

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Maternal metabolic profiling to assess fetal gestational age and predict preterm delivery

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-040647
Article Type:	Original research
Date Submitted by the Author:	18-May-2020
Complete List of Authors:	Sylvester, Karl; Stanford University Hao, Shiying; Stanford University You, Jin; Stanford University Zheng, Le; Stanford University Tian, Lu; Stanford University Yao, Xiaoming; Hong Kong University Mo, Lihong; University of California San Francisco Fresno Center for Medical Education and Research Ladella, Subhashini; University of California San Francisco Fresno Center for Medical Education and Research Wong, Ronald; Stanford University Shaw, Gary M.; Stanford University Stevenson, David; Stanford University Cohen, Harvet; Stanford University Whitin, John; Stanford University McElhinney, Doff ; Stanford University Ling, Xuefeng; Stanford University,
Keywords:	Health informatics < BIOTECHNOLOGY & BIOINFORMATICS, Risk management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, OBSTETRICS
	1

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	preterm delivery
5	Karl G. SYLVESTER, MD ^{1*†} , Shiying HAO, PhD ^{2,3*} , Jin YOU, PhD ^{1*} , Le ZHENG,
4	PhD ^{2,3} , Lu TIAN ⁴ , Xiaoming YAO, MD, PhD ⁵ , Lihong MO, MD ⁶ , Subhashini
5	LADELLA, MD ⁶ , Ronald J. WONG, BA ⁷ , Gary M. SHAW, DrPh ⁷ , David K.
6	STEVENSON, MD7, Harvey J. COHEN, MD, PhD7, John C. WHITIN, PhD7, Doff B.
7	MCELHINNEY, MD ^{2,3} , Xuefeng B. LING, PhD ^{1,3†}
8	
9	¹ Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
10	² Department of Cardiothoracic Surgery, Stanford University School of Medicine,
11	Stanford, CA, USA.
12	³ Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center,
13	Lucile Packard Children's Hospital, Palo Alto, CA, USA.
14	⁴ Department of Health Research and Policy, Stanford University, Stanford, CA, USA.
15	⁵ Translational Medicine Laboratory, Queen Mary Hospital, Hong Kong University, Hong
16	Kong, China.
17	⁶ Department of Obstetrics and Gynecology, University of California San Francisco-
18	Fresno, Fresno, CA, USA.
19	⁷ Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
20	
21	[†] Correspondence: Xuefeng B. Ling, Department of Surgery, Stanford University, hyling@stanford.edu; Karl G. Sylvester, Department of Surgery, Stanford University
22	karls@stanford.edu
24	*Co-first authors
25 26	Word count: 280 for Abstract: 2973 for Main text

.

BMJ Open

2		
3	27	ABSTRACT
5 6 7	28	Objectives The aim of this study was to develop a single blood test that could determine
8 9	29	gestational age and estimate the risk of preterm birth by measuring serum metabolites.
10 11	30	We hypothesized that serial metabolic modeling of serum analytes throughout pregnancy
12 13 14	31	could be used to describe fetal gestational age and project preterm birth with a high
15 16	32	degree of precision.
17 18 19	33	Study design A retrospective cohort study
20 21 22	34	Setting Two medical centers from US
23 24 25	35	Participants Thirty-six patients (20 full-term, 16 preterm) enrolled at Stanford
25 26 27	36	University were used to develop gestational age and preterm birth risk algorithms, 22
28 29	37	patients (9 full-term, 13 preterm) enrolled at the University of Alabama were used to
30 31	38	validate the algorithms.
32 33 34	39	Outcome measures Maternal blood was collected serially throughout pregnancy.
35 36 37	40	Metabolic datasets were generated using mass spectrometry.
38 39	41	Results A model to determine gestational age was developed ($R^2 = 0.98$) and validated
40 41	42	($R^2 = 0.81$). 66.7% of the estimates fell within ± 1 week of ultrasound results during
42 43 44	43	model validation. Significant disruptions from full-term pregnancy metabolic patterns
45 46	44	were observed in preterm pregnancies ($R^2 = -0.68$). A separate algorithm to predict
47 48	45	preterm birth was developed utilizing a set of 10 metabolic pathways that resulted in an
49 50 51	46	area under the curve of 0.92 and a sensitivity of 0.86 during validation testing.
52 53	47	Conclusions In this study metabolic profiling was used to develop and test a model for
54 55 56	48	determining gestational age during full-term pregnancy progression, and to determine
57 58		2
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

risk of preterm birth. With additional patient validation studies, these algorithms may be used to identify at-risk pregnancies prompting alterations in clinical care, and to gain physio. .e. gestational age, preterm birth, p. biologic insights into the pathophysiology of preterm birth. Metabolic pathway-based pregnancy modeling is a novel modality for investigation and clinical application development. **Keywords:** Metabolic, gestational age, preterm birth, pathway For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

58 59

60

BMJ Open

1		
2		
4	56	Strengths and limitations of this study
5 6 7	57	• This study demonstrates a new non-invasive methodology for monitoring pregnancy
8 9	58	progression and identifying abnormal pregnancies at clinical settings.
10 11 12	59	• The insensitivity of the prediction model to gestational age (GA) window of sample
13 14	60	collection increases its flexibility and opportunity for potential clinical use.
15 16	61	• This study is among the first to propose a pathway-based computational methodology
17 18 19	62	to estimate GA and predict preterm birth.
20 21	63	• The overall cohort size is modest, and the distribution of sampling time are different
22 23 24	64	between patients and cohorts.
25 26	65	• It is a retrospective study; a larger prospective cohort study is necessary before
27 28	66	applying the estimates and prediction to a broader population for clinical utility.
29 30 31		
32 33		
34 35		
36 37		
39 40		
41 42		
43 44		
45 46		
47		
48 49		
50 51		
52 53		
54		
55 56		

67 INTRODUCTION

Gestational age (GA) dating is a core element of standard prenatal care ¹⁻⁴. Prenatal ultrasound (US) is an established modality for estimating GA, monitoring fetal growth, and screening for fetal anomalies ⁵. First trimester US imaging is the gold standard for GA determination, however there can be frequent discordance between US dating and a mother's last known menstrual period (LMP). In these cases, follow-up testing by US is utilized to more accurately estimate GA. US measurements are not currently used to determine risk of premature birth (PTB). The availability and expertise of US in disadvantaged areas is limited ⁶. Therefore, there is a need to develop an alternative measure of fetal progression to estimate GA and pregnancy risk in a variety of settings and especially when US and LMP dates are unavailable or unreliable. Compared with imaging methodologies, blood-based molecular testing may provide a more reproducible and precise modality in clinical applications for the frequent monitoring of health status and detection of early signs of disease. Genomic, gene expression, protein, and metabolite profiles measured in human blood have been increasingly utilized for the determination of disease risk and to gain disease specific pathophysiology insight. Attempts at estimating GA using molecular adaptations have included modeling of RNA, protein, or immune cell changes in maternal blood ⁷⁻¹⁰, but not metabolites. Similarly, risk prediction of PTB in clinical settings is currently primarily based on maternal history. Biomarkers have been suggested from genetic and proteomic analyses, but less effort has been focused on understanding metabolic signatures of pregnancy ¹¹⁻¹⁶.

Page 7 of 46

BMJ Open

89	In this study, we hypothesized that longitudinal metabolic profiling of pregnancy reflects
90	the temporal progression of fetal development with a high degree of precision. Moreover,
91	we posited that if a normal pregnancy progression profile could be defined in metabolic
92	terms, then aberrations from the normal profile may identify a pregnancy at risk for PTB.
93	Herein, we have identified a panel of metabolic pathways measured in maternal serum
94	that provides an estimation of GA over the course of a full-term pregnancy. A second and
95	distinct set of metabolic pathways was also identified in maternal serum that could
96	distinguish pregnancies ending with PTB (< 35 weeks) from full-term (\geq 37 weeks) with
97	a high degree of precision. The models were developed and validated using two
98	independent cohorts from two different institutions in order to test the robustness of the
99	biologic features driving the classifications. Our findings suggest that composite
100	metabolic panel modeling may serve as a reproducible and precision approach to GA
101	dating of pregnancy and prediction of PTB.
102	MATERIALS AND METHODS
103	Definition
104	In this study, a full-term pregnancy was defined as a pregnancy ending with a delivery at
105	\geq 37 weeks. PTB was defined by delivery at < 35 weeks GA.
106	Study design
107	The study was conducted in two phases: (1) modeling to devise a metabolite-based
108	estimation of GA during full-term pregnancies; and (2) modeling to devise a metabolic
109	panel predictive of PTB (Fig. 1). In this study, the 'gold' standard of GA was US
110	measurement. Serum samples were collected in the 1 st , 2 nd , or 3 rd trimester during

- For peer review only http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
∠⊃ \	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
27	
24	
30	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
75 76	
40 17	
4/	
48	
49 -	
50	
51	
52	
53	
54	
55	
56	
50	
57	
20	
59	
60	

1 2

111 pregnancy for each individual woman. Each participant had 1 to 4 time-points collected 112 prior to delivery. Samples were provided by Stanford Hospital and Clinics (SU) and the 113 University of Alabama (UAB). Metabolic concentrations in each sample were measured 114 by targeted and untargeted mass spectrometry (MS) analysis. Models that estimated GA 115 or predicted PTB were developed using the SU cohort and validated using the UAB 116 cohort. The study was approved by the Institutional Review Board of both sites. All 117 samples were collected after informed consent was obtained. All statistical analyses were 118 done in R software. 119 **Targeted and global MS analysis**

Samples of full-term and preterm patients as well as quality control (QC) samples were
injected into the MS. Targeted MS analysis was done through flow injection methods by
using Ultimate 3000 Ultra-High-Performance Liquid Chromatography (UHPLC) system
and Quantiva Triple Quadrupole Mass Spectrometer. Global (i.e. untargeted) MS analysis
was done by using a Vanquish UHPLC system coupled to a Q Exactive plus mass
spectrometer and Q Exactive HF hybrid quadrupole-Orbitrap mass spectrometer.

126 Data preprocessing and metabolic identification

A data pre-processing procedure was conducted to convert the raw data generated by MS
analysis into a matrix of relative concentrations of metabolites versus samples ¹⁷. This
procedure was done by R package. Metabolic values in each sample were then
normalized by the median values measured with QC samples to reduce the batch effects.
Compounds detected by untargeted analyses were matched to metabolites in the Human
Metabolome Database by putative identification ¹⁸. Accurate mass was used for the

Page 9 of 46

1

BMJ Open

2		
3	133	mapping. N
5 6	134	Genomes (
7 8	135	pathways v
9 10 11	136	Metabolic
12 13 14	137	Metabolite
15 16	138	remaining
17 18	139	calculated
19 20	140	pathway di
21 22	111	the nathway
23 24 25	141	
25 26 27	142	goodness-c
27	143	were calcul
29 30 21	144	developed
31 32 33	145	were used t
34 35	146	values, on
36 37	147	growth fact
38 39	148	that is com
40 41	149	Additional
42 43		
44 45	150	Patient an
46 47	151	This retros
48 49 50	152	invited to c
50 51 52	153	relevant ou
53 54	154	writing or e
55 56		
57 58		
59		
60		

mapping. Metabolites were mapped to pathways using Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Human Metabolome Database (HMDB). Only endogenous
pathways were considered.

136 Metabolic compound selection, pathway computation, and model development

Metabolites measured by targeted and untargeted MS were aggregated and filtered. The
remaining metabolites were mapped to pathways. The value of each pathway was
calculated as the weighted sum of the normalized concentrations of metabolites on the
pathway divided by the number of metabolites. An XGBoost model was developed with
the pathway values of samples from full-term patients to estimate the GA. R-squared (R²;
goodness-of-fit of the model), root-mean-square error (RMSE), and error distribution
were calculated to evaluate the model performance. A second XGBoost model was
developed to predict PTB. To evaluate the model performance, Mann–Whitney U tests
were used to compare the distribution of final predictive estimates, i.e., XGBoost model
values, on full-term and PTB samples. Results were compared with the insulin-like
growth factor-binding protein 4 (IBP4)/sex hormone-binding globulin (SHBG) signature
that is commercially available as a metabolic test for determining risk of PTB ¹².
Additional details of model development were described in Text A.1.

150 Patient and Public Involvement statement

This retrospective research was done without patient involvement. Patients were not
invited to comment on the study design and were not consulted to develop patient
relevant outcomes or interpret the results. Patients were not invited to contribute to the
writing or editing of this document for readability or accuracy.

RESULTS

156 Samples

157 As shown in Fig. 2, the SU cohort had 20 full-term pregnancies with 57 blood samples

158 (17, 32, and 8 collected in the 1st, 2nd, and 3rd trimesters, respectively) and 16 preterm

pregnancies with 32 blood samples (9, 19, and 4 collected in the 1st, 2nd, and 3rd

160 trimesters, respectively). The UAB cohort had 9 full-term pregnancies with 13 blood

161 samples (8 and 5 in the 2nd, and 3rd trimesters, respectively) and 13 preterm pregnancies

162 with 22 blood samples (4 and 18 in the 1st and 2nd trimesters, respectively). In the SU

163 cohort, 2 (12.5%) were extremely preterm (< 28 weeks), and 5 (31.3%) were very

164 preterm (28–31 weeks). In the UAB cohort, 6 (46.2%) were extremely preterm, and 3

165 (23.1%) were very preterm. Demographics of the two cohorts are shown in Table 1.

