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Derivation of exemplary update equations

A. Q-value Active Inference

In the simple example of Section 5.2 under the partial mean-field assumption (23), and
in the case when the desired distribution pdes is combined with the generative model p0
via the value function Q as shown in Equation (24), i.e. if φ ∝ p0(x,X ′,S, A) eQ(A),
then the full free energy F (q‖φ) can be written as

F (q‖φ) = F (q(S|A)q(A)‖p0(x|S)p0(S|A)p0(A)eQ(A))

=
〈
F
(
q(S|A)‖p0(x|S)p0(S|A)

)︸ ︷︷ ︸
=: FS(A)

−Q(A)
〉
q(A)

+DKL(q(A)‖p0(A)) , (A1)

where, explicitly

FS(A)−Q(A) =

〈
log

q(S) q(S′|A)
∑
s′ p0(X ′|s′)q(s′|A)

p0(x|S)p0(S) p0(S′|S,A) pdes(X ′)p0(X ′|S′)

〉
q(X′,S|A)

. (A2)

Thus, optimizing (A1) over q(A), while keeping q(S|A) fixed, results in a Boltzmann
distribution with prior p0(A) and energy FS(A)−Q(A). When optimizing F (q‖φ) with
respect to q(S) while keeping q(S′|A) and q(A) fixed, we have

q∗(S) = argmax
q(S)

F (q‖φ) = argmax
q(S)

〈FS(A)〉q(A)

= argmax
q(S)

〈
log

q(S)

p0(x|S)p0(S)e〈T 〉q(S′|A)q(A)

〉
q(S)︸ ︷︷ ︸

F
(
q(S)
∥∥p0(x|S)p0(S)e〈T〉

)
, (A3)

where T := log p0(S′|S,A) is shorthand for the log-transition probability. Hence, from
(A3) we can read off the solution q∗(S) in virtue of the general optimum (14) of
variational free energy. While here it was enough to optimize 〈FS〉q, because it contains
the only dependencies of F (q‖φ) on q(S), this is not the case for q(S′|A), since also Q
depends on q(S′|A). Thus, when optimizing (A1) over q(S′|A) while keeping q(A) and
q(S) fixed, one has to optimize 〈FS −Q〉 which does not take the form of a free energy
in q(S′|A) due to the functional dependency of q(X ′|A) =

∑
s′ p0(X ′|s′)q(s′|A) on

q(S′|A) that appears in (A2). However, this type of dependency is largely ignored in
the Active Inference literature (as for example noted in the appendix of [1]), since the
optimization with respect to q(S′|A) would not have a closed-form solution otherwise.

Once this term is ignored, then the objective for q(S′|A) takes a very simple form,

q∗(S′|A) = argmax
q(S′|A)

F (q‖φ) ≈ argmax
q(S′|A)

〈
log

q(S′|A)

e〈T 〉q(S)

〉
q(S′|A)

, (A4)
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from which we can again read off the resulting update equation. In total, from
(A1),(A3), and (A4) we obtain the set of equations

q∗(S) = 1
Z p0(x|S)p0(S)e〈T 〉q(S′|A)q(A) (A5a)

q∗(S′|A) ≈ 1
Z(A) e

〈T 〉q(S) (A5b)

q∗(A) = 1
Z p0(A)e−FS(A)+Q(A), (A5c)

where Z denotes the respective normalization constants and T = log p0(S′|S,A).
It is important to note, however, that update equations in Active Inference resulting

from a mean-field assumption (even if it is a partial mean-field assumption such as (23))
should be taken with care, since—as is demonstrated in the grid world simulations in S2
Notebook—even in very simple situations the resulting agents fail to correctly plan
actions that lead to desired states.

B. Direct Active Inference (variational Control as Inference)—mean-field
assumption

Here, we derive the update equations resulting from the minimization of the variational
free energy for the reference defined in Equation (25), i.e. a variational formulation of
Control as inference [2], under the mean-field assumption (23). We start by writing the
variational free energy F (q‖φ) in a form analogous to (A1), where now φ is given by
p0(X ′|S′)p0(x,S|A)p0(A),

F (q‖φ) =
〈
F (q(S|A)‖p0(x,S|A))︸ ︷︷ ︸

=FS(A)

−G(A)
〉
q(A)

+DKL(q(A)‖p0(A)) ,

where
G(A) :=

〈
〈log pdes(X

′)〉p0(X′|S′)︸ ︷︷ ︸
=:g(S′)

〉
q(S′|A)

.

