Supplemental Materials for Channel Embedding for Informative Protein Identification from Highly Multiplexed Images

1 Calculation of Ground Truth Importance

We define a ground truth importance of a target i as

$$g_i = \frac{1}{\mu_i^1} \left(\left| \mu_i^1 - \mu_i^2 \right| + \left| \mu_i^2 - \mu_i^3 \right| + \left| \mu_i^3 - \mu_i^1 \right| \right), \tag{1}$$

where μ_i^t is the average intensity of target *i* across all single cells of a tumor grade *t*.

2 More Quantitative Results on the Synthetic Dataset

We report the Recall@K for different values of K *i.e.*, different number of target proposals from an informative channel identification method. Table 1 compares informative channel identification methods in terms of Recall@K. It is observable that our method outperforms the other approaches for all values of K.

Table 1: Quantitative comparison on the synthetic dataset.

	$\operatorname{Recall}^{@}K$									
Method	K=6	K=7	K=8	K=9	K = 10	K = 11	K=12	K=13		
ResNet50 [4]	50.0	50.0	66.7	66.7	66.7	66.7	66.7	83.3		
ResNet3D-18 [20]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0		
BSN [10]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Ours	83.3	83.3	100.0	100.0	100.0	100.0	100.0	100.0		

3 Target Importance for Tumor Grade Classification

Fig. 1 shows the measured target importance for tumor grade classification on the breast cancer dataset [5]. While the conventional methods [4, 10, 20] combined with interpretation techniques [15, 18] detect only up to five targets among the top-10, seven targets identified by our pipeline overlap with the top-10 single cell derived ground-truth.

(e) Single-cell derived ground-truth

Fig. 1: Measured target importance for tumor grade classification on the breast cancer dataset [5], ordered by importance. We highlight the top 10 targets.

4 More Quantitative Results for Tumor Grade Classification

To fairly reflect the quality of our method, we report the Spearman correlation among the top-K channels for varying values of K. In practice, clinicians prioritize the accuracy among the top-K important channels. As shown in Table 2, for all values of K, our model outperforms baseline methods.

	Spearman Coeff. among top- K									
Method	K=10	K = 15	K=20	K = 25	K = 30					
ResNet50 [4]	-37.0	23.6	-13.5	-15.6	9.7					
ResNet3D-18 [20]	-1.8	12.9	-6.8	29.7	27.3					
BSN [10]	26.1	41.4	-6.8	-12.5	-10.0					
Ours	62.4	61.1	56.1	24.2	38.7					

Table 2: Quantitative comparison for tumor grade classification.