		SU	0,		UAB	
Characteristic	Full-term	Preterm	Р	Full-term	Preterm	Р
	(n = 20)	(n = 16)		(n = 9)	(n = 13)	
Race, n (%)			<0.001	5		0.5
Asian	0	2 (12.5)		0	0	
White	20 (100)	5 (31.3)		0	2 (15.4)	
Black	0	1 (6.3)		9 (100)	10 (6.9)	
American Indian	0	1 (6.3)		0	0	
Pacific Islander	0	1 (6.3)		0	0	
Other/unknown	0	6 (37.5)		0	1 (7.7)	
Hispanic, n (%)	0	8 (50)	<0.001	0	1 (7.7)	0.9
Maternal Age, year, mean	31.9 (4.8)	29.8 (7.5)	0.3	25.6 (5.0)	27.5 (4.5)	0.4

166	Table 1. Maternal characteristics in SU and UAB cohorts
167	

1 ว								
2 3 4		(SD)						
5		Gestational age at delivery,	39.5			20 (27 20)		
7 2		weeks, median (IQR)	(39,41)	32 (30,33)	<0.001	38 (37,39)	28 (26,32)	<0.001
9 10		Having previous pregnancy,	9 (45)	6 (37.5)	0.7	9 (100)	13 (100)	0.4
11		n (%)	2 2 2	07 (20.4	26.5	
13 14 15		BMI, kg/m ² , median (IQR)	22.3	27.6	0.003	30.4	26.5	0.8
15 16 17		History of PTB, n (%)	(20.2,24.7) 3 (15)	(23.4,33.9) 8 (50)	0.03	(22.3,33.1) 7 (77.8)	(22.6,36.5)	0.2
18 19	168	0	~					
20 21	1.60							
22 23 24	169 170	LC-MS/MS metabolon	nics					
25 26	171	The study targeted 315 r	netabolites l	by LC-MS/N	1S, includir	ig 13 categoi	ries: acyl-	
27 28	172	carnitine (11, 3.5%), am	carnitine (11, 3.5%), amino acid (9, 2.9%), fatty acid (6, 1.9%), ceramide (12, 3.8%),					
29 30 31	173	ceramide 1-phosphate (8, 2.5%), galactosylceramide (5, 1.6%), phosphatidyl acid (15,						
32 33	174	4.8%), phosphatidyletha	nolamine (5	2, 16.5%), p	hosphatidy	lglycerol (5,	1.6%),	
34 35	175	phosphatidylinositol (11	, 3.5%), pho	ophatidylcho	line (130, 4	1.3%), chole	esteryl ester	(16,
36 37 38	176	5.1%), and sphingomyel	lin (35, 11.19	%). The stud	y also iden	tified 1627 p	ositively-ar	nd 295
39 40	177	negatively-charged com	pounds throu	ugh untarget	ed analyses	. Together th	nese formed	the
41 42	178	initial set of 2237 compo	ounds.					
43 44 45	179	Feature selection of GA	A estimation	n modeling				
40 47 48	180	Of the 2237 compounds,	, 115 had an	absolute Pe	arson corre	lation coeffic	cient of > 0 .	35
49 50	181	with GA. The cutoff of =	± 0.35 was s	elected base	d on the fal	se discovery	rate (FDR)	
51 52 53	182	values of the mapped pa	thways < 1%	⁄₀ (Fig. A.1).	The 115 cc	ompounds w	ere mapped	to 89
55 54 55	183	pathways, 33 of which w	vere selected	l by the XGI	Boost mode	l. The norma	alized value	of
56 57 58 59								10

_ ז	
1	
2	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
 22	
∠∠ רכ	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
ככ ^∧	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
Δ <u>Λ</u> Λ	
44 15	
45	
46	
47	
48	
49	
50	
51	
52	
53	
51	
54	
22	
56	
57	
58	
59	
60	

1 2

184 each pathway varied over the course of gestation (Fig. A.2). Univariate analysis of the 33

185 pathways is shown in Fig. A.3, and the top 10 pathways in the model is depicted in Fig. 3.

186 The top 10 pathways included those associated in the metabolisms of:

187 glycerophospholipid, arginine and proline, thiamine, purine, butanoate, galactose, sulfur,

188 phenylalanine, and C5-branched dibasic acid.

189 **Performance of GA estimation**

190 The performance of GA estimates on full-term samples was similar in the development

191 phase (SU cohort, $R^2 = 0.98$, RMSE = 1.09) and the validation phase (UAB cohort, $R^2 =$

192 0.81, RMSE = 2.36) (Fig. 4). In our validation testing, 66.7% of the estimates were

193 within ± 1 week of the US results (Fig. A.4).

194 Intriguingly, model performance significantly deteriorated when applied to samples from

195 PTB pregnancies ($R^2 = -0.68$ and RMSE = 6.6 in validation; see Fig. 4). It suggested that

196 the relationships between metabolic parameters and full-term pregnancies were not

197 maintained in PTB pregnancies. Furthermore, such disruptions were notable as early as

198 10 weeks' GA (Fig. 4) or early to mid-gestation. These findings prompted the

199 development of a metabolic-based model of PTB estimation.

200 Performance of PTB prediction

201 Samples collected before 35 weeks' GA were used to develop a model that differentiated 202 PTB pregnancies from those full-term. As before, the model was developed with the SU 203 cohort that had 20 full-term (54 samples) and 16 preterm (32 samples) pregnancies, and 204 was validated with the UAB cohort that had 9 full-term (13 samples) and 13 preterm (22 205 samples) pregnancies. In total, 148 metabolic compounds (with Mann-Whitney U test P < Page 13 of 46

BMJ Open

1	
ר	
2	
3	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
29	
30	
31	
27	
32	
33	
34	
35	
36	
37	
38	
20	
10	
40	
41	
42	
43	
44	
45	
46	
17	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
22	
56	
57	
58	
59	

206	0.05) were mapped to 66 pathways (FDR $< 1.5\%$; see Fig. A.5). Further model
207	development selected 10 pathways as strong predictors covering the metabolisms of
208	glycerophospholipid, sphingolipid, taurine and hypotaurine, arachidonic acid, secondary
209	bile acid biosynthesis, glycerolipid, cysteine and methionine, tryptophan, and arginine
210	and proline (Fig. 5).
211	The level of prediction accuracy was maintained in the validation cohort ($P = 5 \times 10^{-5}$, area
212	under the curve $[AUC] = 0.92$; see Fig. 6). The prevalence-corrected positive predictive
213	values (PPVs) across model values (<i>i.e.</i> scores) were plotted based on the national PTB
214	prevalence in the United States (9.71% ¹²¹⁹ ; see Fig. A.6). A threshold value of 0.52 was
215	selected as a high-risk threshold for PTB, which was associated with a PPV of 0.61, a
216	relative risk (RR) of 6.3 compared to the United States population baseline (=
217	0.61/9.71%), a sensitivity of 0.86 (19 of 22), and a specificity of 0.92 (12 of 13; Fig. 7).
218	The sensitivities and specificities with cutoff values are shown in Table A.1.
219	In the validation cohort, 12 of 13 full-term samples and 19 of 22 preterm samples were
220	classified correctly. The misclassified full-term sample was from a mother that delivered
221	at 37 weeks' GA. The 19 correctly classified PTB samples were from 13 PTB
222	pregnancies. Of the 13 pregnancies, 9 were identified as high risk at or earlier than 16
223	weeks' GA. The median gap between the time of identification and the delivery was 11
224	weeks' GA (IQR: 8, 15.5).
225	To determine the performance of our metabolic model against existing models, a
226	comparison between the metabolic PTB risk model and the commercially available
227	IBP4/SHBG PTB test was performed and summarized in Text A.2.
228	Metabolite-based model and pathway-based model: a comparison

To determine the effectiveness of model performance based upon robustness of biologic features, we compared model performance using pathway or individual metabolite as selected features in estimating GA and predicting PTB. The performance of the pathwaybased models were significantly better than the metabolite-based models, with a lower RMSE (Student's t-test $P = 4x10^{-3}$; Fig. A.7) and a larger AUC (DeLong test P = 0.03;

234 Fig. A.8).

235 DISCUSSION

Principal Findings

In this study, metabolic modeling of maternal sera collected across gestation proved to be a robust method of determining GA during pregnancy progression of term deliveries (>37 weeks' GA), in that it was validated in a population of women from a different center. Intriguingly, PTB pregnancies do not demonstrate the same temporal relationship as term pregnancies upon metabolic modeling across gestation (Fig. 4). Indeed, PTB pregnancies (<35 weeks' GA) demonstrate a marked departure from the term metabolic profile (Fig. 4) that is not only dramatic ($R^2 = 0.98$ train and 0.81 test for term model; compared to $R^2 =$ 0.50 train and -0.68 test for PTB pregnancy in term model), but is also recognizable as early as 10 weeks' GA as determined by the current standard of US dating. Recognizing the metabolic pathway aberration of PTB pregnancies, a second model was developed using metabolic pathway analyses to quantify the risk of PTB prior to 35 weeks' GA. Once again, metabolic profiling proved to be robust in identifying PTB pregnancies with a high degree of sensitivity (AUC 0.96 training; AUC 0.92 testing) and precision (training PPV 0.93 (0.78-0.99); testing PPV 0.95 (0.75-1). Taken together, this study

Page 15 of 46

 BMJ Open

3 4	251	demonstrated a powerful new methodology for monitoring pregnancy progression and
5 6 7	252	identifying abnormal pregnancies.
8 9	253	Clinical and Research Implications
10 11 12	254	The potential clinical utility of developing a test for pregnancy monitoring is appealing.
13 14	255	There is a need to develop a more robust method than LMP and US that captures
15 16 17	256	pregnancy progression, a complex relationship of fetal and placental growth,
18 19	257	development, and function. To support these processes, there is a need for energy transfer
20 21	258	between mother and fetus throughout gestation. We therefore reasoned that metabolic
22 23	259	phenotyping would be ideally suited to capture this relationship. Despite a modest cohort
24 25 26	260	size, the results of metabolic modeling demonstrate a high degree of concordance with
27 28	261	clinical standard US dating performed by experts as reflected by 66.7% of model
29 30	262	estimates falling within ± 1 week of US results (Fig. A.4). Moreover, unlike the
31 32	263	deterioration experienced with US dating of pregnancy, metabolic modeling was shown
33 34 35	264	to achieve near equivalent performance in the 1 st , 2 nd , and 3 rd trimesters, indicating the
36 37	265	potential for broad clinical applicability that might achieve independence of reliance on
38 39	266	accuracy of LMP or concordance among modality testing. The result of PTB prediction is
40 41 42	267	equally robust demonstrating a high degree of precision. Beyond relying on clinical
43 44	268	histories or self-reported symptoms, the model proposed here provides a molecular
45 46	269	classification that may be more accurate than current methods and further reflect a
47 48	270	comprehensive measure of aberrant pregnancy based on metabolic changes. In practice,
49 50 51	271	clinicians could use the PTB prediction model to differentiate high- from low-risk
52 53	272	patients. Low risk patients would then be subject to GA estimation panel testing, all from
54 55 56	273	the same blood draw.
57		

1	
2	
3	
4	
5	
6	
7	
/ 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
54	
55	
55	
50	
5/	
20	
59	
60	

274	A distinct advantage of the PTB risk prediction developed in this study is that it has a
275	wide window of sampling. Samples were collected broadly before 35 weeks' GA, which
276	is wider than the window of other well-established biomarkers such as fetal fibronectin
277	(between 24 and 34 weeks' GA) ¹³ , IBP4/SHBG (19 to 21 weeks) ¹² , and inter-alpha-
278	trypsin inhibitor heavy chain 4 protein (24 and 28 weeks) ¹¹ . Relatively stable AUC
279	levels were maintained throughout the diagnostic window (Text A.2). The insensitivity of
280	the prediction model to GA at testing increases its flexibility and opportunity for potential
281	clinical use. An additional advantage of the model herein is the ability for early
282	identification of high-risk women. Although there is no standardized guideline for early-
283	gestation management of patients at risk of PTB delivery, metabolic modeling for PTB
284	risk may provide a not previously possible opportunity for early gestation risk mitigation.
285	Clinical trials have suggested that hormone treatment and maternal physical activity
286	modifications applied between 16 to 37 weeks' GA reduced the PTB rate of women who
287	were deemed at high risk due to a history of prior PTB delivery ^{20 21} . In many cases PTB
288	can not be prevented, however any opportunity is deemed highly desirable for even a
289	modest delay (1–2 weeks) in PTB or an enhanced ability to more accurately triage for
290	delivery to centers with the capability to manage profoundly premature neonates ²²⁻²⁴ .
291	This study is among the first to propose a pathway-based computational methodology to
292	estimate GA and predict PTB. Metabolic pathways are linked to chemical functions, and
293	the alteration or disruption of specific functions participate in disease phenotypes,
294	facilitating the use of pathways to function as higher-level biomarkers of diseases ²⁵ . The
295	role of metabolic pathways in disease diagnosis has been explored in several preliminary
296	clinical studies ^{26 27} . Pathway performance in differentiating patients with disease from

BMJ Open

healthy controls has been found to be effective compared to using individual metabolites ²⁷. Similarly, we found the pathway-based models had less variability and higher sensitivity than metabolite-based models that were developed using the same population. One plausible explanation for this observation may be attributed to the calculation of pathway values, which represents the sum of individual metabolites and thus may amplify association to outcome relationships. This hypothesis is supported by the FDR comparison (Fig. A.7 and A.8): pathway-based analysis had lower FDR values than metabolite models. This study adds to the exploration of the feasibility of using pathways for health monitoring and prediction.

306 Limitations

This study has several limitations. First, the overall cohort size was modest. Second, blood samples were collected in a non-uniform manner with respect to GA timing and time of day. The time between two adjacent samples corresponding to the same patient varied. Third, the distribution of samples throughout pregnancy were different between patients and cohorts. In the SU cohort, none of the full-term patients had samples collected between 30 and 37 weeks. In the UAB cohort, none of the full-term patients had sampling in the 1st trimester, and none of the PTB patients had sampling in the 3rd trimester. Fourth, for methodologic reasons, not all serum analytes could be identified and mapped to known metabolites. Fifth, the study was retrospective, and the participants were solely from California and Alabama. A larger prospective cohort study is necessary before applying the estimates and prediction to a broader population for clinical utility. **CONCLUSION**

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
14	
14	
15	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
32 33	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
70 /0	
49 50	
50 E 1	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

319 The present study demonstrates that maternal serum based metabolic profiling is a highly 320 sensitive and accurate method for determining GA and prediction of PTB. The pathway-321 based analysis supports the hypothesis of the orderly metabolic progression of pregnancy 322 that can be reproducibly captured using metabolic profiling. The robustness of the 323 modeling reinforces the potential appeal for further clinical development and as a 324 platform to investigate the pathophysiology associated with aberrant fetal development .s study termination of 325 and pregnancy progression. This study is the first to report a single blood test for 326 metabolic pathway-based determination of GA dating, and early detection of PTB risk.

