12-23 months	BCG, OPV, DTP, MCV, Full (BCG + 3DTP + 3OPV + 1MCV)	6
Chidiebere [27]	2008	Nigeria	0-23 months	Full (BCG + 4OPV + 3Penta + 1 MCV + YF)	7
Gatchell [28]	2008	India	1-3 years	Full (BCG + 3OPV + 3DTP + MCV)	
Halder [29]	2008	Bangladesh	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
Meheus [30]	2008	Multicountry	12-23 months	MCV	
Patra [31]	2008	India	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	(
Antai [32]	2009	Nigeria	Older than 12 months	Full (BCG + 3OPV + 3DTP + MCV)	5
Antai [33]	2009	Nigeria	Older than 12 months	Full (BCG + 3OPV + 3DTP + MCV)	8
Bondy [34]	2009	Philippines	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	ļ
Corsi [35]	2009	India	Under 5 years	BCG, OPV, DTP, MCV, Full (age dependent after 9 months)	,
Osaki [36]	2009	Indonesia	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	,
Sia [37]	2009	Burkina Faso	12-23 months	Full (BCG + 3OPV + 3DTP + MCV + YF)	
Antai [38]	2010	Nigeria	12 months and older	BCG, OPV, DTP, MCV, Full (BCG + 3OPV + 3DTP + MCV)	
Hong [39]	2010	Cambodia	12-59 months	DTP	
Rahman [40]	2010	Bangladesh	12-59 months	Full (BCG + 3OPV + 3DTP + MCV)	(
Sahu [41]	2010	India	Preceding 2 births in last 3 years	Full (BCG + 3OPV + 3DTP + MCV)	
Semali [42]	2010	Tanzania	12-23 months	Full (BCG + 4OPV + 3DTP + MCV)	
Abuya [43]	2011	Kenya	12-35 months	Full (BCG + 3OPV + 3DTP + MCV)	
Antai [44]	2011	Nigeria	12 months and older	Full (BCG + 3OPV + 3DTP + MCV)	
Fernandez [45]	2011	Indonesia	0-59 months	BCG, OPV, DTP, MCV, HepB	
Fernandez [46]	2011	Indonesia	0-59 months	MCV	

Kumar [47]	2011	India	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
Lauridsen [48]	2011	India	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
Pandey [49]	2011	Nepal	12-23 months	BCG, OPV, DTP, MCV, Full (BCG + 3OPV + 3DTP + MCV)	
Singh [50]	2011	India	12-48 months	Full (BCG + 3OPV + 3DTP + MCV)	
Afzal [51]	2012		Under 5 years	Full (BCG + 3OPV + 3DTP + MCV)	
Antai [52]	2012	Nigeria	12-59 months	Full (BCG + 3OPV + 3DTP + MCV)	
Rammohan [53]	2012	Multicountry	Not specified	MCV	
Sabarwal [54]	2012	India	12-24 months	Full (BCG + 3OPV + 3DTP + MCV)	
Singh [55]	2012	India	12-59 months	Full (BCG + 3OPV + 3DTP + MCV)	
Wiysonge [56]	2012	Multicountry	12-23 months	Full (DTP3)	
Barman [57]	2013	India	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
Bbaale [58]	2013	Uganda	0-36 months (12 - 36 for full)	BCG, OPV, DTP, MCV, Full (BCG + 3OPV + 3DTP + MCV)	
Haque [59]	2013	Bangladesh	9-59 months	MCV	
Kumar [60]	2013	India	0-59 months	Full (BCG + 3OPV + 3DTP + MCV)	
Moyer [61]	2013	Ethiopia	12-24 months	BCG, OPV, DTP, MCV, Full (BCG + 3Penta + 4OPV + 1MCV)	
Singh [62]	2013	India	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
Singh [63]	2013	Nigeria	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
Singh [64]	2013	India	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
Van Malderen [65]	2013	Kenya	12-23 months	MCV	
Adegboye [66]	2014	Nigeria	12-59 months	Full (BCG + 3OPV + 3DTP + MCV)	
Bonfrer [67]	2014	Burundi	Older than 1 year	BCG, OPV, DTP, MCV	
Bugvi [68]	2014	Pakistan	12-23 months	Full (BCG + 3DTP + 4OPV + 3HepB + 1MCV)	
Canavan [69]	2014	Multicountry	12-23 months	Full (BCG + 4OPV + 1 MCV + 3Penta)	
Clouston [70]	2014	Madagascar	0-59 months	BCG, OPV, DTP, MCV, Hib	
Ebot [71]	2014	Ethiopia	12-30 months	Full (BCG + 3OPV + 3DTP + MCV)	
Grundy [72]	2014	Multicountry	Not specified	DTP	
Heaton [73]	2014	Bolivia	Not specified	Full (BCG + 3OPV + 3DTP + MCV)	
Helleringer [74]	2014	Multicountry	12-23 months	OPV, SIA participation	
Javed [75]	2014	Pakistan	12-28 months	BCG, OPV, DTP, MCV, Full (BCG + 3OPV + 3DTP + MCV)	
Luqman [76]	2014	Nigeria	12-23 months	BCG, OPV, DTP, MCV, Full (BCG + 4OPV + 3DTP + MCV)	
Malhotra [77]	2014	India	Older than 12 months	Full (BCG + 3OPV + 3DTP + MCV)	
Neupane [78]	2014	Nepal	Not specified	Full (BCG + 1DTP + 1OPV)	
Prusty [79]	2014	India	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	
Rai [80]	2014	Niger	12-59 months	Full (BCG + 3OPV + 3DTP + MCV)	

Singh [81]	2014	Multicountry	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	Į
Singh [82]	2014	India	12-36 months	Full (BCG + 3OPV + 3DTP + MCV)	8
Ushie [83]	2014	Nigeria	Under 5 years	Full (BCG + 3OPV + 3DTP + MCV)	
Wagner [84]	2014	Multicountry	0-59 months	BCG	
Zaidi [85]	2014	Pakistan	0-5 years	OPV, DTP, MCV	
Abadura [86]	2015	Ethiopia	12-59 months	Full (BCG + 3OPV + 3DTP + MCV)	8
Ebot [87]	2015	Ethiopia	12-30 months	Full (BCG + 3OPV + 3DTP + MCV)	7
Hajizadeh [88]	2015	Multicountry	Under 59 months	BCG, OPV, DTP	8
Lakew [89]	2015	Ethiopia	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	8
McGlynn [90]	2015	Ghana	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	ç
Mukungwa [91]	2015	Zimbabwe	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	7
Onsomu [92]	2015	Kenya	12-23 months	BCG, OPV, DTP, MCV	8
Osetinsky [93]	2015	Bolivia	24 months - 5 years	Full (BCG + 3 Polio + 3DTP + 1MMR + YF)	6
Prusty [94]	2015	India	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	6
Rossi [95]	2015	Zimbabwe	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	ç
Schweitzer [96]	2015	Multicountry	12-59 months	DTP, MCV	6
Shrivastwa [97]	2015	India	12-36 months	Full (BCG + 3OPV + 3DTP + MCV)	7
Singh [98]	2015	Multicountry	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	7
Smith-Greenaway	2015	Benin	1-59 months	Ever received any vaccine	6
[99]					
Tsawe [100]	2015	eSwatini	Not specified	Ever received any vaccine	9
Arsenault [101]	2016	Multicountry	12-23 months	DTP, MCV	5
Chima [102]	2016	Nigeria	12-59 months	BCG, OPV, DTP, MCV	6
Gurmu [103]	2016	Ethiopia	12-23 months	Full (BCG + 3OPV + 3DTP + MCV)	6
Hosseinpoor [104]	2016	Multicountry	12–23 months in most	DTP	5
Kriss [105]	2016	Zimbabwe	12-23 months	BCG, OPV, DTP, MCV, Full (BCG + 3OPV + 3Penta + 1MCV	ç
Kumar [106]	2016	India	12-23 months	Full (BCG + 3DTP + 3OPV + 1MCV)	9
Restrepo-Méndez	2016	Multicountry	12–23 months in most	Full (BCG + 3DTP + 3OPV + 1MCV)	6
[11]					
Restrepo-Méndez [12]	2016	Multicountry	12-23 months	BCG, OPV, DTP, MCV, Full (BCG + 3DTP + 3OPV + 1MCV)	4
Schweitzer [107]	2016	Multicountry	Birth - 250 weeks	DTP	5
Adedokun [108]	2017	Nigeria	12-23 months	Full (BCG + 3OPV + 3Penta + MCV)	7
Aghaji [109]	2017	Nigeria	12-23 months	MCV	4

