Cell Reports, Volume 33

Supplemental Information

Gbx2 Identifies Two Amacrine Cell Subtypes

with Distinct Molecular, Morphological,

and Physiological Properties

Patrick C. Kerstein, Joseph Leffler, Benjamin Sivyer, W. Rowland Taylor, and Kevin M. Wright

Figure S1. *Gbx2^{CreERT2-IRES-EGFP* expression is consistent throughout the mouse development and adulthood. Related to Figure 1.}

(A-C) Adult (P35) Retinal cross-sections from $Gbx2^{CreERT2-IRES-EGFP}$; $R26^{LSL-tdTom}$ mice dosed with of Tamoxifen (60mg/kg) at (A) E16, (B) P0, (C) P28. (D-I) Z-projections through the cell bodies of the inner nuclear layer (D-F) and ganglion cell layer (G-I) from retinal flatmounts of $Gbx2^{CreERT2-IRES-EGFP}$; $R26^{LSL-tdTom}$ mice administered 2.0mg/day tamoxifen for (D, G) 1 day (dose), (E, H) 2 days, (F-I) 3 days. Scale bar, 25µm in (A) and (D).

Figure S2. Gbx2+ retinal neurons are amacrine cells. Related to Figure 1. Cross-sections of an adult retina from a *Gbx2^{CreERT2-IRES-EGFP}*; *Rosa26^{LSL-tdTom}* mouse

labeling the total Gbx2+ AC population. Left: Neurotransmitter markers, (**A**) Pax6, (**B**) RBPMS, and (**C**) Chx10, label amacrine cells, retinal ganglion cells, and bipolar cells in the inner nuclear layer and ganglion cell layer, respectively. Right: Merged images showing both the select neurotransmitter marker (magenta) and Gbx2+ ACs (green). Arrows denote colocalization between the cell marker and Gbx2+ ACs, and arrowheads denote Gbx2+ ACs that do not colocalize with the specific cell marker. Scale bar, 25 μ m.

Figure S3. Gbx2+ AC subpopulations have consistent density and spacing across the retina. Related to Figure 1. (A)Tdtomato expressing Gbx2+ ACs in the ganglion cell layer (GCL) in a retina flatmount from a Gbx2^{CreER}; R26^{LSL-tdTomato} mouse. (B) Gbx2+ ACs (green) immunolabeled for calretinin (Calr, magenta) in the GCL. (C-D) Masked image of cell bodies of Gbx2+ neurons (C) Calretinin+ and (D) Calretinin- from the image in (B). (E) TdTomato expressing Gbx2+ ACs in the inner nuclear layer (INL). (F) Gbx2+ ACs (green) immunolabeled for calretinin (magenta) in the INL. (G-H) Masked image of cell bodies of Gbx2+ neurons (C) Calr+ and (D) Calr- from the image in (F). (I-K) Z-projection through the GCL and INL (pseudocolored green and magenta, respectively) for (I) all Gbx2+ ACs, (J) Calr+ Gbx2+ ACs, and (K) Calr- Gbx2+ ACs. (I) Quantification of the cell density of Calr+ and Calr- Gbx2+ ACs in the GCL and INL (n= 24 measurements from 4 mice). (M-N) The density recovery profile (DRP) of Calr+ and Calr- Gbx2 ACs in the (M) GCL and (N) INL (n= 32 measurements from 4 mice, respectively). (O-Q) The cell densities in the four quadrants of the retina of Gbx2+ AC in the (O) GCL and (P) INL (n= 32 measurements from 4 mice, respectively). (Q The cell density of Gbx2+ AC populations in the central and peripheral retina (n= 32 measurements from 4 mice, respectively). Data represented as mean ± SEM. Scale bar, 50 µm in (A).

Gbx2^{CreERT2-ires-EGFP}; Rosa26^{LSL-tdTomato}

Figure S4. Flow cytometry plot of dissociated retinal neurons isolated from a *Gbx2^{CreERT2-IRES-EGFP*; *Rosa26^{LSL-tdTomato}* mouse. Related to Figure 2. Using fluorescence-activated cell sorting, Gbx2+ ACs (tdTomato+) from P8 retina were}

isolated and separated into the S5-Gbx2+ ACs (tdTomato+, EGFP^{low}) and the S3-Gbx2+ ACs (tdTomato+, EGFP^{high}) groups for bulk RNA sequencing.

Figure S5. Gbx2+ ACs do not colocalize with many canonical neurotransmitter cell markers. Related to Figures 2 and 3.

Cross-sections of an adult retina from a $Gbx2^{CreERT2-IRES-EGFP}$; $Rosa26^{LSL-tdTom}$ mouse labeling the total Gbx2+ AC population (high-TM, 2.0mg tamoxifen). Left: Left, retinal sections from a $Gbx2^{CreERT2-IRES-EGFP}$; $Rosa26^{LSL-tdTom}$ mouse immunolabeled with (**A**) neuronal nitric oxide synthase (nNOS), (**B**) vesicular glutamate transporter 3 (Vglut3), (**C**) choline acetyl transferase transporter (ChAT), and (**D**) tyrosine hydroxylase (TH). Right: Merged images of Gbx2+ ACs (green) and the neurotransmitter marker (magenta). Arrows denote colocalization between the cell marker and Gbx2+ ACs, and arrowheads denote Gbx2+ ACs that do not colocalize with the specific cell marker. Scale bar, 25 µm.

Dendrite Orientation by Retina Location

Figure S6. Dendritic morphology and orientation of Gbx2+ ACs by retina location. Related to Figure 4.

(A-C) S3- and S5-Gbx2+ AC morphology in (A) total dendrite length, (B) number of branches, (C) dendrite branch self-crossover. n=15, 7 cells for S3 and S5 respectively. (D, E) S3-stratifying Gbx2+ ACs show a similar dendrite asymmetry in (D) each retinal quadrant (n=3-5 retinas per quadrant) and (E) between central and peripheral retina (n=4, 9 retinas respectively). (F-I) A polar plot of dendrite orientation of S3-targeting Gbx2+ ACs in each retinal quadrant; black trace represents the mean and colored traces represent neurons quantified from a single retina (n >20 neurons per retina, n= 4 retinas). D, dorsal; V, ventral; N, nasal; T, temporal. Data represented as mean \pm SEM. *p<0.05 by an unpaired t-test with a Welch's correction.