BMJ Open

2			
3 4	328	Acknowledgments: The authors thank colleagues at the Stanford University Pediatric	
5 6	329	Proteomics group and the March of Dimes Prematurity Research Center at Stanford	
7 8 9	330	University for critical discussions.	
10 11 12	331	Funding: This work was supported in part by the March of the Dimes Prematurity	
12 13 14	332	Research Center at Stanford University, and Stanford Child Health Research Institute.	
15 16	333	The funders had no role in study design, data collection and analysis, decision to publi	sh,
17 18 19	334	or preparation of the manuscript.	
20 21 22	335	Conflict of Interest: The authors report no conflict of interest.	
22 23 24	336	Author contributions: XBL, KGS, and HJC contributed to concept development and	
25 26 27	337	design.	
28 29	338	JY, RJW, and DKS contributed to the acquisition of data.	
30 31 32	339	KGS, SH, LZ, XY, LT, LM, SL, RJW, GMS, DKS, JCW and DBM contributed to the	;
33 34	340	analysis and interpretation of data.	
35 36 37	341	KGS and SH drafted the manuscript.	
38 39 40	342	JY, LZ, LT, XY, LM, SL, RJW, GMS, DKS, HJC, JCW, DBM, and XBL critically	
41 42	343	revised the manuscript.	
43 44 45	344	All the authors gave final approval of the version to be submitted and agreed to be	
46 47	345	accountable for all aspects of the work.	
48 49 50	346	Data and materials availability: The datasets used and/or analyzed in this study are	
51 52 53	347	available upon request to the corresponding author.	
54 55	348		
56 57 58			10
59			10
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

3	349	References
4	350	1 Brownfoot FC Gagliardi DI Bain E et al Different corticosteroids and regimens
5	351	for accelerating fetal lung maturation for women at risk of preterm birth
6 7	352	Cochrane Database Syst Rev 2013(8):CD006764 doi:
7 8	352	10 1002/14651858 CD006764 pub3
9	353 354	2 Raiu TN Marcar BM Burchfield DI at al Pariviable hirth: executive summary of a
10	255	Loint Workshop by the Funice Konnedy Shriver National Institute of Child
11	333 256	Joint Workshop by the Eunice Kennedy Shriver National Institute of Child
12	350	Health and Human Development, Society for Maternal-Fetal Medicine,
13	357	American Academy of Pediatrics, and American College of Obstetricians and
14	358	Gynecologists. Journal of perinatology : official journal of the California
15	359	Perinatal Association 2014;34(5):333-42. doi: 10.1038/jp.2014.70
16 17	360	3. Vohr B. Long-term outcomes of moderately preterm, late preterm, and early term
17	361	infants. <i>Clin Perinatol</i> 2013;40(4):739-51. doi: 10.1016/j.clp.2013.07.006
10	362	4. Pereira AP, Dias MA, Bastos MH, et al. Determining gestational age for public
20	363	health care users in Brazil: comparison of methods and algorithm creation.
21	364	BMC Res Notes 2013;6:60. doi: 10.1186/1756-0500-6-60
22	365	5. Peek MJ, Devonald KJ, Beilby R, et al. The value of routine early pregnancy
23	366	ultrasound in the antenatal booking clinic. Aust N Z J Obstet Gynaecol
24	367	1994;34(2):140-3.
25	368	6. Jehan I, Zaidi S, Rizvi S, et al. Dating gestational age by last menstrual period,
20 27	369	symphysis-fundal height, and ultrasound in urban Pakistan. International
27	370	iournal of avnaecoloav and obstetrics: the official organ of the International
29	371	Federation of Gynaecology and Obstetrics 2010:110(3):231-4. doi:
30	372	10 1016/i jigo 2010 03 030
31	372	7 Knight AK Craig IM Theda C et al An enigenetic clock for gestational age at hirth
32	373	hased on blood methylation data <i>Canoma hiology</i> 2016:17(1):206 doi:
33	375	$101186/c12050_016_1068_7$
34 25	276	8 Ngo TTM Moufarrai MN Pacmuscan MH at al Naninyasiya blood tasts for fatal
36	370 277	development predict gestational age and preterm delivery. Science
37	377	2010-200((202),1122, 20, doi: 10.1120/aging or 2010
38	3/8	2018;360(6393):1133-36. doi: 10.1126/science.aar3819
39	3/9	9. Agnaeepour N, Lenailler B, Baca Q, et al. A proteomic clock of human pregnancy.
40	380	American journal of obstetrics and gynecology 2018;218(3):347 e1-47 e14.
41	381	doi: 10.1016/j.ajog.2017.12.208
42	382	10. Aghaeepour N, Ganio EA, McIlwain D, et al. An immune clock of human
43	383	pregnancy. <i>Sci Immunol</i> 2017;2(15) doi: 10.1126/sciimmunol.aan2946
44 15	384	11. Esplin MS, Merrell K, Goldenberg R, et al. Proteomic identification of serum
45 46	385	peptides predicting subsequent spontaneous preterm birth. American journal
47	386	of obstetrics and gynecology 2011;204(5):391 e1-8. doi:
48	387	10.1016/j.ajog.2010.09.021
49	388	12. Saade GR, Boggess KA, Sullivan SA, et al. Development and validation of a
50	389	spontaneous preterm delivery predictor in asymptomatic women. American
51	390	journal of obstetrics and gynecology 2016;214(5):633 e1-33 e24. doi:
52	391	10.1016/i.ajog.2016.02.001
53 54	392	13. Peaceman AM, Andrews WW. Thorp IM, et al. Fetal fibronectin as a predictor of
54 55	393	preterm hirth in patients with symptoms: a multicenter trial <i>American</i>
55	394	journal of obstetrics and avnecology 1997.177(1).13-8
57	ЭЛТ	journal of obstatics and gynacology 1997,177 (1).15-0.
58		19
59		

1		
2 3	205	14 Strauce IE 2rd Domoro D. Comoz I opoz N. et al Spontaneous protorm birth
4	206	14. Strauss JF, STU, Komero K, Gomez-Lopez N, et al. Spontaneous preter in birth:
5	207	obstatrics and gunacology 2018;218(2):204-214 of doi:
6	200	101016 /j giog 2017 12 000
/	390	10.1010/J.dj0g.2017.12.009
ð	399	15. Virginou C, Gika HG, Witting M, et al. Ammould Fluid and Maternal Serum
10	400	Metabolic Signatures in the Second Trimester Associated with Preterm
11	401	Delivery. Journal of proteome research 2017;16(2):898-910. doi:
12	402	10.1021/acs.jproteome.6b00845
13	403	16. Li J, Lu YP, Reichetzeder C, et al. Maternal PCaaC38:6 is Associated With Preterm
14	404	Birth - a Risk Factor for Early and Late Adverse Outcome of the Offspring.
15	405	<i>Kidney Blood Press Res</i> 2016;41(3):250-7. doi: 10.1159/000443428
10 17	406	17. Dunn WB, Broadhurst D, Begley P, et al. Procedures for large-scale metabolic
17	407	profiling of serum and plasma using gas chromatography and liquid
19	408	chromatography coupled to mass spectrometry. <i>Nat Protoc</i> 2011;6(7):1060-
20	409	83. doi: 10.1038/nprot.2011.335
21	410	18. Sumner LW, Amberg A, Barrett D, et al. Proposed minimum reporting standards
22	411	for chemical analysis Chemical Analysis Working Group (CAWG)
23	412	Metabolomics Standards Initiative (MSI). <i>Metabolomics</i> 2007;3(3):211-21.
24 25	413	doi: 10.1007/s11306-007-0082-2
25	414	19. Martin JA, Hamilton BE, Osterman MJ, et al. Births: final data for 2013. <i>Natl Vital</i>
27	415	Stat Rep 2015;64(1):1-65.
28	416	20. Meis PJ, Klebanoff M, Thom E, et al. Prevention of recurrent preterm delivery by
29	417	17 alpha-hydroxyprogesterone caproate. The New England journal of
30	418	medicine 2003;348(24):2379-85. doi: 10.1056/NEJMoa035140
31	419	21. Evenson KR, Siega-Riz AM, Savitz DA, et al. Vigorous leisure activity and
32 33	420	pregnancy outcome. <i>Epidemiology</i> 2002;13(6):653-9. doi:
34	421	10.1097/01.EDE.0000021463.45041.95
35	422	22. McIntire DD, Leveno KJ. Neonatal mortality and morbidity rates in late preterm
36	423	births compared with births at term. <i>Obstetrics and gynecology</i>
37	424	2008;111(1):35-41. doi: 10.1097/01.AOG.0000297311.33046.73
38	425	23. Henderson-Smart DI. The effect of gestational age on the incidence and duration
39 40	426	of recurrent appoea in newborn babies. Aust Paediatr J 1981:17(4):273-6.
40 41	427	24. Khashu M. Narayanan M. Bhargaya S. et al. Perinatal outcomes associated with
42	428	preterm birth at 33 to 36 weeks' gestation: a population-based cohort study.
43	429	<i>Pediatrics</i> 2009:123(1):109-13. doi: 10.1542/neds.2007-3743
44	430	25. Lee DS. Park I. Kay KA, et al. The implications of human metabolic network
45	431	topology for disease comorbidity. Proceedings of the National Academy of
46	432	Sciences of the United States of America 2008:105(29):9880-5 doi:
47 79	433	10 1073/nnas 0802208105
40	434	26 Baumgartner C Bohm C Baumgartner D et al Supervised machine learning
50	435	techniques for the classification of metabolic disorders in newborns
51	435	<i>Bioinformatics</i> 2004:20(17):2085-96. doi: 10.1093/bioinformatics/bth343
52	430 1/27	27 Huang S Chong N Lewis NF et al Novel personalized nathway-based
53	437	27. Intally 5, Choird N, Lewis NE, et al. Novel personalized pathway-based
54	400	diagnosis Canoma madicina 2016.9(1).24 doi: 10.1196/c12072.016.0200.0
22 56	437 110	ulagilosis. denome medicine 2010;0(1):54. dol: 10.1100/\$150/5-010-0289-9
57	440	
58		20
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
7	
8	
0	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
21	
21	
2∠ 22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
22	
54	
55 56	
50	
5/	
58	
59	
60	

1

441 Figure Legends

442 Fig. 1. Study design. Models were developed separately to estimate gestational age443 during full-term pregnancy, and to predict the risk of preterm birth. Both models were

444 developed with the SU cohort and validated with the UAB cohort.

445 Fig. 2. Cohort construction. Each line represents an individual patient. Diamond and

446 triangle markers indicate sample collection dates and delivery dates, respectively. The red

447 dashed line represents 37 weeks' gestational age.

448 **Fig. 3.** The importance of the top 10 metabolic pathways in the gestational age estimation

449 model. Pathways either positively or negatively correlated gestational age.

450 Fig. 4. Gestational age estimates of the gestational age model with the SU ($R^2=0.98$,

451 RMSE=1.09 weeks) and UAB cohorts ($R^2 = 0.81$, RMSE = 2.36 weeks).

452 Fig. 5. (A) Univariate analysis of the 10 metabolic pathways in the preterm birth

453 prediction model. Odds ratio of each pathway was calculated. *P < 0.05, **P < 0.01,

454 ***P<0.005. (B) The importance of the metabolic pathways in the preterm birth

455 prediction model. Pathways were either up- or down-regulated in relation to preterm birth.

456 Fig. 6. (A) Prediction of preterm birth risk grouped by full-term and preterm birth

457 patients (top) and over the course of gestation (bottom). (B) AUC performance of the

458 prediction in SU and UAB cohorts. *P* was calculated using Mann–Whitney U test. wks:

459 weeks' gestational age.

460 Fig. 7. Performance of the preterm birth prediction model. (A) A contingency table
461 showing the number of samples in each category. (B) Sensitivity, specificity, PPV, and
462 NPV together with the 95% confidence intervals.

BMJ Open

2 3 4	463	Appendix Captions	
5 6 7	464	Fig. A.1 False discovery rate (FDR) analysis of the metabolic pathways significantly	
8 9	465	associated with the GA in full-term pregnancies. Pearson $ \mathbf{r} $ was calculated as the	
10 11 12	466	correlation between metabolite serological abundance and GA. Only the metabolites wit	h
12 13 14	467	a Pearson $ \mathbf{r} $ higher than the threshold would be selected as part of the significant	
15 16	468	pathways. FDR was estimated by a permutation-based method (permutation N=1000).	
17 18 19	469	Fig. A.2 Profile of the metabolic pathways in the GA estimation model over the course of	of
20 21	470	gestation on SU cohort. All pathways are (A) positively or (B) negatively correlated to	
22 23 24	471	the GA (FDR<1%). Profile of each pathway was calculated as the weighted sum of the z	ː-
24 25 26	472	score normalized metabolite serological abundances divided by the number of	
27 28	473	metabolites. Means \pm standard errors at each time point were plotted.	
29 30 31	474	Fig. A.3 Univariate analysis of the 33 metabolic pathways in the GA estimation model.	
32 33	475	Pearson correlation coefficient of each pathway to GA was calculated. $*P < 0.05$,	
34 35 36	476	** <i>P</i> <0.01, *** <i>P</i> <0.005.	
37 38	477	Fig. A.4 Comparison of GA estimates using the model and US measurements. (A)	
39 40 41	478	Distributions of differences between GA measured by US and GA estimated by the	
42 43	479	model, in T2 (weeks 14–27), T3 (weeks 28–40), and T2+T3. n represents the number of	
44 45	480	full-term patients included. (B) Error distribution of GA estimation on a combination of	
46 47 48	481	SU and UAB cohorts in T2, T3, and T2+T3.	
49 50	482	Fig. A.5 False discovery rate (FDR) analysis of the metabolic pathways significantly	
51 52	483	associated with PTB. Mann-Whitney U test P measured the difference in metabolite	
55 55	484	serological abundances between full-term pregnancies and pregnancies ending in PTB.	
56 57 58 59		2	22

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

485 Only metabolites with a Mann-Whitney U test *P* lower than the threshold were selected 486 as part of the significant pathways. FDR was estimated by a permutation-based method 487 (permutation N=1000).

Fig. A.6 Stratification of patients by the classification model prediction on the UAB cohort. PPV was corrected by bootstrapping the full-term patients to reach the population PTB prevalence of 9.71% on singleton births. Two horizontal dashed lines represent the population mean of PTB risk that is 9.71% (black) and the PPV (= 0.61; red) at the high-risk cutoff. The grey dashed line indicates the high-risk cutoff value (= 0.52). The grey area represents the 95% confidence interval of the PPV. The box plot at the bottom shows the classification model value distribution stratified by the samples. GAB: GA at birth. wks: weeks of gestation.

Fig. A.7 (A) False discovery rate (FDR) analysis of the metabolites and metabolic pathways significantly associated with GA in full-term pregnancies. Pearson |r| was calculated as the correlation between metabolite serological abundance and GA. Only the metabolites with a Pearson $|\mathbf{r}|$ higher than the threshold (=0.35) would be selected as part of the significant pathways. FDR was estimated by a permutation-based method (permutation N=1000). (B) A comparison of RMSE of the GA estimation model trained by pathways and the model trained by metabolites. All metabolites had a Pearson $|\mathbf{r}| > 0.35$. RMSE was measured with the full-term samples of the validation (UAB) cohort. Fig. A.8 (A) False discovery rate (FDR) analysis of the metabolites and metabolic pathways significantly associated with the PTB. Mann-Whitney U test P measured the difference in metabolite serological abundances between full-term pregnancies and pregnancies ending in PTB. Only the metabolites with a Mann-Whitney U test P lower

1 ว

BMJ Open

than the threshold (=0.05) would be selected as part of the significant pathways. FDR was

estimated by a permutation-based method (permutation N=1000). (B) A comparison of

the AUC of the PTB classification model utilizing pathways and the model utilizing

Table A.1 Sensitivity and specificity of the XGBoost model with respect to the cutoff

Text A.1 Metabolic compound selection, pathway computation, and model development

metabolites. All the metabolites had a Mann-Whitney U test P < 0.05. AUC was

measured with the samples of the validation (UAB) cohort.

2 3	508
4 5	500
6 7	509
8	510
9 10 11	511
12 13	512
14 15 16	513
17 18	514
19 20 21	515
22 23 24	516
25 26	
27 28	
29 30	
31 32	
33 34	
35 36	
37 38	
39 40	
41	
42 43	
44 45	
46 47	
48 49	
50	
51	
53 54	
55 56	
50 57	
58 50	

60

point.

Text A.2 Metabolite model vs. IBP4/SHBG in predicting PTB

A. Study cohort	

SU Cohort 20 full-term, 16 preterm	UAB Cohort 9 full-term, 13 preterm
B. To estimate GA for full-term preg	
Development	Validation
SU full-term	SU preterm
A GA estimation model	UAB full-term and preterm
C. To identify women at risk of PTB	
Development	Validation
SU full-term and preterm ↓ A classification model ————	→ UAB full-term and preterm

Study design. Models were developed separately to estimate gestational age during full-term pregnancy, and to predict the risk of preterm birth. Both models were developed with the SU cohort and validated with the UAB cohort.