Ambel [110]	2017	Ethiopia	12-23 months	MCV, Full (BCG + 3DTP + 3OPV + 1MCV	
Arsenault [10]	2017	Multicountry	12-23 months	DTP, MCV	
Delprato [111]	2017	Multicountry	Not specified	Full (BCG + DTP + OPV + MCV (no. unspecified))	
Herliana [112]	2017	Indonesia	12-59 months	Full (BCG + 3DTP + 4OPV + 1MCV + 1HepB	
Kazungu [113]	2017	Multicountry	12-23 months	Full (BCG + 3DTP + 3OPV + 1MCV)	
KC [114]	2017	Nepal	Not specified	BCG, OPV, DTP, MCV, Full (BCG + 3DTP + 3OPV + 1MCV)	
Khan [115]	2017	Pakistan	Under 5 years	OPV	
Mbengue [116]	2017	Senegal	12-23 months	Full (BCG + 3Penta + 3OPV + 1MCV)	
Oleribe [117]	2017	Nigeria	12-24 months	BCG, OPV, DTP, MCV, Full (BCG + 3DTP + 3OPV dose +	
				1MCV)	
Singh [118]	2017	India	12-13 months	Full (Not defined)	
Uthman [119]	2017	Nigeria	12-23 months	OPV	
Zuhair [120]	2017	India	Not specified	BCG, OPV, DTP, MCV	
Acharya [121]	2018	DRC	12-23 months	Full (BCG +3DTP + 3OPV + 1MCV)	
Adetokunboh [122]	2018	Multicountry	12-23 months	DTP	
Adetokunboh [123]	2018	Multicountry	12-23 months	DTP	
Ashbaugh [124]	2018	DRC	6-59 months	MCV	
Asuman [125]	2018	Ghana	12-59 months	Full (BCG + 3DTP + 3OPV + 1MCV)	
Boulton [126]	2018	Bangladesh	12-24 months	BCG, OPV, DTP, MCV, Full (BCG + 3Penta + 3OPV + 1MCV)	
Burroway [127]	2018	Nigeria	12-24 months	Full (BCG + 3DTP + 4OPV + 1MCV)	
Imran [128]	2018	Pakistan	12-23 months	OPV	
Khan [129]	2018	India	12-23 months	BCG, OPV, DTP, MCV, Full (BCG + 3DTP + 3 OPV + 1MCV)	
Kols [130]	2018	Pakistan	12-23 months	BCG, OPV, DTP, MCV, Full (BCG +3DTP + 3OPV + 1MCV)	
McGavin [131]	2018	Nigeria	12-24 months	Full (BCG + 3DTP + 4OPV + 1MCV)	
Raza [132]	2018	Pakistan	12-23 months	Full (BCG +3DTP + 3OPV + 3HepB + 3Hib + 1MCV)	
Shenton [133]	2018	Afghanistan	12-60 months	Full (BCG +3Penta + 3OPV + 1MCV)	
Shenton [134]	2018	India	12-48 months	Full (BCG + 3OPV + 3DTP + MCV)	
Sohn [135]	2018	Multicountry	Not specified	BCG, OPV, DTP, MCV	
Lungu [136]	2019	Malawi	Not specified	Full (not specified)	
Masters [137]	2019	Kenya	12-23 months	BCG, OPV, DTP, MCV, Full (BCG + 3Penta + 3OPV + 1MCV)	
Vyas [138]	2019	Bangladesh	Not specified	BCG, DTP, MCV	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

47 Notes:

BMJ Open

BCG, bacillus Calmette-Guérin; DRC, Democratic Republic of the Congo; DTP, diphtheria –tetanus-pertussis vaccine; HepB, hepatitis B vaccine;
Hib, *Haemophilus influenzae* type b vaccine; MCV, measles-containing vaccine; MMR, measles-mumps-rubella vaccine; OPV, oral polio vaccine;
Penta, pentavalent vaccine; SIA, supplementary immunization activity; YF, yellow fever
251
252

For peer review only

1		
2 3		
4	253	RESULTS
5	254	Our coards terms initially yielded 028 papers, 218 from PubMed 222 from EPCC best and 211
-	255 256	Our search terms initially yielded 938 papers; 318 from PubMed, 323 from EBSCOhost, and 211 from POPLINE. An additional 86 papers were identified through searching the references of
<u> </u>	258 257	selected papers. After removing duplicates, 551 papers remained. These papers' abstracts were
9	258	screened using the inclusion and exclusion criteria to narrow down the study pool to 143
10	250 259	papers. However, during full text screen and data extraction another 18 studies were removed,
	260	which left 125 (Figure 1).
	261	which felt 120 (Figure 1).
14	262	The quality sum score (possible range from 0-10) was on average 6.48 with a median of 7. The
15	263	most commonly missed items contributing to a lower quality sum score were absence of exact
	264	P-values or confidence intervals (64% did not), not including estimates of random variability for
	265	the outcome (52%), and failure to account for appropriate use of clustering and weights (44%).
19	266	
20 21	267	DHS has operated in a total of 92 countries since its inception, and between 2003 and 2016, has
21	268	conducted surveys in 71 different countries.
	269	
24	270	Overall, 23 (18%) studies used DHS datasets from multiple countries, ranging from 2 countries
25 26	271	[81,96,107] to 86 countries [11]. Seven studies used data from multiple African countries
	272	[56,69,84,98,113,122,123], 4 from just Asian countries [72,81,96,135], 1 from the Americas [107],
	273	and the remainder (11) used data from multiple continents [10,11,111,12,21,30,53,74,88,101,104].
29	274	For one study, we were unable to determine what exact countries were included in the analysis
30 31	275	[111].
	276	
	277	Figure 2 is a choropleth map showing which countries' DHS dataset have been used for
34 35	278	vaccination studies. The most frequently represented country is India (26 studies, 21%),
36	279	followed by Nigeria (17, 14%), Ethiopia and Pakistan (7 each, 6%), and Bangladesh (6, 5%).
37	280	Notably, there are many countries (44) in the Americas, Europe, and Africa, which had one or
	281	more DHS conducted between 2003 and 2016 yet for which there are no corresponding single-
10	282	country papers published using DHS data in this scoping review. However, most of these
41	283	countries were a part of multicountry studies. Only five countries' DHS datasets were not part
12	284	of any (single country or multicountry) DHS study: Cabo Verde, Maldives, Morocco, Sri Lanka,
	285	and Ukraine.
45	286	
46	287	Characteristics of the papers are shown in Table 1. About half (51%) of studies included
17	288	children 12 to 23 or 24 months of age, and the two next most common age ranges were 12 to 59 $(0.011)^{10}$ and 0.12 $(0.011)^{10}$ and 0.12 $(0.011)^{10}$
	289	or 60 months of age (11%) and 0 to 59 months of age (8%) .
50	290	Full section time the sector $\frac{1}{2}$ in the sector $\frac{1}{2}$ (04. 770()) of a sector $\frac{1}{2}$ (b) sector $\frac{1}{2}$
51	291	Full vaccination was assessed in three-fourths (94, 75%) of papers; otherwise, the four most
52	292 293	common vaccines assessed one at a time were MCV (39, 31%), DTP (36, 29%), polio (33, 26%), and BCG (27, 22%). There were at least 12 different definitions of full vaccination used in the
	293 294	papers including in this scoping review. Of the 94 papers which evaluated full vaccination
	294 295	coverage, most (66, 70%) used a traditional schedule based off of the four vaccines first
56	275	coverage, most (00, 7070) used a traditional schedule based off of the four vaccines first
57 59		
58		
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2		
3	296	recommended for the WHO's EPI in 1974: 1 dose BCG, 3 doses polio, 3 doses DTP, and 1 dose
4 5	297	MCV. Five (5%) papers modified this traditional definition to include a birth dose of polio, and
6	298	eleven others used a pentavalent vaccine instead of DTP (of these, 3 had a 4 dose polio
7	299	schedule, and 8 had a 3-dose polio schedule). Other papers modified the traditional definition
8 9	300	in order to include yellow fever (in a total of 4 papers), measles-mumps-rubella vaccine (in one
9 10	301	paper), or to exclude certain vaccine series, like measles, polio, or BCG. Some measure of DTP
11	302	was included in all definitions of full vaccination. No papers included information about PCV
12	303	or rotavirus vaccine as an outcome in a multivariable regression model, although one used
13	304	rotavirus vaccine as a predictor variable [107].
14 15	305	
16	306	Four variables were used in a majority of studies. The top 10 variables used in a study (with
17	307	their relationship shown in a model) are maternal education (in 94, or 75% of studies), wealth
18	308	index (88, 70%), urbanicity (79, 63%), child's sex (73, 58%), mother's age (60, 48%), birth order
19 20	309	(51, 41%), delivery location (42, 34%), ANC visits (34, 27%), media exposure (33, 26%), and
21	310	paternal education (32, 26%).
22	311	
23	312	The relationship between the most commonly used predictor and vaccination outcomes is
24 25	313	shown in Figure 3. For most predictors there is a relatively clear relationship to vaccination
26	314	outcome. For a majority of studies, greater vaccination coverage (across any vaccination
27	315	outcome considered) was related to maternal education (in 84% of studies that considered the
28	316	variable), higher wealth index (83%), more ANC visits (76%), greater media exposure (76%), an
29 30	317	institutional birth (69%), and more paternal education (56%). For several predictors, a large
31	318	proportion of studies found no significant relationship. This was especially true for child's sex
32	319	(66% of studies), more paternal education (44%), and urbanicity (43%). Sibling composition was
33	320	one variable for which there was no clear relationship with the outcome: in 41% of studies,
34 35	321	having more older siblings was associated with lower vaccination coverage, in 8% it was
36	322	associated with higher vaccination coverage, and for the rest of studies, there was no significant
37	323	relationship (35%) or there was a significant, non-monotonic relationship (12%).
38	324	
39 40	325	DISCUSSION
40 41	326	
42	327	Vaccination programs enjoy wide support from many international health organizations and

Vaccination programs enjoy wide support from many international health organizations and national governments. Vaccination has achieved the sole instance of human disease eradication – smallpox, while polio, measles, and rubella have been eliminated in some regions of the world [1,139]. Global vaccination coverage has increased in recent years but 12.8 million children in 2015 still had not yet received DTP dose 1 [6], a common marker of routine immunization initiation. Regularly conducted studies on vaccination uptake are necessary to assessing population level susceptibility and immunization program reach while also ensuring that countries are on track with international guidelines for maintaining high vaccination coverage and the control or elimination of certain vaccine-preventable diseases. The DHS datasets tend to be very large, both in number of variables looked at and number of participants surveyed. This allows the examination of many possible associations with sufficient statistical power and the ability to control for a number of possible confounders.