254x190mm (300 x 300 DPI)

Cohort construction. Each line represents an individual patient. Diamond and triangle markers indicate sample collection dates and delivery dates, respectively. The red dashed line represents 37 weeks' gestational age.

254x190mm (300 x 300 DPI)

(A) Univariate analysis of the 10 metabolic pathways in the preterm birth prediction model. Odds ratio of each pathway was calculated. *P<0.05, **P<0.01, ***P<0.005. (B) The importance of the metabolic pathways in the preterm birth prediction model. Pathways were either up- or down-regulated in relation to preterm birth.

254x190mm (300 x 300 DPI)

AUC of SU: 0.96

AUC of UAB: 0.92

0.2 0.4 0.6 0.8

False Positive Rate

1.0

(0.82-1)

(0.91-1)

0.2 0.4 0.6 0.8 1.0

1	
2	
3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
27	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
/2	
44 45	
45	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	

60

В

Cohort	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)
SU	0.88 (0.71-0.97)	0.96 (0.87-1)	0.93 (0.78-0.99)	0.93 (0.83-0.98)
UAB	0.86 (0.65-0.97)	0.92 (0.64-1)	0.95 (0.75-1)	0.80 (0.52-0.96)

Performance of the preterm birth prediction model. (A) A contingency table showing the number of samples in each category. (B) Sensitivity, specificity, PPV, and NPV together with the 95% confidence intervals.

254x190mm (300 x 300 DPI)

Fig. A.1. False discovery rate (FDR) analysis of the metabolic pathways significantly associated with the GA in full-term pregnancies. Pearson $|\mathbf{r}|$ was calculated as the correlation between metabolite serological abundance and GA. Only the metabolites with a Pearson $|\mathbf{r}|$ higher than the threshold would be selected as part of the significant pathways. FDR was estimated by a permutation-based method (permutation N=1000).

Fig. A.2. Profile of the metabolic pathways in the GA estimation model over the course of gestation on SU cohort. All pathways are (A) positively or (B) negatively correlated to the GA (FDR<1%). Profile of each pathway was calculated as the weighted sum of the z-score normalized metabolite serological abundances divided by the number of metabolites. Mean \pm standard error of the mean at each time point was plotted.

Fig. A.3. Univariate analysis of the 33 metabolic pathways in the GA estimation model.

Pearson correlation coefficient r of each pathway to GA was calculated. *P < 0.05,

P*<0.01, *P*<0.005.

Trimester and subject number	Δ [model estimation – ultrasound measurements (weeks)] (%)				
	< -2	-1 to -2	±1	+1 to +2	>+2
SU (T2, n = 19)	0	0	84.2	15.8	0
SU (T3, n = 8)	12.5	25	50	12.5	0
SU (All, n = 20)	0	5	85	10	0
UAB (T2, n = 5)	0	0	60	0	40
UAB (T3, n = 5)	20	0	80	0	0
UAB (All, n = 9)	11.1	0	66.7	11.1	11.1
SU and UAB (T2, n = 24)	0	0	79.2	12.5	8.3
SU and UAB (T3, n = 13)	15.4	15.4	61.5	7.7	0
SU and UAB (All, n = 29)	3.4	3.4	79.3	10.3	3.4

Fig. A.4. Comparison of GA estimates using the model and US measurements. (A) Distributions of differences between GA measured by US and GA estimated by the model, in T2 (weeks 14–27), T3 (weeks 28–40), and T2+T3. n represents the number of full-term patients included. (B) Error distribution of GA estimation on a combination of SU and UAB cohorts in T2, T3, and T2+T3.

Fig. A.5. False discovery rate (FDR) analysis of the metabolic pathways significantly associated with PTB. Mann-Whitney U test *P* measured the difference in metabolite serological abundances between full-term pregnancies and pregnancies ending in PTB. Only metabolites with a Mann-Whitney U test *P* lower than the threshold were selected as part of the significant pathways. FDR was estimated by a permutation-based method (permutation N=1000).

2.

Fig. A.6. Stratification of patients by the classification model prediction on the UAB cohort. PPV was corrected by bootstrapping the full-term patients to reach the population PTB prevalence of 9.71% on singleton births. Two horizontal dashed lines represent the population mean of PTB risk that is 9.71% (black) and the PPV (= 0.61; red) at the high-risk cutoff. The grey dashed line indicates the high-risk cutoff value (= 0.52). The grey area represents the 95% confidence interval of the PPV. The box plot at the bottom shows the classification model value distribution stratified by the samples. GAB: gestational age at birth. wks: weeks' GA.

Fig. A.7. (A) False discovery rate (FDR) analysis of the metabolites and metabolic pathways significantly associated with the GA in full-term pregnancies. Pearson $|\mathbf{r}|$ was calculated as the correlation between metabolite serological abundance and GA. Only the metabolites with a Pearson $|\mathbf{r}|$ higher than the threshold (=0.35) would be selected as part of the significant pathways. FDR was estimated by a permutation-based method (permutation N=1000). (B) A comparison of RMSE of the GA estimation model trained by pathways and the model trained by metabolites. All metabolites had a Pearson $|\mathbf{r}|>0.35$. RMSE was measured with the full-term samples of the validation (UAB) cohort.

Fig. A.8. (A) False discovery rate (FDR) analysis of the metabolites and metabolic pathways significantly associated with the PTB. Mann-Whitney U test *P* measured the difference in metabolite serological abundances between full-term pregnancies and pregnancies ending in PTB. Only the metabolites with a Mann-Whitney U test *P* lower than the threshold (=0.05) would be selected as part of the significant pathways. FDR was estimated by a permutation-based method (permutation N=1000). (B) A comparison of the AUC of the preterm birth classification model utilizing pathways and the model utilizing metabolites. All the metabolites had a Mann-Whitney U test *P* < 0.05. AUC was measured with the samples of the validation (UAB) cohort.

Table A.1. Sensitivity and specificity of the XGBoost model with respect to the cutoff
point.

Cutoff	Cohort	Sensitivity	Specificity	Number of preterm samples identified by the model
0.4	SU	0.94	0.78	30
0.4	UAB	0.95	0.31	21
0.5	SU	0.88	0.94	28
0.5	UAB	0.86	0.85	19
0.6	SU	0.81	0.98	26
0.6	UAB	0.59	1	13
0.7	SU	0.53	0.98	17
0.7	UAB	0.32	1	7

Text A.1 Metabolic compound selection, pathway computation, and model development

GA estimation

Metabolites measured by targeted and untargeted MS were aggregated and filtered using Pearson correlation coefficient analyses in relation to GA. The remaining metabolites were mapped to pathways. The value of each pathway was calculated as the weighted sum of the normalized concentrations of metabolites on the pathway divided by the number of metabolites. The weight of each metabolite was the absolute value of the Pearson correlation coefficient in relation to GA. Metabolites having positive or negative coefficients were aggregated separately. That is, a pathway could have two values, one for metabolites positively correlated to GA, and the other for those negatively correlated to GA.

A supervised, cross-validated machine-learning technique XGBoost was developed with the pathway values of samples from full-term patients in the SU cohort. An ensemble of regression trees was generated to give a score estimating the GA. The model was validated on the UAB cohort. For a patient that had multiple samples, an 'integrated' GA estimate was calculated by shifting the GA estimates of every sample to a reference point for obtaining the median. Error distribution of GA estimation based on patients was calculated as the distribution of the differences between the 'integrated' GA estimates and the US measurement.

PTB prediction

Samples collected before 35 weeks' GA were selected to build the model to predict PTB. Mann–Whitney U test was used to select the initial candidate metabolites that were then mapped to pathways. The value of each pathway was calculated as the weighted sum of the normalized concentrations of metabolites on the pathway divided by the number of metabolites. The weight of each metabolite was the absolute value of the ratio of median of full-term samples to PTB samples. Like the GA estimation, pathways could have two values that depended on the ratio of median greater or less than 1. An XGBoost model was developed utilizing samples from the SU cohort and validated with the UAB cohort.

Text A.2 Metabolite model vs. IBP4/SHBG in predicting PTB

We conducted ELISA tests to evaluate the IBP4/SHBG signature, a predictor that was validated in a prospective study as a predictor of spontaneous PTB. Commercial kits Human IGFBP4 ELISA Kit (Abcam, Burlingame, CA, USA) and Human SHBG Quantikine ELISA Kit (R&D System Inc.) were used. AUC of the predictor was calculated in different GA intervals and with different maternal BMI values, and was compared to the performance of the metabolic model.

With a BMI of >22 and \leq 37 kg/m², the AUC values of the IBP4/SHBG predictor peaked at 15–20 weeks' GA (SU: 0.833; UAB: 1), and dropped rapidly after 20 weeks (Figure A below). The AUC values were lower with extreme BMI (0.7 at BMI \leq 20 kg/m² and 0.63 at BMI >27 kg/m²; see Figure B below). These findings are consistent with the previous validation study. Compared with the IBP4/SHBG predictor, the metabolic model has a more stable AUC performance over the gestation and different BMI values in SU (*P* = 0.03). In UAB at >18 weeks' GA, the AUC of IBP4/SHBG dropped from 0.6 to 0.3, while the AUC of the metabolic model was above 0.8.

Figure. The performance of the IBP4/SHBG predictor and the metabolic model. The results are stratified by the GA intervals with a BMI at $22-37 \text{ kg/m}^2$ (A), and by BMI values with a GA interval of 5–20 weeks (B).

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what	2-3
		was done and what was found	2.5
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	5
Buenground/Infolute	2	reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			1
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting locations and relevant dates including periods of	67
	C C	recruitment, exposure, follow-up, and data collection	0,7
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods	6,7
I I I I I I		of selection of participants. Describe methods of follow-up	- , .
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale for	
		the choice of cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number	
		of exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	6,7,8
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7,8
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	8
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was	
		addressed	
		Case-control study—If applicable, explain how matching of cases and	
		controls was addressed	
		Cross-sectional study—If applicable, describe analytical methods taking	
		account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	8

Continued on next page

Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing	
		follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	
		Case-control study-Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	
		applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

A metabolic clock as noninvasive blood tests of preterm birth and for gestational age assessment: a two-center retrospective study in the US

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-040647.R1
Article Type:	Original research
Date Submitted by the Author:	19-Oct-2020
Complete List of Authors:	Sylvester, Karl; Stanford University Hao, Shiying; Stanford University You, Jin; Stanford University Zheng, Le; Stanford University Tian, Lu; Stanford University Yao, Xiaoming; West China Hospital of Medicine Mo, Lihong; University of California San Francisco Fresno Center for Medical Education and Research Ladella, Subhashini; University of California San Francisco Fresno Center for Medical Education and Research Wong, Ronald; Stanford University Shaw, Gary M.; Stanford University Stevenson, David; Stanford University Cohen, Harvet; Stanford University Whitin, John; Stanford University McElhinney, Doff ; Stanford University,
Primary Subject Heading :	Obstetrics and gynaecology
Secondary Subject Heading:	Paediatrics
Keywords:	Health informatics < BIOTECHNOLOGY & BIOINFORMATICS, Risk management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, OBSTETRICS
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	1	A metabolic clock as noninvasive blood tests of preterm birth and for
5 6	2	gestational age assessment: a two-center retrospective study in the US
7	3	Karl G. SYLVESTER, MD ^{1*†} , Shiying HAO, PhD ^{2,3*} , Jin YOU, PhD ^{1*} , Le ZHENG,
9	4	PhD ^{2,3} , Lu TIAN ⁴ , Xiaoming YAO, MD, PhD ⁵ , Lihong MO, MD ⁶ , Subhashini
10 11	5	LADELLA, MD ⁶ , Ronald J. WONG, BA ⁷ , Gary M. SHAW, DrPh ⁷ , David K.
12 13	6	STEVENSON, MD ⁷ , Harvey J. COHEN, MD, PhD ⁷ , John C. WHITIN, PhD ⁷ , Doff B.
14	7	MCELHINNEY, MD ^{2,3} , Xuefeng B. LING, PhD ^{1,3†}
15 16	8	
17 18	9	¹ Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
19	10	² Department of Cardiothoracic Surgery, Stanford University School of Medicine.
20 21	11	Stanford CA USA
22 23	12	³ Clinical and Translational Research Program Betty Irene Moore Children's Heart Center
24	13	Lucile Packard Children's Hospital Palo Alto CA USA
25 26	14	⁴ Department of Health Research and Policy Stanford University Stanford CA USA
27 28	15	⁵ Translational Medicine Laboratory West China Hospital Chengdy China
29	15	⁶ Department of Obstatrics and Gynacology, University of California San Francisco
30 31	10	Eragna Eragna CA USA
32 33	17	7Denortherent of Dedictories. Steadend University Selection (Medicine, Steadend, CA, USA)
34	18	Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
35 36	19 20	[†] Correspondence: Xuefeng B. Ling, Department of Surgery, Stanford University,
37	21	bxling@stanford.edu; Karl G. Sylvester, Department of Surgery, Stanford University,
30 39	22	karls@stanford.edu
40	23 24	Co-first authors
41 42	24 25	Word count: 293 for Abstract: 3508 for Main text
43		
44		
45 46		
47		
48		
49 50		
50 51		
52		
53		
54		
55 56		
57		
58		1
59		For poor roviow only, http://bmiopon.hmi.com/cita/about/quidalines.yhtml
60		For peer review only - http://binjopen.binj.com/site/about/guidelines.xhtfll

60

BMJ Open

1		
2	26	
4	26	ABSTRACT
5 6 7	27	Objectives The aim of this study was to develop a single blood test that could determine
8 9	28	gestational age and estimate the risk of preterm birth by measuring serum metabolites.
10 11 12	29	We hypothesized that serial metabolic modeling of serum analytes throughout pregnancy
13 14	30	could be used to describe fetal gestational age and project preterm birth with a high
15 16	31	degree of precision.
17 18 19	32	Study design A retrospective cohort study
20 21 22	33	Setting Two medical centers from US
23 24 25	34	Participants Thirty-six patients (20 full-term, 16 preterm) enrolled at Stanford
26 27	35	University were used to develop gestational age and preterm birth risk algorithms, 22
28 29	36	patients (9 full-term, 13 preterm) enrolled at the University of Alabama were used to
30 31 32	37	validate the algorithms.
33 34	38	Outcome measures Maternal blood was collected serially throughout pregnancy.
35 36 37	39	Metabolic datasets were generated using mass spectrometry.
38 39	40	Results A model to determine gestational age was developed ($R^2 = 0.98$) and validated
40 41 42	41	($R^2 = 0.81$). 66.7% of the estimates fell within ± 1 week of ultrasound results during
43 44	42	model validation. Significant disruptions from full-term pregnancy metabolic patterns
45 46	43	were observed in preterm pregnancies ($R^2 = -0.68$). A separate algorithm to predict
47 48 49	44	preterm birth was developed utilizing a set of 10 metabolic pathways that resulted in an
50 51	45	area under the curve of 0.96 and 0.92, a sensitivity of 0.88 and 0.86, and a specificity of
52 53 54 55 56 57	46	0.96 and 0.92 during development and validation testing, respectively.

2
3
4
5
6
6
7
8
9
10
11
11
12
13
14
15
16
10
17
18
19
20
21
22
22
23
24
25
26
27
27
28
29
30
31
32
22
22
34
35
36
37
38
20
39
40
41
42
43
44
 / -
45
46
47
48
49
50
50
51
52
53
54
55
55
50
57
58
59

47	Conclusions In this study metabolic profiling was used to develop and test a model for
48	determining gestational age during full-term pregnancy progression, and to determine
49	risk of preterm birth. With additional patient validation studies, these algorithms may be
50	used to identify at-risk pregnancies prompting alterations in clinical care, and to gain
51	biologic insights into the pathophysiology of preterm birth. Metabolic pathway-based
52	pregnancy modeling is a novel modality for investigation and clinical application
53	development.
54	Keywords: Metabolic, gestational age, preterm birth, pathway
55	

59

2 3 4	56	Strengths and limitations of this study
5 6 7	57	• The insensitivity of the prediction model to gestational age (GA) window of sample
8 9	58	collection increases its flexibility and opportunity for potential clinical use.
10 11	59	• This study is among the first to propose a pathway-based computational methodology
12 13 14	60	to estimate GA and predict preterm birth.
15 16	61	• The overall cohort size is modest, and the distribution of sampling time are different
17 18	62	between patients and cohorts.
20 21	63	• It is a retrospective study; a larger prospective cohort study is necessary before
22 23	64	applying the estimates and prediction to a broader population for clinical utility.
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58		4

65 INTRODUCTION

Gestational age (GA) dating is a core element of standard prenatal care ¹⁻⁴. Prenatal ultrasound (US) is an established modality for estimating GA, monitoring fetal growth, and screening for fetal anomalies ⁵. According to the policy statement of the Committee on Obstetric Practice, the American Institute of Ultrasound in Medicine, and the Society for Maternal-Fetal Medicine, a pregnancy is considered optimally dated through a combination of last menstrual period (LMP) and an accurate US obtained prior to 22 0/7 weeks ⁶. Accordingly, LMP is dependent on maternal recall and many pregnancies do not present for a first prenatal US evaluation until the second or third trimester. Thus, there is a need for a molecular method that would complement the potential shortcomings of LMP recall and US dating outside the first trimester. Moreover, it is possible that molecular pregnancy dating will provide greater resolution to pregnancy risk then current information based on calendar dating (LMP) and anthropometrics (US). Although experience is accumulating with the use of second and third trimester US for an estimation of risk of preterm birth (PTB) ⁷⁻⁹, to date these measures have not been widely adopted, are subject to user experience and have reported variable performance characteristics. The availability and expertise of US in disadvantaged areas is limited ¹⁰. Therefore, there is a need to develop an alternative measure of fetal progression to estimate GA and pregnancy risk in a variety of settings and especially when US and LMP dates are unavailable or unreliable. Compared with imaging methodologies, blood-based molecular testing may provide a

86 more reproducible and precise modality in clinical applications for the frequent

87 monitoring of health status and detection of early signs of disease. Genomic, gene

Page 7 of 50

1

BMJ Open

2	
3	
4	
5	
6	
7	
8	
٥ ٥	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54	
55	
50	
5/	
58	
59	
60	

88	expression, protein, and metabolite profiles measured in human blood have been
89	increasingly utilized for the determination of disease risk and to gain disease specific
90	pathophysiology insight. Attempts at estimating GA using molecular adaptations have
91	included modeling of RNA, protein, or immune cell changes, and most recently
92	metabolites in maternal or newborn blood ¹¹⁻¹⁷ . Similarly, risk prediction of PTB in
93	clinical settings is currently primarily based on maternal history. Biomarkers have been
94	suggested from genetic and proteomic analyses, but less effort has been focused on
95	understanding maternal metabolic signatures of pregnancy ¹⁸⁻²⁴ .
96	In this study, we hypothesized that longitudinal metabolic profiling of pregnancy reflects
97	the temporal progression of fetal development with a high degree of precision. Moreover,
98	we posited that if a normal pregnancy progression profile could be defined in metabolic
99	terms, then aberrations from the normal profile may identify a pregnancy at risk for PTB.
100	Our findings suggest that composite metabolic panel modeling may serve as a
101	reproducible and precision approach to GA dating of pregnancy and prediction of PTB.
102	MATERIALS AND METHODS
103	Definition
104	In this study, a full-term pregnancy was defined as a pregnancy ending with a delivery at
105	\geq 37 weeks. PTB was defined by delivery at < 35 weeks GA in order to make a complete
106	separation from the full-term subjects.

107 Study design

108 The study was conducted in two phases: (1) modeling to devise a metabolite-based

109 estimation of GA during full-term pregnancies; and (2) modeling to devise a metabolic

panel predictive of PTB (Fig. 1). In this study, the 'gold' standard of GA was US measurement based on the crown-rump length at the first trimester ²⁵. Serum samples were collected in the 1st, 2nd, or 3rd trimester during pregnancy for each individual woman. Each participant had 1 to 4 time-points collected prior to delivery. Samples were provided by Stanford Hospital and Clinics (SU) and the University of Alabama (UAB). Metabolic concentrations in each sample were measured by targeted and untargeted mass spectrometry (MS) analysis. Models that estimated GA or predicted PTB were developed using the SU cohort and validated using the UAB cohort. The study was approved by the Institutional Review Board of both sites (Protocol #21956). All samples were collected after informed consent was obtained. All statistical analyses were done in R software. Targeted and global MS analysis Samples of full-term and preterm patients as well as quality control (QC) samples were injected into the MS. Targeted MS analysis was done through flow injection methods by using Ultimate 3000 Ultra-High-Performance Liquid Chromatography (UHPLC) system and Quantiva Triple Quadrupole Mass Spectrometer. Global (i.e. untargeted) MS analysis was done by using a Vanquish UHPLC system coupled to a Q Exactive plus mass spectrometer and Q Exactive HF hybrid quadrupole-Orbitrap mass spectrometer. Data preprocessing and metabolic identification A data pre-processing procedure was conducted to convert the raw data generated by MS analysis into a matrix of relative concentrations of metabolites versus samples ²⁶. This procedure was done by R package. Metabolic values in each sample were then normalized by the median values measured with OC samples to reduce the batch effects.

Page 9 of 50

BMJ Open

1	
2	
2	
2	
4	
5	
6	
7	
, 0	
ð	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
IŎ	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
27	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
20	
38	
39	
40	
41	
42	
12	
43	
44	
45	
46	
47	
40	
48	
49	
50	
51	
52	
52	
22	
54	
55	
56	
57	
57	
58	
59	

60

Compounds detected by untargeted analyses were matched to metabolites in the Human
Metabolome Database by putative identification ²⁷. Accurate mass was used for the
mapping. Metabolites were mapped to pathways using Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Human Metabolome Database (HMDB). Only endogenous
pathways were considered.

137 Metabolic compound selection, pathway computation, and model development

138 Metabolites measured by targeted and untargeted MS were aggregated and filtered. The 139 remaining metabolites were mapped to pathways. The value of each pathway was 140 calculated as the weighted sum of the normalized concentrations of metabolites on the 141 pathway divided by the number of metabolites. An XGBoost model was developed with 142 the pathway values of samples from full-term patients to estimate the GA. R-squared (R^2 ; 143 goodness-of-fit of the model), root-mean-square error (RMSE), and error distribution 144 were calculated to evaluate the model performance. A second XGBoost model was 145 developed to predict PTB. To evaluate the model performance, Mann-Whitney U tests 146 were used to compare the distribution of final predictive estimates, i.e., XGBoost model 147 values, on full-term and PTB samples. Additional details of model development were 148 described in Text A.1. ELISA tests were conducted on the SU and UAB cohorts to 149 evaluate the insulin-like growth factor-binding protein 4 (IBP4)/sex hormone-binding 150 globulin (SHBG) signature, a predictor that was validated in a prospective study as a 151 predictor of spontaneous PTB¹⁹. Serum concentrations were measured using commercial 152 kits Human IGFBP4 ELISA Kit (Abcam, Burlingame, CA, USA) and Human SHBG 153 Quantikine ELISA Kit (R&D System Inc.). Results were compared with our metabolic 154 model.

155 Patient and Public Involvement statement

156 This retrospective research was done without patient involvement. Patients were not 157 invited to comment on the study design and were not consulted to develop patient 158 relevant outcomes or interpret the results. Patients were not invited to contribute to the 159 writing or editing of this document for readability or accuracy.

RESULTS

161 Samples

As shown in Fig. 2, the SU cohort had 20 full-term pregnancies with 57 blood samples (17, 32, and 8 collected in the 1st, 2nd, and 3rd trimesters, respectively) and 16 preterm pregnancies with 32 blood samples (9, 19, and 4 collected in the 1st, 2nd, and 3rd trimesters, respectively). The UAB cohort had 9 full-term pregnancies with 13 blood samples (8 and 5 in the 2nd, and 3rd trimesters, respectively) and 13 preterm pregnancies with 22 blood samples (4 and 18 in the 1st and 2nd trimesters, respectively). In the SU cohort, 2 (12.5%) were extremely preterm (< 28 weeks), and 5 (31.3%) were very preterm (28–31 weeks). In the UAB cohort, 6 (46.2%) were extremely preterm, and 3 (23.1%) were very preterm. Our SU and UAB cohorts were assembled: no complications of pregnancy were included; all deliveries were singleton; and all PTB were spontaneous. Demographics of the two cohorts are shown in Table 1.

Table 1. Maternal characteristics in SU and UAB cohorts

Characteristic	Full-term	Preterm	Р	Full-term (n = Preterm	Р	<i>P</i>
		SU		UAB		UAB
						SU vs.

Page 11 of 50

BMJ Open

		(n = 20)	(n = 16)		9)	(n = 13)		
	Race, n (%)			<0.001			0.5	<0.001
	Asian	0	1 (6.3)		0	0		
	White	20 (100)	5 (31.3)		0	2 (15.4)		
	Black	0	1 (6.3)		9 (100)	10 (76.9)		
	American Indian	0	2 (12.5)		0	0		
	Pacific Islander	0	1 (6.3)		0	0		
	Other/unknown	0	6 (37.5)		0	1 (7.7)		
	Hispanic, n (%)	0	8 (50)	<0.001	0	1 (7.7)	0.9	0.1
	Maternal Age, year,	21.0 (1.0)		0.2	25 ((5 0)		0.4	0.000
	mean (SD)	31.9 (4.8)	29.8 (7.5)	0.3	25.6 (5.0)	27.5 (4.5)	0.4	0.008
	Gestational age at	20.5						
	delivery, weeks,	39.5 (20.41)	32 (30,33)	<0.001	38 (37,39)	28 (26,32)	<0.001	0.01
	median (IQR)	(39,41)						
	Having previous	9 (45)	6 (27 5)	0.7	9 (100)	13 (100)	0.4	~0 001
	pregnancy, n (%)	9 (43)	0 (37.3)	0.7	9(100)	15 (100)	0.4	~0.001
	BMI, kg/m ² , median	22.3	27.6	0.003	30.4	26.5	0.8	0.06
	(IQR)	(20.2,24.7)	(23.4,33.9)	0.005	(22.3,33.1)	(22.6,36.5)	0.0	0.00
	History of PTB, n	3 (15)	8 (50)	0.03	7 (77 8)	13 (100)	0.2	<0 001
	(%)	5 (15)	0 (30)	0.00	r (rr.0)	15 (100)	0.2	-0.001
175								

LC-MS/MS metabolomics

The study targeted 315 metabolites by LC-MS/MS, including 13 categories: acyl-

carnitine (11, 3.5%), amino acid (9, 2.9%), fatty acid (6, 1.9%), ceramide (12, 3.8%),

ceramide 1-phosphate (8, 2.5%), galactosylceramide (5, 1.6%), phosphatidyl acid (15,

2
2
4
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
19
20
21
י∠ רר
∠∠ วว
23
24
25
26
27
28
29
30
31
27
22
33
34
35
36
37
38
39
40
41
10
42
45
44
45
46
47
48
49
50
51
52
52
JJ 22
54 57
55
56
57
58
59
60

1 2

181 4.8%), phosphatidylethanolamine (52, 16.5%), phosphatidylglycerol (5, 1.6%),

182 phosphatidylinositol (11, 3.5%), phophatidylcholine (130, 41.3%), cholesteryl ester (16,

183 5.1%), and sphingomyelin (35, 11.1%). The study also identified 1627 positively-and 295

184 negatively-charged compounds through untargeted analyses. Together these formed the

185 initial set of 2237 compounds.

186 Feature selection of GA estimation modeling

187 Of the 2237 compounds, 118 had an absolute Pearson correlation coefficient of > 0.35

188 with GA. The cutoff of ± 0.35 was selected based on the false discovery rate (FDR)

189 values of the mapped pathways < 1% (Fig. A.1). The 118 compounds were mapped to 89

190 pathways, 33 of which were selected by the XGBoost model. The normalized value of

191 each pathway varied over the course of gestation (Fig. A.2). Univariate analysis of the 33

192 pathways is shown in Fig. A.3, and the top 10 pathways in the model is depicted in Fig. 3.

193 The top 10 pathways included those associated in the metabolisms of:

194 glycerophospholipid, arginine and proline, thiamine, purine, butanoate, galactose, sulfur,

195 phenylalanine, and C5-branched dibasic acid.

196 **Performance of GA estimation**

197 The performance of GA estimates on full-term samples was similar in the development

198 phase (SU cohort, $R^2 = 0.98$, RMSE = 1.09) and the validation phase (UAB cohort, $R^2 =$

199 0.81, RMSE = 2.36) (Fig. 4). In our validation testing, 66.7% of the estimates were

200 within ± 1 week of the US results (Fig. A.4).

201 Intriguingly, model performance significantly deteriorated when applied to samples from

202 PTB pregnancies ($R^2 = -0.68$ and RMSE = 6.6 in validation; see Fig. 4). It suggested that

Page 13 of 50

1

BMJ Open

2	
3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

203 the relationships between metabolic parameters and full-term pregnancies were not 204 maintained in PTB pregnancies. Furthermore, such disruptions were notable as early as 205 10 weeks' GA (Fig. 4) or early to mid-gestation. These findings prompted the 206 development of a metabolic-based model of PTB estimation. 207 **Performance of PTB prediction** 208 Samples collected before 35 weeks' GA were used to develop a model that differentiated 209 PTB pregnancies from those full-term. As before, the model was developed with the SU 210 cohort that had 20 full-term (54 samples) and 16 preterm (32 samples) pregnancies, and 211 was validated with the UAB cohort that had 9 full-term (13 samples) and 13 preterm (22 212 samples) pregnancies. In total, 148 metabolic compounds (with Mann-Whitney U test P < P213 (0.05) were mapped to 66 pathways (FDR < 1.5%; see Fig. A.5). Further model 214 development selected 10 pathways as strong predictors covering the metabolisms of 215 glycerophospholipid, sphingolipid, taurine and hypotaurine, arachidonic acid, secondary 216 bile acid biosynthesis, glycerolipid, cysteine and methionine, tryptophan, and arginine 217 and proline (Fig. 5).