1		
2		
3	339	
4 5	340	DHS is not conducted in all LMICs, only in certain countries with a USAID presence, and it is
6	341	conducted at irregular intervals. However, it is one of the most widely available surveys for
7	342	assessing vaccinations globally. This systematic review found wide variation in how full
8	343	vaccination was defined across 125 studies using DHS data between 2005 and 2018. However,
9 10	344	the majority of studies did look at full vaccination and defined it according to the WHO's EPI
11	345	schedule; 1 dose BCG, 3 doses polio, 3 doses DTP, and 1 dose MCV. Additionally, studies
12	346	looked at similar sub-populations (children <5) and very similar predictors, with the most
13	347	common being maternal education, wealth, urbanicity, and child's sex.
14	348	
15 16	349	The vaccines commonly evaluated reflect priorities of international efforts. For example, polio
17	350	was targeted for elimination by 2018 [140]. Measles is also subject to an international
18	351	elimination effort [141,142], and all 6 WHO regional offices have established target dates for
19	352	elimination [143]. BCG was one of the first vaccines ideally administered shortly after birth
20 21	353	(joined more recently in certain locations with HepB and polio birth doses). And DTP dose 3 has
21	354	long been used as a proxy for adherence to repeat visits to immunization appointments
23	355	[144,145]. As more vaccines are added to the vaccine schedule, not only does it become more
24	356	complicated, but it likely introduces the potential for greater diversity among countries in their
25	357	respective EPI schedules. Over the past few decades, DHS has operated in 92 countries.
26 27	358	However, a significant number of papers came from a relatively small number of countries. We
28	359	note the most commonly used countries (India, Nigeria, Ethiopia, Pakistan, and Bangladesh) are
29	360	among the 12 most populous countries in the world, and, with the exception of Bangladesh, are
30	361	among the five countries with the most number of unvaccinated children [8]. Given that
31 32	362	countries have control over their own vaccine policies and utilize a wide variety of
33	363	socioeconomic variables across individual countries, more country-specific analyses of DHS
34	364	vaccination data is important.
35	365	vacemation data is important.
36	366	Recommendations for future analyses
37 38	367	
39	368	This study identified the variables commonly used as explanatory variables in multivariable
40	369	regression models. Many studies appeared to use the DHS datasets to test the significance and
41	370	estimate the strength of association for many explanatory variables concomitantly. Since DHS is
42 43	370 371	a cross-sectional study it cannot be used to investigate the effect of an exposure which could
43 44	372	vary across time, such as education or urbanicity. However, a strength of DHS is its ability to be
45	372	used as a hypothesis generating device. Associations can subsequently be examined in other
46	373 374	
47	374 375	types of studies, such as cohort studies.
48 49	375 376	However, given consistent relationships between commonly used predictors and subcomes it is
50	376 377	However, given consistent relationships between commonly used predictors and outcomes, it is
51		worth revisiting the use of DHS datasets in multivariable analyses. First, given this consistency,
52	378 270	it is more important than ever to consider the plausible causal relationships across all variables
53 54	379 380	utilized in a model. An approach widely used in epidemiology is to chart the directionality of relationships among variables through directed acyclic graphs (DACs) [146]. Online software
54 55		relationships among variables through directed acyclic graphs (DAGs) [146]. Online software,
56	381	like dagitty.net, can be used to build these models and assess which variables should be
57		
58 59		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 17 of 35

1		
2 3	382	included in the final multivariable model. A notential problem is inclusion of some wariables
4	383	included in the final multivariable model. A potential problem is inclusion of so many variables in one model can obscure the mediating effects of certain variables [147]. For example,
5 6	384	researchers examining the relationship between media exposure and vaccination status may
7	385	include maternal age as a confounder. However, the parameter estimate for maternal age in this
8	386	multivariable model includes the mediator media exposure. Theoretically, a model with age as
9	387	the main predictor and with media exposure as a main predictor would have different sets of
10 11	388	covariates. Although the potential impact of inappropriately controlling for mediation is
12	389	context-specific, one study suggests parameter estimates may change up to 10%-25% [148].
13	390	
14	391	Evolving immunization schedules mean that future studies will likely take local programmatic
15 16	392	considerations into account. However, to make cross country comparisons, studies could still
17	393	provide an estimate of full vaccination using the traditional BCG, 3 dose polio, 3 dose DTP, and
18	394	1 dose MCV schedule.
19 20	395	
20 21	396	Timeliness has also emerged as an important dimension of vaccination uptake within the past
22	397	two decades [149,150]. Measures of timeliness require vaccination dates [14], information
23	398	missing from many individuals in the DHS datasets. For example, in the 2006-2007 Pakistan
24 25	399	DHS EPI immunization cards, and thus data on vaccination dates, were available for just 10% of
26	400	cases [85].
27	401	
28	402	Finally, researchers analyzing DHS data should be aware of its structure and limitations. Most
29 30	403	DHS samples are stratified and based on clusters. Studies should use survey procedures and
31	404	weights to ensure that estimates are representative of the national population and that standard
32	405	errors are honest reflections of the sampling structure. Additionally, because DHS includes so
33 34	406	many individuals with unknown vaccination age, any study should account for this substantial
35	407	left censoring, through Turnbull estimation methods [151] or accelerated failure time models. A
36	408	substantial minority of studies examined did not specify the age range of the study population.
37	409	This has implications for timeliness but should be presented in studies calculating more
38 39	410	traditional measures of vaccine uptake that do not incorporate timing or age.
40	411	The DLIC groupides notional estimates from a slitically neutral sources over times in sources
41	412	The DHS provides national estimates from politically neutral sources over time, in countries
42	413 414	where USAID operates. Its continued existence ensures that reliable, comparable, and nationally
43 44	414	representative data sources are publicly available. Other surveys, like the District Level Household Survey (DLHS) and the Annual Health Survey (AHS) in India and the Multiple
45	415 416	Indicators Cluster Survey (MICS) in over 100 countries, are developed in close collaboration
46	417	with DHS [152,153].
47 48	418	white D115 [152,155].
40	419	Limitations
50	420	
51	421	There are several limitations to this study. Because the study populations, use of explanatory
52 53	422	variables, and definitions of outcomes differed among studies, we were unable to conduct a
54	423	meta-analysis to compare the association of various explanatory variables on outcomes. We did
55	424	not examine the grey literature or non-English language papers as part of this review, nor did
56 57		
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

we review reports which may have listed vaccination coverage, but did not include some statistical analysis. Inclusion of these types of articles could have included data from more countries. Vaccination data from the DHS is limited in that it partially comes from information contained on vaccination cards [154], and partially from parental recall – with its obvious potential for errors. However, some countries, such as Ethiopia, have attempted to combat this problem in recent years through the introduction of a Health Facility Questionnaire. This questionnaire is used to record vaccination information for all children, who were discovered to not have a vaccination card during administration of the Woman's Questionnaire [155]. In addition, since the DHS is a standardized questionnaire there is limited opportunity to modify the survey to be locally relevant and take predictors into account that may only be relevant in parts of the country. However, overall the DHS programs are widely available surveys providing researchers, policymakers, and the public with nationally representative data. These data provide a basis for evaluation of immunization programs that would either not exist or not be as robust in their absence.

Conclusions

This scoping review of papers about vaccination published using DHS data found diversity in analyses and qualities of studies. Although certain countries – like India, Nigeria, Pakistan, and Ethiopia – have had ≥7 vaccination studies published using DHS data, there are dozens of countries whose vaccination data have not yet been published within single-country studies. Studies find consistent relationships between greater vaccination uptake and more maternal education, higher wealth index, more ANC visits, greater media exposure, and institutional delivery. The relationship between birth order and vaccination status is more varied across countries. Researchers using the DHS datasets should understand the limitations of using recorded vaccination dates, and should clarify the interpretation of estimates from multivariable analyses given the potential for mediation.

1		
2		
3 4	456	Acknowledgements
5	457	
6	458	We are grateful to the DHS personnel who diligently carry out their work and to USAID for
7	459	sponsoring the DHS projects.
8	460	
9	461	Funding
10 11	462	
12	463	ALW's salary was supported by the National Institute Of Allergy And Infectious Diseases of the
13	464	National Institutes of Health under Award Number K01AI137123. The content is solely the
14	465	responsibility of the authors and does not necessarily represent the official views of the
15		
16	466	National Institutes of Health.
17 18	467	
19	468	Competing Interests
20	469	
21	470	The authors declare no competing interests.
22	471	
23	472	Author contributions
24 25	473	
26	474	MLB conceived of the study design, helped interpret the data, and revised the manuscript
27	475	critically for important intellectual content. LMS and BFC downloaded manuscripts, assessed
28	476	their fit for this systematic review, abstracted data from the manuscripts, completed qualitative
29	477	synthesis, and helped revise the manuscript critically for important intellectual content. MJ
30	478	abstracted data from the manuscripts and helped revise the manuscript critically for important
31 32	479	intellectual content. ALW helped interpret the data, and drafted the article. All authors gave
33	480	final approval of the manuscript to be published.
34	481	in all approval of the manascript to be published.
35	482	Data sharing statement
36	483	
37 38	484	The data abstracted from these studies are publicly available:
39	485	
40	485 486	https://doi.org/10.6084/m9.figshare.12177135
41		
42	487	
43 44	488	
44 45	489	
46	490	
47		
48		
49		
50 51		
51 52		
53		
54		
55		
56		
57 58		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	401	REFERENCES		
4	491	KEF	EKENCE5	
5	492	1	Contractor Disease Constant on d Descention. The second with the disease of a 1000	
6	493	1	Centers for Disease Control and Prevention. Ten great public health achievements, 1900–	
7 8	494		1999: impact of vaccines universally recommended for children. <i>Morb Mortal Wkly Rep</i>	
9	495		1999; 48 :243–8.	
10	496	2	Roush SW, Murphy T V. Historical comparisons of morbidity and mortality for vaccine-	
11	497		preventable diseases in the United States. JAMA 2007;298:2155–63.	
12	498		doi:10.1001/jama.298.18.2155	
13	499	3	Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of	
14 15	500		death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of	
16	501		Disease Study 2010. Lancet 2012;380:2095–128. doi:10.1016/S0140-6736(12)61728-0	
17	502	4	Black RE, Cousens S, Johnson HL, et al. Global, regional, and national causes of child	
18	503		mortality in 2008: a systematic analysis. <i>Lancet (London, England)</i> 2010; 375 :1969–87.	
19	504		doi:10.1016/S0140-6736(10)60549-1	
20 21	505	5	World Health Organization. Summary of WHO Position Papers - Recommendations for	
21	506	-	Routine Immunization.	
23	507		2017.http://www.who.int/immunization/policy/Immunization_routine_table1.pdf	
24	508		(accessed 7 Sep 2017).	
25	508 509	6		
26		6	Casey RM, Dumolard L, Danovaro-Holliday MC, <i>et al.</i> Global Routine Vaccination	
27 28	510	7	Coverage, 2015. Morb Mortal Wkly Rep 2016;65:1270–3.	
28 29	511	7	GAVI Alliance. Vaccine goal indicators. GAVI. 2015.http://www.gavi.org/results/goal-	
30	512	0	level-indicators/vaccine-goal-indicators/ (accessed 2 Jun 2016).	
31	513	8	Peck M, Gacic-Dobo M, Diallo MS, et al. Global routine vaccination coverage, 2018. Morb	
32	514		Mortal Wkly Rep 2019; 68 :937–42. doi:10.15585/mmwr.mm6645a3	
33	515	9	The DHS Program. The DHS Program: Demographic and Health Surveys.	
34 35	516		2017.https://dhsprogram.com/ (accessed 3 Oct 2017).	
36	517	10	Arsenault C, Johri M, Nandi A, et al. Country-level predictors of vaccination coverage	
37	518		and inequalities in Gavi-supported countries. <i>Vaccine</i> 2017; 35 :2479–88.	
38	519		doi:10.1016/j.vaccine.2017.03.029	
39	520	11	Restrepo-Méndez MC, Barros AJD, Wong KLM, et al. Inequalities in full immunization	
40 41	521		coverage : trends in low- and middle-income countries. Bull World Heal Organ	
41 42	522		2016; 94 :794–805. doi:10.2471/BLT.15.162172	
43	523	12	Restrepo-Méndez MC, Barros AJD, Wong KLM, et al. Missed opportunities in full	
44	524		immunization coverage: Findings from low- and lower-middle-income countries. <i>Glob</i>	
45	525		Health Action 2016;9:1–6. doi:10.3402/gha.v9.30963	
46	526	13	Moher D, Liberati A, Tetzlaff J, <i>et al.</i> Preferred reporting items for systematic reviews and	
47 48	527	10	meta-analyses: the PRISMA statement. Ann Intern Med 2009;151:264–9, W64.	
49	528	14	Masters NB, Wagner AL, Boulton ML. Vaccination timeliness in low- and middle-income	
50	529	11	countries: a systematic review of the literature, 2007-2017. <i>Hum Vaccin Immunother</i>	
51	530		2019; 15 :2790–805. doi:10.1080/21645515.2019.1616503	
52		15		
53 54	531	15	Downs SH, Black N. The feasibility of creating a checklist for the assessment of the	
54 55	532		methodological quality both of randomised and non-randomised studies of health care	
56	533		interventions. <i>J Epidemiol Community Heal</i> 1998; 52 :377–84.	
57				
58				
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
60				