218 The level of prediction accuracy was maintained in the validation cohort ($P = 5 \times 10^{-5}$, area 219 under the curve [AUC] = 0.92; see Fig. 6). The prevalence-corrected positive predictive 220 values (PPVs) across model values (i.e. scores) were plotted based on the PTB 221 prevalence in Alabama in 2018 (12.5%; see Fig. A.6). A threshold value of 0.52 was 222 selected as a high-risk threshold for PTB, which was associated with a PPV of 0.70, a 223 relative risk (RR) of 5.6 compared to the United States population baseline (= 224 0.70/12.5%), a sensitivity of 0.86 (19 of 22), and a specificity of 0.92 (12 of 13; Fig. 7). 225 The sensitivities and specificities with cutoff values are shown in Table A.1.

	BMJ Open
226	In the validation cohort, 12 of 13 full-term samples and 19 of 22 preterm samples were
227	classified correctly. The misclassified full-term sample was from a mother that delivered
228	at 37 weeks' GA. The 19 correctly classified PTB samples were from 13 PTB
229	pregnancies. Of the 13 pregnancies, 9 were identified as high risk at or earlier than 16
230	weeks' GA. The median gap between the time of identification and the delivery was 11
231	weeks' GA (IQR: 8, 15.5).
232	To determine the performance of our metabolic model against existing models, a
233	comparison between the metabolic PTB risk model and the commercially available
234	IBP4/SHBG PTB test was performed and summarized in Text A.2 and Fig. A.7.
235	Metabolite-based model and pathway-based model: a comparison
236	To determine the effectiveness of model performance based upon robustness of biologic
237	features, we compared model performance using pathway or individual metabolite as
238	selected features in estimating GA and predicting PTB. The performance of the pathway-
239	based models were significantly better than the metabolite-based models, with a lower
240	RMSE (Student's t-test $P = 4x10^{-3}$; Fig. A.8) and a larger AUC (DeLong test $P = 0.03$;
241	Fig. A.9).
242	DISCUSSION
243	Principal Findings
244	In this study, we report a panel of metabolic pathways measured in maternal serum that
245	provides an estimation of GA over the course of a full-term pregnancy. A second and
246	distinct set of metabolic pathways was also identified in maternal serum that could
247	distinguish pregnancies ending with PTB (< 35 weeks) from full-term (\geq 37 weeks) with
	13
	For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

Page 15 of 50

BMJ Open

248	a high degree of precision. The models were developed and validated using two
249	independent cohorts from two different institutions in order to test the robustness of the
250	biologic features driving the classifications. Intriguingly, PTB pregnancies do not
251	demonstrate the same temporal relationship as term pregnancies upon metabolic
252	modeling across gestation (Fig. 4). Indeed, PTB pregnancies demonstrate a marked
253	departure from the term metabolic profile (Fig. 4) that is not only dramatic ($R^2 = 0.98$
254	train and 0.81 test for term model; compared to R^2 = 0.50 train and -0.68 test for PTB
255	pregnancy in term model), but is also recognizable as early as 10 weeks' GA as
256	determined by the current standard of US dating. Recognizing the metabolic pathway
257	aberration of PTB pregnancies, a second model was developed using metabolic pathway
258	analyses to quantify the risk of PTB prior to 35 weeks' GA. Once again, metabolic
259	profiling proved to be robust in identifying PTB pregnancies with a high degree of
260	sensitivity (AUC 0.96 training; AUC 0.92 testing) and precision (training PPV 0.93
261	(0.78-0.99); testing PPV 0.95 (0.75-1). Taken together, this study demonstrated a
262	powerful new, reproducible methodology for monitoring pregnancy progression and
263	identifying abnormal pregnancies.

264 Clinical and Research Implications

The potential clinical utility of developing a test for pregnancy monitoring is appealing. There is a need to develop a more robust method than LMP and an alternative to first trimester US that captures pregnancy progression, a complex relationship of fetal and placental growth, development, and function. To support these processes, there is a need for energy transfer between mother and fetus throughout gestation. We therefore reasoned that metabolic phenotyping would be ideally suited to capture this relationship.

Page 16 of 50

1	
2	
3	
4	
5	
6	
7	
, 8	
a	
10	
11	
11	
12	
13	
14	
15	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
л 0	
/12	
42	
ر ب	
44	
40 46	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

271	Despite a modest cohort size, the results of metabolic modeling demonstrate a high
272	degree of concordance with clinical standard US dating performed by experts as reflected
273	by 66.7% of model estimates falling within ± 1 week of US results (Fig. A.4). Moreover,
274	unlike the deterioration experienced with US dating of pregnancy, metabolic modeling
275	was shown to achieve near equivalent performance in the 1st, 2nd, and 3rd trimesters,
276	indicating the potential for broad clinical applicability that might achieve independence
277	of reliance on accuracy of LMP or concordance among modality testing. The result of
278	PTB prediction is equally robust demonstrating a high degree of precision. Beyond
279	relying on clinical histories or self-reported symptoms, the model proposed here provides
280	a molecular classification that may be more accurate than current methods and further
281	reflect a comprehensive measure of aberrant pregnancy based on metabolic changes. In
282	practice, clinicians could use the PTB prediction model to differentiate high- from low-
283	risk patients. Low risk patients would then be subject to GA estimation panel testing, all
284	from the same blood draw.
285	A distinct advantage of the PTB risk prediction developed in this study is that it has a
286	wide window of sampling. Samples were collected broadly before 35 weeks' GA, which
287	is wider than the window of other well-established biomarkers such as fetal fibronectin
288	(between 24 and 34 weeks' GA) ²⁰ , IBP4/SHBG (19 to 21 weeks) ¹⁹ , and inter-alpha-
289	trypsin inhibitor heavy chain 4 protein (24 and 28 weeks) ¹⁸ . Relatively stable AUC
290	levels were maintained throughout the diagnostic window (Text A.2). The insensitivity of
291	the prediction model to GA at testing increases its flexibility and opportunity for potential
292	clinical use. An additional advantage of the model herein is the ability for early
293	identification of high-risk women. Although there is no standardized guideline for early-

Page 17 of 50

BMJ Open

1	
2	
3	
4	
5	
6	
7	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
30	
21	
21	
3Z	
33 24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54	
55	
50 57	
5/	
58	
59	
60	

294	gestation management of patients at risk of PTB delivery, metabolic modeling for PTB
295	risk may provide a not previously possible opportunity for early gestation risk mitigation.
296	Clinical trials have suggested that hormone treatment and maternal physical activity
297	modifications applied between 16 to 37 weeks' GA reduced the PTB rate of women who
298	were deemed at high risk due to a history of prior PTB delivery ²⁸ ²⁹ . In many cases PTB
299	can not be prevented, however any opportunity is deemed highly desirable for even a
300	modest delay (1–2 weeks) in PTB or an enhanced ability to more accurately triage for
301	delivery to centers with the capability to manage profoundly premature neonates ³⁰⁻³² .
302	This study is among the first to propose a pathway-based computational methodology to
303	estimate GA and predict PTB. Metabolic pathways are linked to chemical functions, and
304	the alteration or disruption of specific functions participate in disease phenotypes,
305	facilitating the use of pathways to function as higher-level biomarkers of diseases ³³ . The
306	role of metabolic pathways in disease diagnosis has been explored in several preliminary
307	clinical studies ^{34 35} . Pathway performance in differentiating patients with disease from
308	healthy controls has been found to be effective compared to using individual metabolites
309	³⁵ . Similarly, we found the pathway-based models had less variability and higher
310	sensitivity than metabolite-based models that were developed using the same population.
311	One plausible explanation for this observation may be attributed to the calculation of
312	pathway values, which represents the sum of individual metabolites and thus may
313	amplify association to outcome relationships. This hypothesis is supported by the FDR
314	comparison (Fig. A.8 and A.9): pathway-based analysis had lower FDR values than
315	metabolite models. This study adds to the exploration of the feasibility of using pathways
316	for health monitoring and prediction.

Page 18 of 50

2
3
5
4
5
6
0
7
8
0
9
10
11
10
12
13
14
1 5
15
16
17
10
10
19
20
 21
21
22
23
24
24
25
26
27
27
28
29
20
30
31
32
22
33
34
35
20
30
37
38
20
39
40
41
40
42
43
44
15
43
46
47
10
40
49
50
51
51
52
53
54
54
55
56
57
57
58
59
60
00

339

1

317	In this study glycerophospholipid metabolism was identified as the most significant
318	contributing pathway for both gestational age estimation and preterm birth prediction.
319	Glycerophospholipids consist of fatty acid chains and have been previously cited as
320	strong correlates to birth weight, pregnancy duration, and risk of preterm birth ³⁶ . These
321	same authors also found different polyunsaturated fatty acid components of
322	glycerophospholipid had differential effects on fetal growth. Gao et al has reported a
323	potential association between glycerophospholipid and labor timing in rodent models ³⁷
324	³⁸ . The current study extends those prior observations through a quantitative assessment
325	of the relationship between glycerophospholipid metabolism, gestational age and the risk
326	of preterm birth. The leading effect of glycerophospholipid pathway metabolism in the
327	current study was positive in both the assessment of gestational age and risk of preterm
328	birth. These findings add further insight into the role of glycerophospholipid metabolism
329	in human pregnancy. Other contributing pathways for preterm birth prediction such as
330	sphingolipid metabolism, arachidonic acid metabolism, and arginine and proline
331	metabolism were also found associated to preterm. Alterations in plasma sphingolipids
332	were found in women who had spontaneous PTB ³⁹ . Increase of arachidonic acid
333	metabolism might correlate to bacteria activities that led to preterm labor ⁴⁰ . Plasma level
334	of arginine and citrulline was significantly lowered in preterm babies ⁴¹ .
335	Taken together, the analysis of the leading pathways found to significantly contribute to
336	the metabolic pregnancy modeling herein provide ample insights to deepen our
337	understanding of pregnancy progression and may facilitate the identification and
338	interpretation of potential therapeutic targets. Further, we speculate that the platform and

approaches outlined herein may be extended to the interrogation of additional conditions

58 59

60

BMJ Open

1 ว		
2 3 4	340	of pregnancy including abnormalities of placentation, gestational diabetes and fetal
5 6 7	341	growth disturbances among others.
7 8 9	342	Limitations
10 11 12	343	This study has several limitations. First, the overall cohort size was modest, and
13 14	344	pregnancies with delivery at 35 or 36 weeks were not included in the study. Second,
15 16	345	blood samples were collected in a non-uniform manner with respect to GA timing and
17 18 19	346	time of day. The time between two adjacent samples corresponding to the same patient
20 21	347	varied. Third, the distribution of samples throughout pregnancy were different between
22 23	348	patients and cohorts. In the SU cohort, none of the full-term patients had samples
24 25 26	349	collected between 30 and 37 weeks. In the UAB cohort, none of the full-term patients had
27 28	350	sampling in the 1 st trimester, and none of the PTB patients had sampling in the 3 rd
29 30	351	trimester. Fourth, for methodologic reasons, not all serum analytes could be identified
31 32 22	352	and mapped to known metabolites. Fifth, baseline characteristics of patients were not
34 35	353	included in the analysis. Sixth, the study was retrospective, and the participants were
36 37	354	solely from California and Alabama. A larger prospective cohort study with a reasonable
38 39	355	ratio of full-term to preterm is necessary before applying the estimates and prediction to a
40 41 42	356	broader population for clinical utility.
43 44 45	357	CONCLUSION
46 47	358	The present study demonstrates that maternal serum based metabolic profiling is a highly
48 49 50	359	sensitive and accurate method for determining GA and prediction of PTB. The pathway-
50 51 52	360	based analysis supports the hypothesis of the orderly metabolic progression of pregnancy
53 54	361	that can be reproducibly captured using metabolic profiling. The robustness of the
55 56	362	modeling reinforces the potential appeal for further clinical development and as a

platform to investigate the pathophysiology associated with aberrant fetal development

metabolic pathway-based determination of GA dating, and early detection of PTB risk.

to been terien only

and pregnancy progression. This study is the first to report a single blood test for

1	
2 3	363
4 5	264
6 7	364
8	365
9 10	266
11 12	300
13 14	
15	
16 17	
18 19	
20	
21	
23 24	
25 26	
27	
28 29	
30 31	
32	
33 34	
35 36	
37 38	
39	
40 41	
42 43	
44	
45 46	
47 48	
49 50	
51	
52 53	
54 55	
56	
57 58	

59

BMJ Open

2			
3 4	367	Acknowledgments: The authors thank colleagues at the Stanford University Pediatric	
5 6	368	Proteomics group and the March of Dimes Prematurity Research Center at Stanford	
7 8 9	369	University for critical discussions.	
10 11 12	370	Funding: This work was supported in part by the March of the Dimes Prematurity	
12 13 14	371	Research Center at Stanford University, and Stanford Child Health Research Institute.	
15 16	372	The funders had no role in study design, data collection and analysis, decision to publi	sh,
17 18 19	373	or preparation of the manuscript. Grant numbers are N/A.	
20 21 22	374	Conflict of Interest: The authors report no conflict of interest.	
23 24	375	Author contributions: XBL, KGS, and HJC contributed to concept development and	
25 26 27	376	design.	
27 28 29	377	JY, RJW, and DKS contributed to the acquisition of data.	
30 31 32	378	KGS, SH, LZ, XY, LT, LM, SL, RJW, GMS, DKS, JCW and DBM contributed to the	
33 34	379	analysis and interpretation of data.	
35 36 37	380	KGS and SH drafted the manuscript.	
38 39 40	381	JY, LZ, LT, XY, LM, SL, RJW, GMS, DKS, HJC, JCW, DBM, and XBL critically	
40 41 42	382	revised the manuscript.	
43 44 45	383	All the authors gave final approval of the version to be submitted and agreed to be	
46 47	384	accountable for all aspects of the work.	
48 49 50	385	Data and materials availability: The datasets used and/or analyzed in this study are	
51 52 53	386	available upon request to the corresponding author.	
54 55	387		
56 57 58			20
59 60		For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml	20
00			

59

3	388	References
4	389	1. Brownfoot FC, Gagliardi DI, Bain E, et al. Different corticosteroids and regimens
5	390	for accelerating fetal lung maturation for women at risk of preterm birth.
0	391	Cochrane Database Syst Rev 2013(8) CD006764 doi:
, 8	392	10 1002/14651858 CD006764 nub3
9	303	2 Raiu TN Marcar RM Burchfield DL at al Pariviable hirth: executive summary of a
10	204	Loint Workshop by the Eurice Konnedy Shriver National Institute of Child
11	394 205	Joint workshop by the Eulite Kennedy Shriver National Institute of Child
12	395	Health and Human Development, Society for Maternal-Fetal Medicine,
13	396	American Academy of Pediatrics, and American College of Obstetricians and
14	397	Gynecologists. Journal of perinatology : official journal of the California
15	398	Perinatal Association 2014;34(5):333-42. doi: 10.1038/jp.2014.70
16	399	3. Vohr B. Long-term outcomes of moderately preterm, late preterm, and early term
17 19	400	infants. <i>Clin Perinatol</i> 2013;40(4):739-51. doi: 10.1016/j.clp.2013.07.006
10	401	4. Pereira AP, Dias MA, Bastos MH, et al. Determining gestational age for public
20	402	health care users in Brazil: comparison of methods and algorithm creation.
21	403	BMC Res Notes 2013;6:60. doi: 10.1186/1756-0500-6-60
22	404	5. Peek MJ, Devonald KJ, Beilby R, et al. The value of routine early pregnancy
23	405	ultrasound in the antenatal booking clinic. Aust N Z J Obstet Gynaecol
24	406	1994:34(2):140-3.
25	407	6. Committee Opinion No 700: Methods for Estimating the Due Date. <i>Obstetrics and</i>
26	408	avnecology 2017:129(5):e150-e54 doi: 10.1097/aog.000000000002046
27	409	[nublished Online First: $2017/04/21$]
20 29	<i>1</i> 0 <i>5</i>	7 Roman A Saccone C. Dude CM et al Midtrimester transvaginal ultrasound
30	410 111	corrected longth screening for spontaneous protorm birth in diampiotic twin
31	411	regranding to chorionicity. European journal of chatetrice
32	412	pregnancies according to chorionicity. European journal of obstetrics,
33	413	gynecology, and reproductive biology 2018;229:57-63. doi:
34	414	10.1016/J.ejogrb.2018.08.006 [published Online First: 2018/08/15]
35	415	8. Erkamp JS, Voerman E, Steegers EAP, et al. Second and third trimester fetal
30 27	416	ultrasound population screening for risks of preterm birth and small-size and
38	417	large-size for gestational age at birth: a population-based prospective cohort
39	418	study. <i>BMC Med</i> 2020;18(1):63. doi: 10.1186/s12916-020-01540-x
40	419	[published Online First: 2020/04/08]
41	420	9. Dziadosz M, Bennett TA, Dolin C, et al. Uterocervical angle: a novel ultrasound
42	421	screening tool to predict spontaneous preterm birth. American journal of
43	422	obstetrics and gynecology 2016;215(3):376.e1-7. doi:
44	423	10.1016/j.ajog.2016.03.033 [published Online First: 2016/03/29]
45	424	10. Jehan I, Zaidi S, Rizvi S, et al. Dating gestational age by last menstrual period,
40 47	425	symphysis-fundal height, and ultrasound in urban Pakistan. International
48	426	journal of gynaecology and obstetrics: the official organ of the International
49	427	Federation of Gynaecology and Obstetrics 2010:110(3):231-4. doi:
50	428	10 1016/i ijgo 2010 03 030
51	429	11 Wilson K Hawken S Potter BK et al Accurate prediction of gestational age using
52	430	newhorn screening analyte data American journal of obstatrics and
53	430 A21	aunacology 2016.214(A).513 a1.13 a0 doi: 10.1016/j.jog.2015.10.017
54 57	TJI	gynecology 2010,217(7).313 C1-13 C7. u01. 10.1010/j.aj0g.2013.10.01/
22 56		
50		
58		21
1		
----------	-------------	---
2	400	
4	432	12. Knight AK, Craig JM, Theda C, et al. An epigenetic clock for gestational age at
5	433	birth based on blood methylation data. <i>Genome biology</i> 2016;17(1):206. doi:
6	434	10.1186/s13059-016-1068-z
7	435	13. Jelliffe-Pawlowski LL, Norton ME, Baer RJ, et al. Gestational dating by metabolic
8	436	profile at birth: a California cohort study. American journal of obstetrics and
9	437	<i>gynecology</i> 2016;214(4):511 e1-11 e13. doi: 10.1016/j.ajog.2015.11.029
10	438	14. Aghaeepour N, Ganio EA, McIlwain D, et al. An immune clock of human
12	439	pregnancy. <i>Sci Immunol</i> 2017;2(15) doi: 10.1126/sciimmunol.aan2946
13	440	15. Liang L, Rasmussen M-LH, Piening B, et al. Metabolic Dynamics and Prediction of
14	441	Gestational Age and Time to Delivery in Pregnant Women. Cell
15	442	2020;181(7):1680-92.e15. doi: https://doi.org/10.1016/j.cell.2020.05.002
16	443	16. Ngo TTM, Moufarrej MN, Rasmussen MH, et al. Noninvasive blood tests for fetal
17	444	development predict gestational age and preterm delivery. Science
18	445	2018;360(6393):1133-36. doi: 10.1126/science.aar3819
20	446	17. Aghaeepour N, Lehallier B, Baca Q, et al. A proteomic clock of human pregnancy.
21	447	American journal of obstetrics and gynecology 2018;218(3):347 e1-47 e14.
22	448	doi: 10.1016/i.ajog.2017.12.208
23	449	18. Esplin MS. Merrell K. Goldenberg R. et al. Proteomic identification of serum
24	450	nentides predicting subsequent spontaneous preterm hirth American journal
25	451	of obstetrics and avnecology 2011:204(5):391 e1-8 doi:
26	452	10 1016 /i piog 2010 09 021
27	452	19 Sande CR Boggess KA Sullivan SA et al Development and validation of a
20 29	454	spontanoous protorm dolivery predictor in asymptomatic women. American
30	454	iournal of obstatrics and aunacology 2016;214(E);622 of 22 of 22 of 2
31	455	10 1016 / i ping 2016 02 001
32	450	10.1016/j.ajog.2016.02.001
33	457	20. Peaceman AM, Andrews ww, Thorp JM, et al. Fetal horonectin as a predictor of
34	458	preterm birth in patients with symptoms: a multicenter trial. American
35	459	journal of obstetrics and gynecology 1997;177(1):13-8.
30 37	460	21. Strauss JF, 3rd, Romero R, Gomez-Lopez N, et al. Spontaneous preterm birth:
38	461	advances toward the discovery of genetic predisposition. American journal of
39	462	obstetrics and gynecology 2018;218(3):294-314 e2. doi:
40	463	10.1016/j.ajog.2017.12.009
41	464	22. Virgiliou C, Gika HG, Witting M, et al. Amniotic Fluid and Maternal Serum
42	465	Metabolic Signatures in the Second Trimester Associated with Preterm
43	466	Delivery. Journal of proteome research 2017;16(2):898-910. doi:
44	467	10.1021/acs.jproteome.6b00845
45 46	468	23. Li J, Lu YP, Reichetzeder C, et al. Maternal PCaaC38:6 is Associated With Preterm
40 47	469	Birth - a Risk Factor for Early and Late Adverse Outcome of the Offspring.
48	470	Kidney Blood Press Res 2016;41(3):250-7. doi: 10.1159/000443428
49	471	24. Hawdon JM, Ward Platt Mp Fau - Aynsley-Green A, Aynsley-Green A. Patterns of
50	472	metabolic adaptation for preterm and term infants in the first neonatal week.
51	473	(1468-2044 (Electronic))
52	474	25. Robinson HP. Sonar measurement of fetal crown-rumn length as means of
53	475	assessing maturity in first trimester of pregnancy (0007-1447 (Print))
54 55	476	26 Dunn WR Broadhurst D Beglev P et al Procedures for large-scale metabolic
56	470 1.77	nrofiling of serum and plasma using gas chromatography and liquid
57	τ//	proming or ser uni and plasma using gas chromatography and nquid
58		22
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	478	chromatography coupled to mass spectrometry. <i>Nat Protoc</i> 2011;6(7):1060-
4	479	83. doi: 10.1038/nprot.2011.335
5	480	27. Sumner LW, Amberg A, Barrett D, et al. Proposed minimum reporting standards
7	481	for chemical analysis Chemical Analysis Working Group (CAWG)
8	482	Metabolomics Standards Initiative (MSI). <i>Metabolomics</i> 2007;3(3):211-21.
9	483	doi: 10.1007/s11306-007-0082-2
10	484	28. Meis PJ, Klebanoff M, Thom E, et al. Prevention of recurrent preterm delivery by
11	485	17 alpha-hydroxyprogesterone caproate. <i>The New England journal of</i>
12 12	486	<i>medicine</i> 2003:348(24):2379-85. doi: 10.1056/NEIMoa035140
13	487	29. Evenson KR. Siega-Riz AM, Savitz DA, et al. Vigorous leisure activity and
15	488	pregnancy outcome. <i>Epidemiology</i> 2002:13(6):653-9. doi:
16	489	10.1097/01.EDE.0000021463.45041.95
17	490	30. McIntire DD, Leveno KI, Neonatal mortality and morbidity rates in late preterm
18	491	births compared with births at term. <i>Obstetrics and avnecology</i>
19 20	492	2008·111(1)·35-41 doi: 10 1097/01 AOG 0000297311 33046 73
20 21	493	31 Henderson-Smart DI The effect of gestational age on the incidence and duration
22	494	of recurrent appoea in newhorn babies Aust Paediatr I 1981:17(4):273-6
23	495	32 Khashu M Narayanan M Bhargaya S et al Perinatal outcomes associated with
24	496	nreterm hirth at 33 to 36 weeks' gestation: a nonulation-based cohort study
25	497	Pediatrics 2009.123(1).109-13 doi: 10.1542/peds 2007-3743
26 27	498	33 Lee DS Park I Kay KA et al The implications of human metabolic network
27 28	499	topology for disease comorbidity <i>Proceedings of the National Academy of</i>
29	500	Sciences of the United States of America 2008:105(29):9880-5. doi:
30	500	10 1073 /pnas 0802208105
31	501	34 Baumgartner C. Bohm C. Baumgartner D. et al. Supervised machine learning
32	502	techniques for the classification of metabolic disorders in newborns
33	505	<i>Bioinformatics</i> 2004:20(17):2085-06. doi: 10.1003/bioinformatics/bth243
34 35	505	35 Huang S Chong N Lewis NE et al Novel personalized nathway-based
36	505	metabolomics models reveal key metabolic nathways for breast cancer
37	500	diagnosis <i>Conome medicine</i> 2016;8(1):34 doi: 10.1186/s13073-016-0289-9
38	508	36 Crootendorst-yan Mil NH Tiemeier H Steenweg-de Craaff L et al Maternal
39	500	plasma n-3 and n-6 polyupsaturated fatty acids during program of and
40	510	features of fetal health. Fetal growth velocity birth weight and duration of
41 42	510	pregnancy Clin Nutr 2018:37(4):1367-74 doi: 10.1016/j.clnu.2017.06.010
43	512	37 Menon R. Bonney FA. Condon L et al. Novel concents on pregnancy clocks and
44	512	alarms: redundancy and synergy in human parturition Human reproduction
45	515	undate 2016.22(5):535-60 doi: 10.1093/humund/dmw022
46	515	38 Gao I Rabbitt FH Condon IC et al Steroid recentor coactivators 1 and 2 mediate
47	515	fetal-to-maternal signaling that initiates parturition. The Journal of clinical
40 49	510	investigation 2015.125(7).2808-24. doi: 10.1172/JCI78544
50	510	20 Morillon A-C Valdundi S Thomas C at al Association between phospholinid
51	510	motabolism in plasma and spontaneous protorm birth: a discovery lipidemic
52	519	analysis in the cork program cohort Matchelomics 2020,16(2),10, doi:
53	520	$101007/_{c}1120602016206$
54 57	521	10.100//S11500-020-1059-0
55 56	522	40. Definett PK, Kose MP, Myatt L, et al. Preterini idoor: Stillulation of al actifuolitic
57	525	aciu metabolisii in numan annion cens by bacteriai products. American
58		23
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4 5 6 7	524 525 526 527	<i>journal of obstetrics and gynecology</i> 1987;156(3):649-55. doi: <u>https://doi.org/10.1016/0002-9378(87)90070-6</u> 41. Contreras MT, Gallardo MJ, Betancourt LR, et al. Correlation between plasma levels of arginine and citrulline in preterm and full-term neonates:
8 9 10 11 12	528 529 530	Therapeutical implications. <i>Journal of Clinical Laboratory Analysis</i> 2017;31(6):e22134. doi: 10.1002/jcla.22134
13 14 15	531	Figure Legends
16 17	532	Fig. 1. Study design. Models were developed separately to estimate gestational age
18 19	533	during full-term pregnancy, and to predict the risk of preterm birth. Both models were
20 21 22	534	developed with the SU cohort and validated with the UAB cohort.
23 24	535	Fig. 2. Cohort construction. Each line represents an individual patient. Diamond and
25 26 27	536	triangle markers indicate sample collection dates and delivery dates, respectively. The red
28 29	537	dashed line represents 37 weeks' gestational age.
30 31 32	538	Fig. 3. The importance of the top 10 metabolic pathways in the gestational age estimation
33 34 35	539	model. Pathways either positively or negatively correlated gestational age.
36 37	540	Fig. 4. Gestational age estimates of the gestational age model with the SU (R ² =0.98,
38 39 40	541	RMSE=1.09 weeks) and UAB cohorts ($R^2 = 0.81$, RMSE = 2.36 weeks).
41 42	542	Fig. 5. (A) Univariate analysis of the 10 metabolic pathways in the preterm birth
43 44	543	prediction model. Odds ratio of each pathway was calculated. *P<0.05, **P<0.01,
45 46	544	*** P <0.005. (B) The importance of the metabolic pathways in the preterm birth
47 48 49	545	prediction model. Pathways were either up- or down-regulated in relation to preterm birth.
50 51 52	546	Fig. 6. (A) Prediction of preterm birth risk grouped by full-term and preterm birth
52 53 54 55 56 57 58	547	patients (top) and over the course of gestation (bottom). (B) AUC performance of the 24

548 prediction in SU and UAB cohorts. *P* was calculated using Mann–Whitney U test. wks:549 weeks' gestational age.

- 550 Fig. 7. Performance of the preterm birth prediction model. (A) A contingency table
- showing the number of samples in each category. (B) Sensitivity, specificity, PPV, and
- 552 NPV together with the 95% confidence intervals.

to beet terien only

60

BMJ Open

2 3 4	553	Appendix Captions
5 6 7	554	Fig. A.1 False discovery rate (FDR) analysis of the metabolic pathways significantly
, 8 9	555	associated with the GA in full-term pregnancies. Pearson $ \mathbf{r} $ was calculated as the
10 11	556	correlation between metabolite serological abundance and GA. Only the metabolites with
12 13 14	557	a Pearson $ \mathbf{r} $ higher than the threshold would be selected as part of the significant
15 16	558	pathways. FDR was estimated by a permutation-based method (permutation N=1000).
17 18 19	559	Fig. A.2 Profile of the metabolic pathways in the GA estimation model over the course of
20 21	560	gestation on SU cohort. All pathways are (A) positively or (B) negatively correlated to
22 23 24	561	the GA (FDR<1%). Profile of each pathway was calculated as the weighted sum of the z-
24 25 26	562	score normalized metabolite serological abundances divided by the number of
27 28	563	metabolites. Means \pm standard errors at each time point were plotted.
29 30 31	564	Fig. A.3 Univariate analysis of the 33 metabolic pathways in the GA estimation model.
32 33	565	Pearson correlation coefficient of each pathway to GA was calculated. $*P < 0.05$,
34 35 36	566	** <i>P</i> <0.01, *** <i>P</i> <0.005.
37 38	567	Fig. A.4 Comparison of GA estimates using the model and US measurements. (A)
39 40 41	568	Distributions of differences between GA measured by US and GA estimated by the
42 43	569	model, in T2 (weeks 14–27), T3 (weeks 28–40), and T2+T3. n represents the number of
44 45	570	full-term patients included. (B) Error distribution of GA estimation on a combination of
46 47 48	571	SU and UAB cohorts in T2, T3, and T2+T3.
48 49 50	572	Fig. A.5 False discovery rate (FDR) analysis of the metabolic pathways significantly
51 52	573	associated with PTB. Mann-Whitney U test P measured the difference in metabolite
53 54 55 56	574	serological abundances between full-term pregnancies and pregnancies ending in PTB.
50 57 58 59		26

BMJ Open

2	
3	
4	
5	
6	
7	
, o	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 //7	
-+/ /0	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

575 Only metabolites with a Mann-Whitney U test *P* lower than the threshold were selected 576 as part of the significant pathways. FDR was estimated by a permutation-based method 577 (permutation N=1000).