2			
3	534	16	Natural Earth. Admin 0 - Countries.
4 5	535		2020.https://www.naturalearthdata.com/downloads/50m-cultural-vectors/50m-admin-0-
6	536		countries-2/ (accessed 30 Mar 2020).
7	537	17	Bowie C, Mathanga D, Misiri H. Poverty, access and immunization in Malawi - a
8	538		descriptive study. Malawi Med. J. 2006; 18 :19–27. doi:10.4314/mmj.v18i1.10902
9 10	539	18	Choi JY, Lee S-H. Does prenatal care increase access to child immunization? Gender bias
11	540		among children in India. Soc Sci Med 2006;63:107–17. doi:10.1016/j.socscimed.2005.11.063
12	541	19	Gaudin S, Yazbeck AS. Immunization in india 1993-1999: Wealth, gender, and regional
13	542		inequalities revisited. Soc Sci Med 2006;62:694–706. doi:10.1016/j.socscimed.2005.06.042
14 15	543	20	Akmatov MK, Kretzschmar M, Krämer A, et al. Determinants of childhood vaccination
16	544		coverage in Kazakhstan in a period of societal change: Implications for vaccination
17	545		policies. Vaccine 2007; 25 :1756–63. doi:10.1016/j.vaccine.2006.11.030
18	546	21	Anand S, Bärnighausen T. Health workers and vaccination coverage in developing
19 20	547		countries: an econometric analysis. Lancet 2007;369:1277-85. doi:10.1016/S0140-
20	548		6736(07)60599-6
22	549	22	Bhandari P, Shrestha SS, Ghimire DJ. Sociocultural and geographical disparities in child
23	550		immunization in Nepal. Asia-Pacific Popul J 2007; 22 :43–64.
24 25	551	23	Datar A, Mukherji A, Sood N. Health infrastructure & immunization coverage in rural
26	552		India. <i>Indian J Med Res</i> 2007; 125 :31–42.
27	553	24	Minh Thang N, Bhushan I, Bloom E, et al. Child immunization in Vietnam: situation and
28	554		barriers to coverage. J Biosoc Sci 2007; 39 :41–58. doi:10.1017/S0021932006001234
29 30	555	25	Munthali AC. Determinants of vaccination coverage in Malawi: evidence from the
31	556		demographic and health surveys. <i>Malawi Med J</i> 2007; 19 :79–82.
32	557		doi:10.4314/mmj.v19i2.10934
33	558	26	Ntenda PAM, Chuang K-Y, Tiruneh FN, et al. Analysis of the effects of individual and
34 35	559		community level factors on childhood immunization in Malawi. Vaccine Published
36	560		Online First: 2017. doi:10.1016/j.vaccine.2017.02.036
37	561	27	Chidiebere ODI, Uchenna E, Kenechi OS. Maternal sociodemographic factors that
38	562		influence full child immunisation uptake in Nigeria. SAJCH South African J Child Heal
39 40	563		2014; 8 :138–42. doi:10.7196/SAJCH.661
41	564	28	Gatchell M, Thind A, Hagigi F. Informing state-level health policy in India: The case of
42	565		childhood immunizations in Maharashtra and Bihar. Acta Paediatr Int J Paediatr
43	566		2008; 97 :124–6. doi:10.1111/j.1651-2227.2007.00569.x
44 45	567	29	Halder AK, Kabir M. Inequalities in infant immunization coverage in Bangladesh. Heal
46	568		Serv Insights 2008; 1 :5–11.
47	569	30	Meheus F, Van Doorslaer E. Achieving better measles immunization in developing
48	570		countries: does higher coverage imply lower inequality? <i>Soc Sci Med</i> 2008; 66 :1709–18.
49 50	571		doi:10.1016/j.socscimed.2007.12.036
51	572	31	Patra N. Exploring the Determinants of Childhood Immunisation. <i>Econ Polit Wkly</i>
52	573	~~	2008; 43 :97–104.
53	574	32	Antai D. Inequitable childhood immunization uptake in Nigeria: a multilevel analysis of
54 55	575		individual and contextual determinants. BMC Infect Dis 2009;9:181. doi:10.1186/1471-
56	576		2334-9-181
57			
58 50			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3 4	577	33	Antai D. Faith and Child Survival: the Role of Religion in Childhood Immunization in
5	578		Nigeria. J Biosoc Sci 2009; 41 :57. doi:10.1017/S0021932008002861
6	579	34	Bondy JN, Thind A, Koval JJ, et al. Identifying the determinants of childhood
7	580		immunization in the Philippines. Vaccine 2009;27:169–75. doi:10.1016/j.vaccine.2008.08.042
8 9	581	35	Corsi DJ, Bassani DG, Kumar R, et al. Gender inequity and age-appropriate immunization
9 10	582		coverage in India from 1992 to 2006. BMC Int Health Hum Rights 2009;9 Suppl 1:S3.
11	583		doi:10.1186/1472-698X-9-S1-S3
12	584	36	Osaki K, Hattori T, Kosen S, et al. Investment in home-based maternal, newborn and
13	585		child health records improves immunization coverage in Indonesia. Trans R Soc Trop Med
14 15	586		<i>Hyg</i> 2009; 103 :846–8. doi:10.1016/j.trstmh.2009.03.011
16	587	37	Sia D, Fournier P, Kobiané J-F, et al. Rates of coverage and determinants of complete
17	588		vaccination of children in rural areas of Burkina Faso (1998-2003). BMC Public Health
18	589		2009; 9 :416. doi:10.1186/1471-2458-9-416
19 20	590	38	Antai D. Migration and child immunization in Nigeria: individual- and community-level
20 21	591		contexts. BMC Public Health 2010;10:116. doi:10.1186/1471-2458-10-116
22	592	39	Hong R, Chhea V. Trend and inequality in immunization dropout among young children
23	593		in Cambodia. Matern Child Health J 2010;14:446–52. doi:10.1007/s10995-009-0466-1
24	594	40	Rahman M, Obaida-Nasrin S. Factors affecting acceptance of complete immunization
25 26	595		coverage of children under five years in rural Bangladesh. <i>Salud Publica Mex</i> 2010; 52 :134–
20	596		40. doi:10.1590/S0036-36342010000200005
28	597	41	Sahu D, Pradhan J, Jayachandran V, et al. Why immunization coverage fails to catch up in
29	598		India? A community-based analysis. Child Care Health Dev 2010;36:332–9.
30	599		doi:10.1111/j.1365-2214.2009.01003.x
31 32	600	42	Semali IA. Trends in immunization completion and disparities in the context of health
33	601		reforms: the case study of Tanzania. BMC Health Serv Res 2010;10:299. doi:10.1186/1472-
34	602		6963-10-299
35	603	43	Abuya BA, Onsomu EO, Kimani JK, et al. Influence of maternal education on child
36 37	604		immunization and stunting in Kenya. <i>Matern Child Health J</i> 2011;15:1389–99.
38	605		doi:10.1007/s10995-010-0670-z
39	606	44	Antai D. Rural-urban inequities in childhood immunisation in Nigeria: The role of
40	607		community contexts. African J Prim Heal Care Fam Med 2011;3. doi:10.4102/phcfm.v3i1.238
41 42	608	45	Fernandez RC, Awofeso N, Rammohan A. Determinants of apparent rural-urban
43	609		differentials in measles vaccination uptake in Indonesia. <i>Rural Remote Health</i> 2011; 11 :1–14.
44	610	46	Fernandez R, Rammohan A, Awofeso N. Correlates of first dose of measles vaccination
45	611		delivery and uptake in Indonesia. Asian Pac J Trop Med 2011;4:140–5. doi:10.1016/S1995-
46 47	612		7645(11)60055-2
47	613	47	Kumar A, Mohanty SK. Socio-economic differentials in childhood immunization in India,
49	614		1992-2006. J Popul Res 2011; 28 :301–24.
50	615	48	Lauridsen J, Pradhan J, Kruk M, et al. Socio-economic inequality of immunization
51	616		coverage in India. <i>Health Econ Rev</i> 2011; 1 :11. doi:10.1186/2191-1991-1-11
52 53	617	49	Pandey S. Determinants of child immunization in Nepal : The role of women ' s
54	618		empowerment. <i>Health Educ J</i> 2011; 71 :642–53. doi:10.1177/0017896911419343
55	619	50	Singh A. Inequality of Opportunity in Indian Children: The Case of Immunization and
56		~~	
57 58			
59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

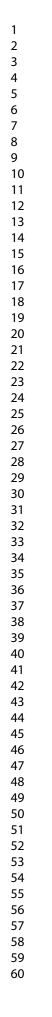
2			
3	620		Nutrition. <i>Popul Res Policy Rev</i> 2011; 30 :861–83. doi:10.1007/s11113-011-9214-5
4 5	621	51	Afzal N, Zainab B. Determinants and Status of Vaccination in Bangladesh. Dhaka Univ J
6	622		<i>Sci</i> 2012; 60 :47–51. doi:10.3329/dujs.v60i1.10336
7	623	52	Antai D. Gender inequities, relationship power, and childhood immunization uptake in
8	624		Nigeria: A population-based cross-sectional study. Int J Infect Dis 2012;16:e136–45.
9 10	625		doi:10.1016/j.ijid.2011.11.004
11	626	53	Rammohan A, Awofeso N, Fernandez RC. Paternal education status significantly
12	627		influences infants' measles vaccination uptake, independent of maternal education status.
13	628		BMC Public Health 2012;12:336. doi:10.1186/1471-2458-12-336
14 15	629	54	Sabarwal S, McCormick MC, Silverman JG, et al. Association between maternal intimate
15	630		partner violence victimization and childhood immunization in India. J Trop Pediatr
17	631		2012; 58 :107–13. doi:10.1093/tropej/fmr052
18	632	55	Singh A. Gender based within-household inequality in childhood immunization in India:
19	633		Changes over time and across regions. <i>PLoS One</i> 2012;7:e33045.
20 21	634		doi:10.1371/journal.pone.0035045
22	635	56	Wiysonge CS, Uthman OA, Ndumbe PM, et al. Individual and contextual factors
23	636		associated with low childhood immunisation coverage in Sub-Saharan Africa: A
24	637		multilevel analysis. <i>PLoS One</i> 2012;7. doi:10.1371/journal.pone.0037905
25 26	638	57	Barman D, Dutta A. Access and barriers to immunization in West Bengal, India: Quality
20	639		matters. J Heal Popul Nutr 2013;31:510–22.
28	640	58	Bbaale E. Factors influencing childhood immunization in Uganda. J Heal Popul Nutr
29	641		2013; 31 :118–27. doi:10.3329/jhpn.v31i1.14756
30	642	59	Haque SMR, Bari W. Positive Role of Maternal Education on Measles Vaccination
31 32	643	•••	Coverage in Bangladesh. Int J Psychol Behav Sci 2013;3:11–7.
33	644		doi:10.5923/j.ijpbs.20130301.02
34	645	60	Kumar A, Ram F. Influence of Family Structure on Child Health: Evidence From India. J
35	646	00	<i>Biosoc Sci</i> 2013; 45 :577–99. doi:10.1017/S0021932012000764
36 37	647	61	Moyer CA, Tadesse L, Fisseha S. The relationship between facility delivery and infant
38	648	01	immunization in Ethiopia. Int J Gynecol Obstet 2013; 123 :217–20.
39	649		doi:10.1016/j.ijgo.2013.06.030
40	650	62	Singh A, Singh A, Mahapatra B. The consequences of unintended pregnancy for maternal
41	651	0	and child health in rural India: Evidence from prospective data. <i>Matern Child Health J</i>
42 43	652		2013; 17 :493–500. doi:10.1007/s10995-012-1023-x
44	653	63	Singh K, Haney E, Olorunsaiye C. Maternal autonomy and attitudes towards gender
45	654	00	norms: Associations with childhood immunization in Nigeria. <i>Matern Child Health J</i>
46	655		2013; 17 :837–41. doi:10.1007/s10995-012-1060-5
47 48	656	64	Singh PK. Trends in Child Immunization across Geographical Regions in India: Focus on
49	657	01	Urban-Rural and Gender Differentials. <i>PLoS One</i> 2013; 8 . doi:10.1371/journal.pone.0073102
50	658	65	Van Malderen C, Ogali I, Khasakhala A, <i>et al.</i> Decomposing Kenyan socio-economic
51	659	00	inequalities in skilled birth attendance and measles immunization. Int J Equity Health
52 53	660		2013; 12 :3. doi:10.1186/1475-9276-12-3
54	661	66	Adegboye O, Kotze D, Adegboye O. Multi-Year Trend Analysis of Childhood
55	662	00	Immunization Uptake and Coverage in Nigeria. J Biosoc Sci 2014;46:225–39.
56	002		<u>Initialization optime and coverage in rescha.</u> <i>J 20000 001 2014</i> , 10 .220 07.
57			
58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
3	663		doi:10.1017/S0021932013000254
4	664	67	
5		07	Bonfrer I, Van de Poel E, Van Doorslaer E. The effects of performance incentives on the
6 7	665		utilization and quality of maternal and child care in Burundi. <i>Soc Sci Med</i> 2014; 123 :96–
8	666	(0	104. doi:10.1016/j.socscimed.2014.11.004
9	667	68	Bugvi AS, Rahat R, Zakar R, <i>et al.</i> Factors associated with non-utilization of child
10	668		immunization in Pakistan: evidence from the Demographic and Health Survey 2006-07.
11	669	<i>(</i> 0	BMC Public Health 2014;14:232. doi:10.1186/1471-2458-14-232
12 13	670	69	Canavan ME, Sipsma HL, Kassie GM, <i>et al.</i> Correlates of complete childhood vaccination
14	671		in East African countries. <i>PLoS One</i> 2014;9:1–7. doi:10.1371/journal.pone.0095709
15	672	70	Clouston S, Kidman R, Palermo T. Social inequalities in vaccination uptake among
16	673		children aged 0-59 months living in Madagascar: An analysis of Demographic and Health
17	674		Survey data from 2008 to 2009. Vaccine 2014; 32 :3533–9. doi:10.1016/j.vaccine.2014.04.030
18 19	675	71	Ebot JO. Place Matters : Community Level Effects of Women 's Autonomy on Ethiopian
20	676		Children 's Immunization Status. <i>Etude la Popul Africaine/African Popul Stud</i> 2014;28:1202–
21	677		15.
22	678	72	Grundy J, Annear P, Chomat AM, et al. Improving average health and persisting health
23	679		inequities - Towards a justice and fairness platform for health policy making in Asia.
24 25	680		<i>Health Policy Plan</i> 2014; 29 :873–82. doi:10.1093/heapol/czt068
26	681	73	Heaton TB, Crookston B, Forste R, et al. Inequalities in child health in Bolivia: Has
27	682		Morales made a difference? <i>Heal Sociol Rev</i> 2014; 23 :208–18.
28	683		doi:10.1080/14461242.2014.11081974
29	684	74	Helleringer S, Abdelwahab J, Vandenent M. Polio supplementary immunization activities
30 31	685		and equity in access to vaccination: Evidence from the demographic and health surveys. J
32	686		<i>Infect Dis</i> 2014; 210 :S531–9. doi:10.1093/infdis/jiu278
33	687	75	Javed SA, Imran W, Haider A, et al. Mothers related differentials in childhood
34	688		immunization uptake in Pakistan. <i>Res Humanit Soc Sci</i> 2014; 4 :62–72.
35 36	689	76	Luqman B, Titus Kolawole O. Mothers' health seeking behaviour and socio-economic
37	690		differentials: A factor analysis of full childhood immunization in South-Western Nigeria.
38	691		J Public Heal Epidemiol 2014;6:132–47. doi:10.5897/JPHE2013.0593
39	692	77	Malhotra C, Malhotra R, Østbye T, et al. Maternal autonomy and child health care
40	693		utilization in India: Results from the National Family Health Survey. Asia-Pacific J Public
41 42	694		Heal 2014; 26 :401–13. doi:10.1177/1010539511420418
43	695	78	Neupane S, Nwaru BI. Impact of prenatal care utilization on infant care practices in
44	696		Nepal: A National representative cross-sectional survey. <i>Eur J Pediatr</i> 2014; 173 :99–109.
45	697		doi:10.1007/s00431-013-2136-y
46 47	698	79	Prusty RK, Kumar A. Socioeconomic dynamics of gender disparity in childhood
47	699		immunization in India, 1992-2006. <i>PLoS One</i> 2014; 9 :1992–2006.
49	700		doi:10.1371/journal.pone.0104598
50	701	80	Rai RK, Singh PK, Singh L, <i>et al.</i> Individual characteristics and use of maternal and child
51	702		health services by adolescent mothers in Niger. <i>Matern Child Health J</i> 2014;18:592–603.
52 53	703		doi:10.1007/s10995-013-1276-z
54	704	81	Singh PK, Parsuraman S. Sibling composition and child immunization in India and
55	705	01	Pakistan, 1990-2007. World J Pediatr 2014; 10 :145–50. doi:10.1007/s12519-014-0483-z
56			
57 58			
58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3	706	82	Singh PK, Parasuraman S, P.K. S, <i>et al.</i> 'Looking beyond the male-female dichotomy' -
4	707	0	sibling composition and child immunization in India, 1992-2006. Soc Sci Med
5 6	708		2014; 107 :145–53. doi:10.1016/j.socscimed.2014.02.017
7	709	83	Ushie BA, Fayehun OA, Ugal DB. Trends and patterns of under-5 vaccination in Nigeria,
8	710	05	1990-2008: What manner of progress? <i>Child Care Health Dev</i> 2014; 40 :267–74.
9	711		doi:10.1111/cch.12055
10	712	84	Wagner Z, Szilagyi PG, Sood N. Comparative performance of public and private sector
11 12	712	04	delivery of BCG vaccination: Evidence from Sub-Saharan Africa. <i>Vaccine</i> 2014; 32 :4522–8.
13	713 714		derivery of bCG vaccination. Evidence from Sub-Sanaran Africa. vaccine 2014, 52 .4522–6. doi:10.1016/j.vaccine.2014.06.020
14	714	85	Zaidi SMA, Khowaja S, Dharma VK, <i>et al.</i> Coverage, timeliness, and determinants of
15	716	05	immunization completion in Pakistan: Evidence from the Demographic and Health
16 17	717		Survey (2006-07). <i>Hum Vaccines Immunother</i> 2014; 10 :1712–20. doi:10.4161/hv.28621
17	717	96	Abadura SA, Lerebo WT, Kulkarni U, <i>et al.</i> Individual and community level determinants
19		86	
20	719		of childhood full immunization in Ethiopia: a multilevel analysis. <i>BMC Public Health</i>
21	720	07	2015; 15 :972. doi:10.1186/s12889-015-2315-z
22 23	721	87	Ebot JO. 'Girl power!': The relationship between women's autonomy and children's
23	722		immunization coverage in Ethiopia. <i>J Heal Popul Nutr</i> 2015; 33 :1–9. doi:10.1186/s41043-
25	723	00	
26	724	88	Hajizadeh M, Heymann J, Strumpf E, <i>et al.</i> Paid maternity leave and childhood
27	725		vaccination uptake: Longitudinal evidence from 20 low-and-middle-income countries.
28 29	726		<i>Soc Sci Med</i> 2015; 140 :104–17. doi:10.1016/j.socscimed.2015.07.008
30	727	89	Lakew Y, Bekele A, Biadgilign S. Factors influencing full immunization coverage among
31	728		12–23 months of age children in Ethiopia: evidence from the national demographic and
32	729		health survey in 2011. BMC Public Health 2015;15:728. doi:10.1186/s12889-015-2078-6
33	730	90	McGlynn N, Wilk P, Luginaah I, et al. Increased use of recommended maternal health
34 35	731		care as a determinant of immunization and appropriate care for fever and diarrhoea in
36	732		Ghana: An analysis pooling three demographic and health surveys. <i>Health Policy Plan</i>
37	733		2015; 30 :895–905. doi:10.1093/heapol/czu090
38	734	91	Mukungwa T. Factors associated with full immunization coverage amongst children
39 40	735		aged 12 ???23 months in Zimbabwe. <i>Etude la Popul Africaine</i> 2015; 29 :1761–74.
40 41	736	92	Onsomu EO, Abuya B a, Okech IN, et al. Maternal Education and Immunization Status
42	737		Among Children in Kenya. Matern Child Health J 2015;19:1724–33. doi:10.1007/s10995-015-
43	738		1686-1
44	739	93	Osetinsky B, Gaydos LM, Leon JS. Predictors of completed childhood vaccination in
45 46	740		Bolivia. Int J Child Adolesc health 2015;8:413–23.
40	741	94	Prusty RK, Keshri K. Differentials in child nutrition and immunization among migrants
48	742		and non-migrants in Urban India. Int J Migr Heal Soc Care 2015;11:194–205.
49	743		doi:10.1108/IJMHSC-02-2014-0006
50	744	95	Rossi R. Do maternal living arrangements influence the vaccination status of children age
51 52	745		12-23 months? A data analysis of demographic health surveys 2010-11 from Zimbabwe.
53	746		PLoS One 2015;10:1–19. doi:10.1371/journal.pone.0132357
54	747	96	Schweitzer A, Krause G, Pessler F, et al. Improved coverage and timing of childhood
55	748		vaccinations in two post-Soviet countries, Armenia and Kyrgyzstan. BMC Public Health
56 57			· · · · · · · · · · · · · · · · · · ·
57 58			
59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
l .			