578 Fig. A.6 Stratification of patients by the classification model prediction on the UAB 579 cohort. PPV was corrected by bootstrapping the full-term patients to reach the population 580 PTB prevalence of 12.5% on singleton births. Two horizontal dashed lines represent the 581 population mean of PTB risk that is 12.5% (black) and the PPV (= 0.70; red) at the high-582 risk cutoff. The grey dashed line indicates the high-risk cutoff value (= 0.52). The grey 583 area represents the 95% confidence interval of the PPV. The box plot at the bottom shows 584 the classification model value distribution stratified by the samples. GAB: GA at birth. 585 wks: weeks of gestation.

Fig. A.7 The performance of the IBP4/SHBG predictor and the metabolic model. The
results are stratified by the GA intervals with a BMI at 22–37 kg/m2 (A), and by BMI
values with a GA interval of 5–20 weeks (B).

589 Fig. A.8 (A) False discovery rate (FDR) analysis of the metabolites and metabolic 590 pathways significantly associated with GA in full-term pregnancies. Pearson |r| was 591 calculated as the correlation between metabolite serological abundance and GA. Only the 592 metabolites with a Pearson $|\mathbf{r}|$ higher than the threshold (=0.35) would be selected as part 593 of the significant pathways. FDR was estimated by a permutation-based method 594 (permutation N=1000). (B) A comparison of RMSE of the GA estimation model trained 595 by pathways and the model trained by metabolites. All metabolites had a Pearson |r| > 0.35. 596 RMSE was measured with the full-term samples of the validation (UAB) cohort.

60

BMJ Open

2		
2 3 4	597	Fig. A.9 (A) False discovery rate (FDR) analysis of the metabolites and metabolic
5 6	598	pathways significantly associated with the PTB. Mann-Whitney U test P measured the
7 8	599	difference in metabolite serological abundances between full-term pregnancies and
9 10 11	600	pregnancies ending in PTB. Only the metabolites with a Mann-Whitney U test P lower
12 13	601	than the threshold (=0.05) would be selected as part of the significant pathways. FDR was
14 15	602	estimated by a permutation-based method (permutation N=1000). (B) A comparison of
16 17	603	the AUC of the PTB classification model utilizing pathways and the model utilizing
18 19 20	604	metabolites. All the metabolites had a Mann-Whitney U test $P < 0.05$. AUC was
21 22	605	measured with the samples of the validation (UAB) cohort.
23 24 25	606	Table A.1 Sensitivity and specificity of the XGBoost model with respect to the cutoff
26 27	607	point.
28 29 30	608	Text A.1 Metabolic compound selection, pathway computation, and model development
31 32	609	Text A.2 Metabolite model vs. IBP4/SHBG in predicting PTB
33 34 35		
36		
37		
38		
39 40		
41		
42		
43		
44 45		
46		
47		
48		
49		
50		
51 52		
52 53		
54		
55		
56		
57		
58		28
59		

BMJ Open

SU Cohort	UAB Cohort
20 full-term, 16 preterm	9 full-term, 13 preterm
B. To estimate GA for full-term	
Development	Validation
SU full-term	SU preterm
A GA estimation model	UAB full-term and preterm
C. To identify women at risk of PTB	
Development	Validation
SU full-term and preterm ↓ A classification model —	→ UAB full-term and preterm

Study design. Models were developed separately to estimate gestational age during full-term pregnancy, and to predict the risk of preterm birth. Both models were developed with the SU cohort and validated with the UAB cohort.

254x190mm (600 x 600 DPI)

Cohort construction. Each line represents an individual patient. Diamond and triangle markers indicate sample collection dates and delivery dates, respectively. The red dashed line represents 37 weeks' gestational age.

254x190mm (600 x 600 DPI)

BMJ Open

(A) Univariate analysis of the 10 metabolic pathways in the preterm birth prediction model. Odds ratio of each pathway was calculated. *P<0.05, **P<0.01, ***P<0.005. (B) The importance of the metabolic pathways in the preterm birth prediction model. Pathways were either up- or down-regulated in relation to preterm birth.

254x190mm (600 x 600 DPI)

В

1.0

0.8

0.6

0.4

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0

0.0 0.2 0.4 0.6 0.8 1.0

AUC of SU: 0.96

AUC of UAB: 0.92

0.2 0.4 0.6 0.8

False Positive Rate

1.0

(0.82-1)

(0.91-1)

True Positive Rate 0.2

1	
2	
3	
4	
5	
ر	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
15	
16	
17	
18	
19	
20	
21	
22	
23	
20	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
11	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	

60

В

Cohort	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)
SU	0.88 (0.71-0.97)	0.96 (0.87-1)	0.93 (0.78-0.99)	0.93 (0.83-0.98)
UAB	0.86 (0.65-0.97)	0.92 (0.64-1)	0.95 (0.75-1)	0.80 (0.52-0.96)

Performance of the preterm birth prediction model. (A) A contingency table showing the number of samples in each category. (B) Sensitivity, specificity, PPV, and NPV together with the 95% confidence intervals.

254x190mm (600 x 600 DPI)

Fig. A.1. False discovery rate (FDR) analysis of the metabolic pathways significantly associated with the GA in full-term pregnancies. Pearson $|\mathbf{r}|$ was calculated as the correlation between metabolite serological abundance and GA. Only the metabolites with a Pearson $|\mathbf{r}|$ higher than the threshold would be selected as part of the significant pathways. FDR was estimated by a permutation-based method (permutation N=1000).

Fig. A.2. Profile of the metabolic pathways in the GA estimation model over the course of gestation on SU cohort. All pathways are (A) positively or (B) negatively correlated to the GA (FDR<1%). Profile of each pathway was calculated as the weighted sum of the z-score normalized metabolite serological abundances divided by the number of metabolites. Mean \pm standard error of the mean at each time point was plotted.

BMJ Open

Fig. A.3. Univariate analysis of the 33 metabolic pathways in the GA estimation model.

Pearson correlation coefficient r of each pathway to GA was calculated. *P < 0.05,

P*<0.01, *P*<0.005.

A						
Trimester and subject number	Δ [model estimation – ultrasound measurements (weeks)] (%)					
	< -2	-1 to -2	±1	+1 to +2	> +2	
SU (T2, n = 19)	0	0	84.2	15.8	0	
SU (T3, n = 8)	12.5	25	50	12.5	0	
SU (All, n = 20)	0	5	85	10	0	
UAB (T2, n = 5)	0	0	60	0	40	
UAB (T3, n = 5)	20	0	80	0	0	
UAB (All, n = 9)	11.1	0	66.7	11.1	11.1	
SU and UAB (T2, n = 24)	0	0	79.2	12.5	8.3	
SU and UAB (T3, n = 13)	15.4	15.4	61.5	7.7	0	
SU and UAB (All, n = 29)	3.4	3.4	79.3	10.3	3.4	

Fig. A.4. Comparison of GA estimates using the model and US measurements. (A) Distributions of differences between GA measured by US and GA estimated by the model, in T2 (weeks 14–27), T3 (weeks 28–40), and T2+T3. n represents the number of full-term patients included. (B) Error distribution of GA estimation on a combination of SU and UAB cohorts in T2, T3, and T2+T3.

Fig. A.5. False discovery rate (FDR) analysis of the metabolic pathways significantly associated with PTB. Mann-Whitney U test *P* measured the difference in metabolite serological abundances between full-term pregnancies and pregnancies ending in PTB. Only metabolites with a Mann-Whitney U test *P* lower than the threshold were selected as part of the significant pathways. FDR was estimated by a permutation-based method (permutation N=1000).

Population-corrected PPV: 0.70. which is **5.6** times higher than the general population risk in Alabama (12.5%)

Fig. A.6. Stratification of patients by the classification model prediction on the UAB cohort. PPV was corrected by bootstrapping the full-term patients to reach the population PTB prevalence of 12.5% on singleton births in Alabama. Two horizontal dashed lines represent the population mean of PTB risk that is 12.5% (black) and the PPV (= 0.70; red) at the high-risk cutoff. The grey dashed line indicates the high-risk cutoff value (= 0.52). The grey area represents the 95% confidence interval of the PPV. The box plot at the bottom shows the classification model value distribution stratified by the samples. GAB: gestational age at birth. wks: weeks' GA.

Fig. A.7. The performance of the IBP4/SHBG predictor and the metabolic model. The results are stratified by the GA intervals with a BMI at $22-37 \text{ kg/m}^2$ (A), and by BMI values with a GA interval of 5–20 weeks (B).

Fig. A.8. (A) False discovery rate (FDR) analysis of the metabolites and metabolic pathways significantly associated with the GA in full-term pregnancies. Pearson $|\mathbf{r}|$ was calculated as the correlation between metabolite serological abundance and GA. Only the metabolites with a Pearson $|\mathbf{r}|$ higher than the threshold (=0.35) would be selected as part of the significant pathways. FDR was estimated by a permutation-based method (permutation N=1000). (B) A comparison of RMSE of the GA estimation model trained by pathways and the model trained by metabolites. All metabolites had a Pearson $|\mathbf{r}|>0.35$. RMSE was measured with the full-term samples of the validation (UAB) cohort.

Fig. A.9. (A) False discovery rate (FDR) analysis of the metabolites and metabolic pathways significantly associated with the PTB. Mann-Whitney U test *P* measured the difference in metabolite serological abundances between full-term pregnancies and pregnancies ending in PTB. Only the metabolites with a Mann-Whitney U test *P* lower than the threshold (=0.05) would be selected as part of the significant pathways. FDR was estimated by a permutation-based method (permutation N=1000). (B) A comparison of the AUC of the preterm birth classification model utilizing pathways and the model utilizing metabolites. All the metabolites had a Mann-Whitney U test *P* < 0.05. AUC was measured with the samples of the validation (UAB) cohort.

Table A.1. Sensitivity and specificity of the XGBoost model with respect to the cutoff point.

Cohort	Sensitivity	Specificity	Number of preterm samples identified by the model	
SU	0.94	0.78	30	
UAB	0.95	0.31	21	
SU	0.88	0.94	28	
UAB	0.86	0.85	19	
SU	0.81	0.98	26	
UAB	0.59	1	13	
SU	0.53	0.98	17	
UAB	0.32		7	
	Cohort SU UAB SU UAB SU UAB SU UAB	CohortSensitivitySU0.94UAB0.95SU0.88UAB0.86SU0.81UAB0.59SU0.53UAB0.32	Cohort Sensitivity Specificity SU 0.94 0.78 UAB 0.95 0.31 SU 0.88 0.94 UAB 0.86 0.85 SU 0.81 0.98 UAB 0.59 1 SU 0.53 0.98 UAB 0.32 1	

BMJ Open

Text A.1 Metabolic compound selection, pathway computation, and model development

GA estimation

Metabolites measured by targeted and untargeted MS were aggregated and filtered using Pearson correlation coefficient analyses in relation to GA. The remaining metabolites were mapped to pathways. The value of each pathway was calculated as the weighted sum of the normalized concentrations of metabolites on the pathway divided by the number of metabolites. The weight of each metabolite was the absolute value of the Pearson correlation coefficient in relation to GA. Metabolites having positive or negative coefficients were aggregated separately. That is, a pathway could have two values, one for metabolites positively correlated to GA, and the other for those negatively correlated to GA.

A supervised, cross-validated machine-learning technique XGBoost was developed with the pathway values of samples from full-term patients in the SU cohort. An ensemble of regression trees was generated to give a score estimating the GA. The model was validated on the UAB cohort. For a patient that had multiple samples, an 'integrated' GA estimate was calculated by shifting the GA estimates of every sample to a reference point for obtaining the median. Error distribution of GA estimation based on patients was calculated as the distribution of the differences between the 'integrated' GA estimates and the US measurement.

PTB prediction

BMJ Open

Samples collected before 35 weeks' GA were selected to build the model to predict PTB. Mann–Whitney U test was used to select the initial candidate metabolites that were then mapped to pathways. The value of each pathway was calculated as the weighted sum of the normalized concentrations of metabolites on the pathway divided by the number of metabolites. The weight of each metabolite was the absolute value of the ratio of median of full-term samples to PTB samples. Like the GA estimation, pathways could have two values that depended on the ratio of median greater or less than 1. An XGBoost model was developed utilizing samples from the SU cohort and validated with the UAB cohort. ore true only

Page 49 of 50

BMJ Open

Text A.2 Metabolite model vs. IBP4/SHBG in predicting PTB

We conducted ELISA tests on the SU and UAB cohorts to evaluate the IBP4/SHBG signature, a predictor that was validated in a prospective study as a predictor of spontaneous PTB. Commercial kits Human IGFBP4 ELISA Kit (Abcam, Burlingame, CA, USA) and Human SHBG Quantikine ELISA Kit (R&D System Inc.) were used. AUC of the predictor was calculated in different GA intervals and with different maternal BMI values, and was compared to the performance of the metabolic model.

With a BMI of >22 and \leq 37 kg/m², the AUC values of the IBP4/SHBG predictor peaked at 15–20 weeks' GA (SU: 0.833; UAB: 1), and dropped rapidly after 20 weeks (Figure A below). The AUC values were lower with extreme BMI (0.7 at BMI \leq 20 kg/m² and 0.63 at BMI >27 kg/m²; see Figure B below). These findings are consistent with the previous validation study. Compared with the IBP4/SHBG predictor, the metabolic model has a more stable AUC performance over the gestation and different BMI values in SU (*P* = 0.03). In UAB at >18 weeks' GA, the AUC of IBP4/SHBG dropped from 0.6 to 0.3, while the AUC of the metabolic model was above 0.8. STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what	2-3
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6.7
	U U	recruitment, exposure, follow-up, and data collection	0,7
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods	6.7
1 wi wi vi p wi to	0	of selection of participants Describe methods of follow-up	0,7
		<i>Case-control study</i> —Give the eligibility criteria and the sources and	
		methods of case ascertainment and control selection. Give the rationale for	
		the choice of cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number	
		of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes exposures predictors potential confounders	678
	,	and effect modifiers. Give diagnostic criteria, if applicable	0,7,0
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7
measurement	-	assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	
Ouantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7.8
		applicable, describe which groupings were chosen and why	- ,-
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	8
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable explain how loss to follow-up was	
		addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and	
		controls was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking	
		account of sampling strategy	
		(e) Describe any sensitivity analyses	8
			1

Continued on next page

Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing	
		follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	
		Case-control study-Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	
		applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.