1			
2 3	740		$2015.15.700$ $J_{2}.10.110(/-12000.015.2001.0)$
4	749 750	97	2015; 15 :798. doi:10.1186/s12889-015-2091-9 Shrivastwa N, Gillespie BW, Kolenic GE, <i>et al.</i> Predictors of Vaccination in India for
5 6	751)1	Children Aged 12-36 Months. <i>Am J Prev Med</i> 2015; 49 :S435-44.
0 7	752		doi:10.1016/j.amepre.2015.05.008
8	753	98	Singh K, Bloom S, Brodish P. Gender Equality as a Means to Improve Maternal and Child
9	754	20	Health in Africa. <i>Heal Care Women Int</i> 2015; 36 :57–69.
10 11	755		doi:doi:10.1080/07399332.2013.824971
12	756	99	Smith-Greenaway E, Madhavan S. Maternal migration and child health: An analysis of
13	757		disruption and adaptation processes in Benin. <i>Soc Sci Res</i> 2015; 54 :146–58.
14	758		doi:10.1016/j.ssresearch.2015.06.005
15 16	759	100	Tsawe M, Moto A, Netshivhera T, <i>et al.</i> Factors influencing the use of maternal healthcare
17	760		services and childhood immunization in Swaziland. Int J Equity Health 2015;14:32.
18	761		doi:10.1186/s12939-015-0162-2
19 20	762	101	Arsenault C, Harper S, Nandi A, et al. Monitoring equity in vaccination coverage: A
20 21	763		systematic analysis of demographic and health surveys from 45 Gavi-supported
22	764		countries. Vaccine 2016;35:951–9. doi:10.1016/j.vaccine.2016.12.041
23	765	102	Chima CC, Franzini L. Spillover effect of HIV-specific foreign aid on immunization
24 25	766		services in Nigeria. Int Health 2016;8:108–15. doi:10.1093/inthealth/ihv036
25 26	767	103	Gurmu E, Etana D. Factors Influencing Children's Full Immunization in Ethiopia. African
27	768		Popul Stud 2016; 30 :2306–17.
28	769	104	Hosseinpoor AR, Bergen N, Schlotheuber A, et al. State of inequality in diphtheria-
29	770		tetanus-pertussis immunisation coverage in low-income and middle-income countries: A
30 31	771		multicountry study of household health surveys. <i>Lancet Glob Heal</i> 2016;4:e617–26.
32	772		doi:10.1016/S2214-109X(16)30141-3
33	773	105	Kriss JL, Goodson J, Machekanyanga Z, et al. Vaccine receipt and vaccine card availability
34 35	774		among children of the apostolic faith: analysis from the 2010-2011 Zimbabwe
36	775		demographic and health survey. <i>Pan Afr Med J</i> 2016; 24 :47.
37	776		doi:10.11604/pamj.2016.24.47.8663
38	777	106	Kumar C, Singh PK, Singh L, et al. Socioeconomic disparities in coverage of full
39 40	778		immunisation among children of adolescent mothers in India, 1990–2006: a repeated
41	779		cross-sectional analysis. <i>BMJ Open</i> 2016; 6 :e009768. doi:10.1136/bmjopen-2015-009768
42	780	107	Schweitzer A, Pessler F, Akmatov MK. Impact of rotavirus vaccination on coverage and
43	781		timing of pentavalent vaccination ??? Experience from 2 Latin American countries. <i>Hum</i>
44 45	782		Vaccines Immunother 2016; 12 :1250–6. doi:10.1080/21645515.2015.1127486
46	783	108	Adedokun ST, Uthman OA, Adekanmbi VT, <i>et al.</i> Incomplete childhood immunization in
47	784		Nigeria: a multilevel analysis of individual and contextual factors. <i>BMC Public Health</i>
48	785	100	2017; 17 :236. doi:10.1186/s12889-017-4137-7
49 50	786	109	Aghaji AE. Trends in Measles Vaccination in Nigeria and Implications for Childhood
51	787	110	Blindness. Int J Med Heal Dev 2017;22:82–8. doi:10.4314/jcm.v22i2.4
52	788	110	Ambel AA, Andrews C, Bakilana AM, <i>et al</i> . Examining changes in maternal and child
53	789		health inequalities in Ethiopia. <i>Int J Equity Health</i> 2017; 16 :152. doi:10.1186/s12939-017-
54 55	790	111	
56	791	111	Delprato M, Akyeampong K. The Effect of Early Marriage Timing on Women's and
57			
58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3	792		Children's Health in Sub-Saharan Africa and Southwest Asia. Ann Glob Heal 2017;83:557–
4	793		67. doi:10.1016/j.aogh.2017.10.005
5 6	794	112	Herliana P, Douiri A. Determinants of immunisation coverage of children aged 12-59
6 7	795	112	months in Indonesia: a cross-sectional study. <i>BMJ Open</i> 2017; 7 :e015790.
8	795 796		
9		110	doi:10.1136/bmjopen-2016-015790
10	797 708	113	Kazungu JS, Adetifa IMO. Crude childhood vaccination coverage in West Africa: Trends
11	798		and predictors of completeness. <i>Wellcome open Res</i> 2017; 2 :12.
12 13	799	111	doi:10.12688/wellcomeopenres.10690.1
14	800	114	KC A, Nelin V, Raaijmakers H, <i>et al.</i> Increased immunization coverage addresses the
15	801		equity gap in Nepal. Bull World Health Organ 2017;95:261–9. doi:10.2471/BLT.16.178327
16	802	115	Khan MT, Zaheer S, Shafique K. Maternal education, empowerment, economic status and
17	803		child polio vaccination uptake in Pakistan: a population based cross sectional study. BMJ
18 19	804		<i>Open</i> 2017;7:e013853. doi:10.1136/bmjopen-2016-013853
20	805	116	Mbengue MAS, Sarr M, Faye A, et al. Determinants of complete immunization among
21	806		Senegalese children aged 12-23 months: evidence from the demographic and health
22	807		survey. BMC Public Health 2017;17:630. doi:10.1186/s12889-017-4493-3
23	808	117	Oleribe O, Kumar V, Awosika-Olumo A, et al. Individual and socioeconomic factors
24 25	809		associated with childhood immunization coverage in Nigeria. <i>Pan Afr Med J</i> 2017; 26 :220.
26	810		doi:10.11604/pamj.2017.26.220.11453
27	811	118	Singh A, Patel SK. Gender differentials in feeding practices, health care utilization and
28	812		nutritional status of children in Northern India. Int J Hum Rights Healthc Published Online
29 30	813		First: 2017. doi:10.1108/IJHRH-05-2017-0023
30 31	814	119	Uthman OA, Adedokun ST, Olukade T, et al. Children who have received no routine
32	815		polio vaccines in Nigeria: Who are they and where do they live? Hum Vaccin Immunother
33	816		2017; 13 :2111–22. doi:10.1080/21645515.2017.1336590
34	817	120	Zuhair M, Roy RB. Socioeconomic Determinants of the Utilization of Antenatal Care and
35 36	818		Child Vaccination in India. <i>Asia-Pacific J public Heal</i> 2017;29:649–59.
37	819		doi:10.1177/1010539517747071
38	820	121	Acharya P, Kismul H, Mapatano MA, et al. Individual- and community-level
39	821		determinants of child immunization in the Democratic Republic of Congo: A multilevel
40	822		analysis. PLoS One Published Online First: 2018. doi:10.1371/journal.pone.0202742
41 42	823	122	Adetokunboh OO, Uthman OA, Wiysonge CS. Non-uptake of childhood vaccination
43	824		among the children of HIV-infected mothers in sub-Saharan Africa: A multilevel analysis.
44	825		Hum Vaccin Immunother 2018;14:2405–13. doi:10.1080/21645515.2018.1502524
45	826	123	Adetokunboh OO, Uthman OA, Wiysonge CS. Effect of maternal HIV status on
46	827		vaccination coverage among sub-Saharan African children: A socio-ecological analysis.
47 48	828		Hum Vaccin Immunother 2018;14:2373–81. doi:10.1080/21645515.2018.1467204
49	829	124	Ashbaugh HR, Hoff NA, Doshi RH, <i>et al.</i> Predictors of measles vaccination coverage
50	830		among children 6-59 months of age in the Democratic Republic of the Congo. Vaccine
51	831		2018; 36 :587–93. doi:10.1016/j.vaccine.2017.11.049
52 53	832	125	Asuman D, Ackah CG, Enemark U. Inequalities in child immunization coverage in
54	833	120	Ghana: evidence from a decomposition analysis. <i>Health Econ Rev</i> 2018; 8 :9.
55	834		doi:10.1186/s13561-018-0193-7
56	001		
57			
58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


3	835	126	Boulton ML, Carlson BF, Power LE, et al. Socioeconomic factors associated with full
4 5	836		childhood vaccination in Bangladesh, 2014. Int J Infect Dis Published Online First: 2018.
5 6	837		doi:10.1016/j.ijid.2018.01.035
7	838	127	Burroway R, Hargrove A. Education is the antidote: Individual- and community-level
8	839		effects of maternal education on child immunizations in Nigeria. Soc Sci Med 2018; 213 :63–
9	840		71. doi:10.1016/j.socscimed.2018.07.036
10 11	841	128	Imran W, Abbas F, Javed SA. What is causing high polio vaccine dropout among
12	842		Pakistani children? <i>Public Health</i> 2018; 164 :16–25. doi:10.1016/j.puhe.2018.07.008
13	843	129	Khan J, Shil A, Prakash R. Exploring the spatial heterogeneity in different doses of
14	844		vaccination coverage in India. <i>PLoS One</i> 2018; 13 :e0207209.
15 16	845		doi:10.1371/journal.pone.0207209
17	846	130	Kols A, Gorar Z, Sharjeel M, <i>et al.</i> Provincial differences in levels, trends, and
18	847		determinants of childhood immunization in Pakistan. <i>East Mediterr Heal J</i> 2018; 24 :333–44.
19	848		doi:10.26719/2018.24.4.333
20 21	849	131	McGavin ZA, Wagner AL, Carlson BF, <i>et al.</i> Childhood full and under-vaccination in
21	850		Nigeria, 2013. Vaccine 2018; 36 :7294–9. doi:10.1016/j.vaccine.2018.10.043
23	851	132	Raza O, Lodhi FS, Morasae EK, et al. Differential achievements in childhood
24	852		immunization across geographical regions of Pakistan: analysis of wealth-related
25 26	853		inequality. Int J Equity Health 2018;17:122. doi:10.1186/s12939-018-0837-6
26 27	854	133	Shenton LM, Wagner AL, Carlson BF, <i>et al.</i> Vaccination status of children aged 1-4 years
28	855		in Afghanistan and associated factors, 2015. <i>Vaccine</i> 2018; 36 :5141–9.
29	856		doi:10.1016/j.vaccine.2018.07.020
30	857	134	Shenton LM, Wagner AL, Bettampadi D, et al. Factors Associated with Vaccination Status
31 32	858		of Children Aged 12–48 Months in India, 2012–2013. <i>Matern Child Health J</i> 2018; 22 :1–10.
33	859		doi:10.1007/s10995-017-2409-6
34	860	135	Sohn M, Lin L, Jung M. Effects of Maternal Decisional Authority and Media Use on
35	861		Vaccination for Children in Asian Countries. <i>Medicina (Kaunas)</i> 2018;54.
36 37	862		doi:10.3390/medicina54060105
38	863	136	Lungu EA, Biesma R, Chirwa M, et al. Is the Urban Child Health Advantage Declining in
39	864		Malawi?: Evidence from Demographic and Health Surveys and Multiple Indicator
40	865		Cluster Surveys. J Urban Health 2019;96:131–43. doi:10.1007/s11524-018-0270-6
41 42	866	137	Masters NB, Wagner AL, Carlson BF, et al. Childhood vaccination in Kenya:
43	867		socioeconomic determinants and disparities among the Somali ethnic community. Int J
44	868		Public Health 2019;64:313–22. doi:10.1007/s00038-018-1187-2
45	869	138	Vyas P, Kim D, Adams A. Understanding Spatial and Contextual Factors Influencing
46 47	870		Intraregional Differences in Child Vaccination Coverage in Bangladesh. Asia-Pacific J
47 48	871		<i>public Heal</i> 2019; 31 :51–60. doi:10.1177/1010539518813604
49	872	139	Centers for Disease Control and Prevention. Achievements in public health: elimination
50	873		of rubella and congenital rubella syndrome-US, 1969-2004. MMWR Morb Mortal Wkly Rep
51 52	874		2005; 5 4:279–82.
52 53	875	140	Mwenge W, Mbulu LK, Okeibunor J, et al. Polio Eradication Initiative: Contribution to
54	876		improved communicable diseases surveillance in WHO African region. <i>Vaccine</i>
55	877		2016; 34 :5170–4. doi:10.1016/j.vaccine.2016.05.060
56			· · · · · · · · · · · · · · · · · · ·
57 58			
59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 29 of 35

1 ว			
2 3	878	141	Keegan R, Dabbagh A, Strebel PM, et al. Comparing measles with previous eradication
4	879	141	programs: enabling and constraining factors. J Infect Dis 2011; 204 :S54–61.
5 6	880		doi:10.1093/infdis/jir119
7	881	142	Levin A, Burgess C, Garrison LP, <i>et al.</i> Global Eradication of Measles: An Epidemiologic
8	882		and Economic Evaluation. J Infect Dis 2011; 204 :S98–106. doi:10.1093/infdis/jir096
9	883	143	Thapa A, Khanal S, Sharapov U, <i>et al.</i> Progress Toward Measles Elimination - South-East
10 11	884		Asia Region, 2003-2013. MMWR Morb Mortal Wkly Rep 2015; 64 :613–7.
12	885	144	Tsega A, Daniel F, Steinglass R. Monitoring coverage of fully immunized children.
13	886		<i>Vaccine</i> 2014; 32 :7047–9. doi:10.1016/j.vaccine.2014.10.057
14 15	887	145	Hong R, Banta JE. Effects of extra immunization efforts on routine immunization at
16	888		district level in Pakistan. <i>East Mediterr Heal J</i> 2005; 11 .
17	889	146	Krieger N, Smith GD. The tale wagged by the DAG: Broadening the scope of causal
18	890		inference and explanation for epidemiology. Int J Epidemiol 2016;45:1787–808.
19 20	891		doi:10.1093/ije/dyw114
21	892	147	Westreich D, Greenland S. The table 2 fallacy: Presenting and interpreting confounder
22	893		and modifier coefficients. <i>Am J Epidemiol</i> 2013;177:292–8. doi:10.1093/aje/kws412
23 24	894	148	Bandoli G, Palmsten K, Chambers CD, et al. Revisiting the Table 2 fallacy: A motivating
25	895		example examining preeclampsia and preterm birth. <i>Paediatr Perinat Epidemiol</i>
26	896	1.40	2018; 32 :390–7. doi:10.1111/ppe.12474
27 28	897	149	Bolton P, Hussain A, Hadpawat A, <i>et al.</i> Deficiencies in current childhood immunization
28 29	898 899	150	indicators. <i>Public Heal Rep</i> 1998; 113 :527–32.
30	899 900	150	Laubereau B, Hermann M, Schmitt HJ, <i>et al</i> . Detection of delayed vaccinations: a new approach to visualize vaccine uptake. <i>Epidemiol Infect</i> 2002; 128 :185–92.
31	901	151	Shrivastwa N, Gillespie BW, Lepkowski JM, <i>et al.</i> Vaccination Timeliness in Children
32 33	902	101	under India's Universal Immunization Program. <i>Pediatr Infect Dis J</i> 2016; 35 :955–60.
34	903		doi:10.1097/INF.00000000001223
35	904	152	Dandona R, Pandey A, Dandona L. A review of national health surveys in India. <i>Bull</i>
36 37	905		World Heal Organ 2016; 94 :286–96. doi:10.2471/BLT.15.158493
38	906	153	UNICEF. Multiple Indicator Cluster Surveys. 2017.http://mics.unicef.org/ (accessed 3 Oct
39	907		2017).
40 41	908	154	Wagner AL. The use and significance of vaccination cards. <i>Hum Vaccin Immunother</i>
42	909		2019; 15 :2844–6. doi:10.1080/21645515.2019.1625647
43	910	155	Central Statistical Agency, The DHS Program. Ethiopia Demographic and Health Survey,
44 45	911		2016. 2016.
45 46	912		
47	913		
48	914		
49 50			
51			
52			
53 54			
55			
56			
57 58			
58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3	915	Figure legends
3 4 5 6	916	
6	917	Figure 1. Diagram of studies' selection into a scoping review of vaccination studies using the
7	918	Demographic and Health Surveys.
8 9	919	
10	920 021	Figure 2. Map of countries by the number of published studies using Demographic and Health
11 12	921 922	Survey (DHS) datasets. Shading corresponds to number of studies using DHS data from only one country; hash marks indicate a study using multiple countries.
13	922 923	one country, hash marks mulcate a study using multiple countries.
14 15	924	Figure 3. Commonly reported predictors of vaccination status used in studies using the
16	925	Demographic and Health Survey.
17	926	
18 19	927 0 2 8	
20	928	
21 22		
23		
24 25		
26		
27 28		Demographic and Health Survey.
29		
30 31		
32		
33 34		
35		
36 37		
38		
39 40		
40		
42 43		
43		
45		
46 47		
48		
49 50		
51		
52 53		
54		
55 56		
57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

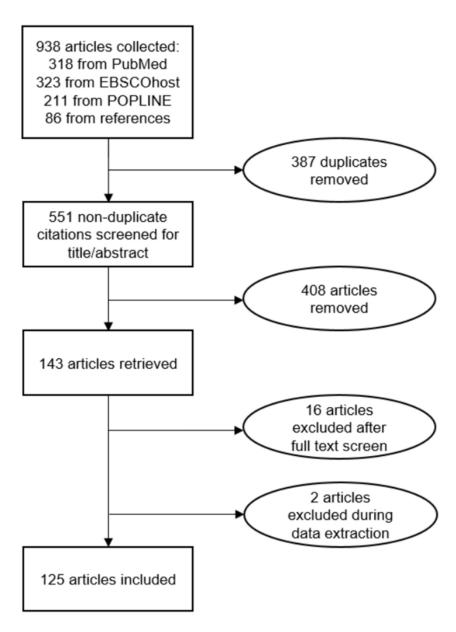
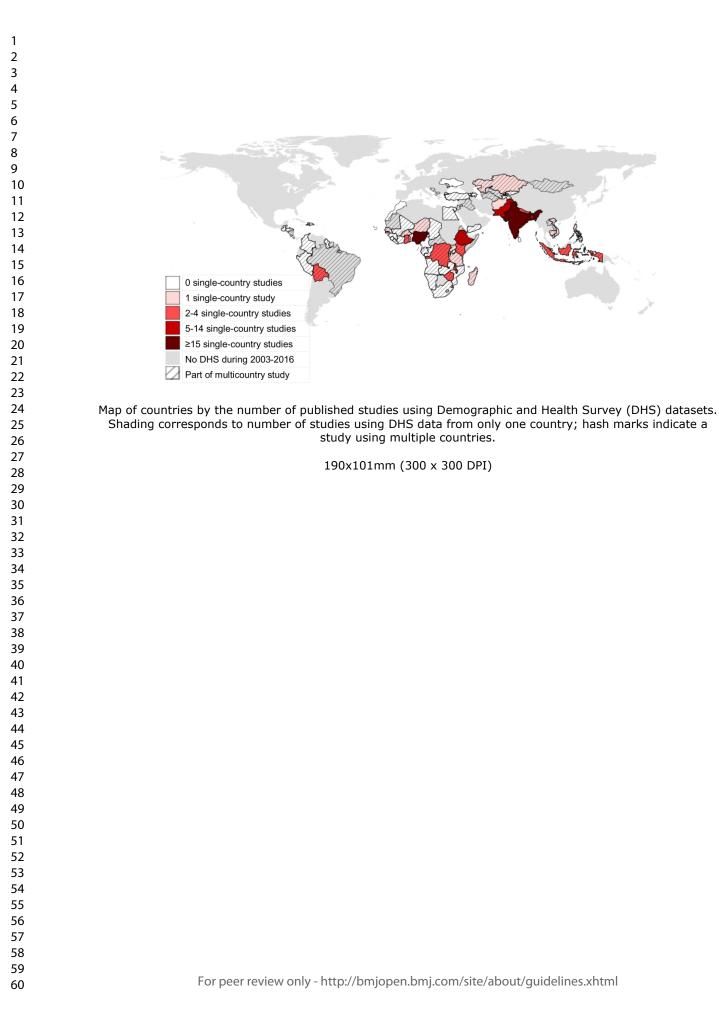



Diagram of studies' selection into a scoping review of vaccination studies using the Demographic and Health Surveys.

114x152mm (300 x 300 DPI)

1	
2	
3	
4	
5	
6	
7	
8	More maternal education
9	Higher wealth index
10	Urban vs rural
11	Male vs female sex
12	Older age of mother
12	
	More older children
14	Insitutional vs home delivery
15	More antenatal care visits
16	Greater media exposure
17	More paternal education
18	
19	0% 20% 40% 60% 80% 100%
20	■ Inverse relationship □ No significant relationship
21	Another relationship (e.g., U-shaped) Positive relationship
22	
23	
24	Commonly reported predictors of vaccination status used in studies using the Demographic and Health
25	Survey.
26	
27	190x101mm (300 x 300 DPI)
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40	
47 48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

59

Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #
TITLE			
Title	1	Identify the report as a scoping review.	1
ABSTRACT			
Structured summary	2	Provide a structured summary that includes (as applicable): background, objectives, eligibility criteria, sources of evidence, charting methods, results, and conclusions that relate to the review questions and objectives.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known. Explain why the review questions/objectives lend themselves to a scoping review approach.	3-4
Objectives	4	Provide an explicit statement of the questions and objectives being addressed with reference to their key elements (e.g., population or participants, concepts, and context) or other relevant key elements used to conceptualize the review questions and/or objectives.	4
METHODS			
Protocol and registration	5	Indicate whether a review protocol exists; state if and where it can be accessed (e.g., a Web address); and if available, provide registration information, including the registration number.	N/A, 4
Eligibility criteria	6	Specify characteristics of the sources of evidence used as eligibility criteria (e.g., years considered, language, and publication status), and provide a rationale.	4
Information sources*	7	Describe all information sources in the search (e.g., databases with dates of coverage and contact with authors to identify additional sources), as well as the date the most recent search was executed.	4
Search	8	Present the full electronic search strategy for at least 1 database, including any limits used, such that it could be repeated.	4
Selection of sources of evidence†	9	State the process for selecting sources of evidence (i.e., screening and eligibility) included in the scoping review.	4-5
Data charting process‡	10	Describe the methods of charting data from the included sources of evidence (e.g., calibrated forms or forms that have been tested by the team before their use, and whether data charting was done independently or in duplicate) and any processes for obtaining and confirming data from investigators.	5
Data items	11	List and define all variables for which data were sought and any assumptions and simplifications made.	5
Critical appraisal of individual sources of evidence§	12	If done, provide a rationale for conducting a critical appraisal of included sources of evidence; describe the methods used and how this information was used in any data synthesis (if appropriate).	5

St. Michael's

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #	
Synthesis of results	13	Describe the methods of handling and summarizing the data that were charted.	6	
RESULTS				
Selection of sources of evidence	14	Give numbers of sources of evidence screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally using a flow diagram.	7	
Characteristics of sources of evidence	15	For each source of evidence, present characteristics for which data were charted and provide the citations.	7-8	
Critical appraisal within sources of evidence	16	If done, present data on critical appraisal of included sources of evidence (see item 12).	7	
Results of individual sources of evidence	17	For each included source of evidence, present the relevant data that were charted that relate to the review questions and objectives.	7	
Synthesis of results	18	Summarize and/or present the charting results as they relate to the review questions and objectives.	7-8	
DISCUSSION				
Summary of evidence	19	Summarize the main results (including an overview of concepts, themes, and types of evidence available), link to the review questions and objectives, and consider the relevance to key groups.	8	
Limitations	20	Discuss the limitations of the scoping review process.	10	
Conclusions	21	Provide a general interpretation of the results with respect to the review questions and objectives, as well as potential implications and/or next steps.	10	
FUNDING				
Funding	22	Describe sources of funding for the included sources of evidence, as well as sources of funding for the scoping review. Describe the role of the funders of the scoping review. MA-ScR = Preferred Reporting Items for Systematic reviews and	12	

JBI = Joanna Briggs Institute; PRISMA-ScR = Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews.

* Where *sources of evidence* (see second footnote) are compiled from, such as bibliographic databases, social media platforms, and Web sites.

† A more inclusive/heterogeneous term used to account for the different types of evidence or data sources (e.g., quantitative and/or qualitative research, expert opinion, and policy documents) that may be eligible in a scoping review as opposed to only studies. This is not to be confused with *information sources* (see first footnote).
‡ The frameworks by Arksey and O'Malley (6) and Levac and colleagues (7) and the JBI guidance (4, 5) refer to the

process of data extraction in a scoping review as data charting. § The process of systematically examining research evidence to assess its validity, results, and relevance before using it to inform a decision. This term is used for items 12 and 19 instead of "risk of bias" (which is more applicable to systematic reviews of interventions) to include and acknowledge the various sources of evidence that may be used in a scoping review (e.g., quantitative and/or qualitative research, expert opinion, and policy document).

From: Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann Intern Med. 2018;169:467–473. doi: 10.7326/M18-0850.