Note that, compared to Q-value Active Inference, here we do not have to make any
additional approximations, because G only depends linearly on q(S′|A).

Similarly to above, when optimizing with respect to q(A) while keeping q(S) and
q(S′|A) fixed, we obtain that q∗(A) is a Boltzmann distribution with energy FS −G
and prior p0(A). Optimizing q(S) while keeping q(A) and q(S′|A) constant has the
same result as shown in (A5a) because as before the only dependencies on q(S) are in
FS. Finally, in order to read off the solution of the optimization with respect to q(S′|A)
while keeping q(S) and q(A) constant, we can rewrite FS −G as follows

q∗(S′|A) = argmax
q(S′|A)

F (q‖φ) = argmax
q(S′|A)

(
FS(A)−G(A)

)
= argmax

q(S′|A)

〈
log

q(S′|A)

e〈T 〉q(S)+g(S′)

〉
q(S′|A)

,

so that in total we obtain the set of equations

q∗(S) = 1
Z p0(x|S)p0(S)e〈T 〉q(S′|A)q(A) (A6a)

q∗(S′|A) = 1
Z(A) e

〈T 〉q(S)+g(S
′) (A6b)

q∗(A) = 1
Z p0(A)e−FS(A)+G(A), (A6c)

where Z denotes the normalization constants, and again T = log p0(S′|S,A).
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It is noteworthy that recently another free energy approach similar to Active
Inference has been introduced that does not make use of variational free energy, but of a
different functional termed generalized free energy [3]. Despite of the different
functional form, this version uses a reference function that is similar to the direct Active
Inference approach [4], where the desired distribution is also multiplied directy to the
generative model but with a renormalization that results in a modified generative model
over observations, states, and actions. Using this renormalized reference in a variational
free energy approach would result in trivial inference reproducing the fixed prior p0(A),
corresponding to Bayes’ conditioning the modified generative model on the past
analogous to perceptual Bayesian inference, e.g. p(A|X) = p0(A) in the case of the
one-step example. In contrast, the minimization of the free energy functional used in [3]
does not correspond to a Bayesian inference process, which is why we do not further
discuss it here.

C. Direct Active Inference (variational Control as Inference)—Bethe
assumption

Here, we derive the update equations resulting from the minimization of the variational
free energy for the reference (25) under a Bethe approximation, which therefore is a
more precise variational formulation of Control as Inference as the mean-field
approximation of the previous section. In fact, it turns out that such equations are
equivalent to Belief propagation [5], a well-known inference method that produces exact
marginals in tree-like graphs [6], such as the probabilistic models considered in the
article and in the Active Inference literature.

Analogous to the previous section, without any specific restrictions on q we can
write the total free energy for the one-step example from Section 5.2 with the reference
(25a) as

F (q‖φ) =

〈
log

q(X ′, S, S′|A)

p0(R= 1, X= x,X ′, S, S′|A)

〉
q(X′,S′,S|A)q(A)︸ ︷︷ ︸

=: 〈F (A)〉q(A)

+DKL(q(A)‖p0(A))

from which it immediately follows that minimizing with respect to q(A), while
considering q(X ′, S, S′|A) constant, results in a Boltzmann distribution with energy
F (A) and prior p0(A). F (A) is the variational free energy of q(X ′, S, S′|A) with respect
to the reference

p0(R= 1, X= x,X ′, S, S′|A) = p0(x|S)p0(S)︸ ︷︷ ︸
=:f1(S)

p0(S′|S,A)︸ ︷︷ ︸
=:f2(S,S′)

p0(X ′|S′)︸ ︷︷ ︸
=:f3(S′,X′)

pdes(X
′)︸ ︷︷ ︸

=:f4(X′)

.

Thus, minimizing F (A) with respect to q(X ′, S, S′|A) without any restrictions or
simplifications results in the exact Bayes’ posterior

p(X ′, S, S′|A,R = 1, X = x) =
1

Z(A)
f1(S) f2(S, S′) f3(S′, X ′) f4(X ′) ,

where Z(A) denotes the corresponding normalization constant. The problem that we
want to solve is to find an approximation to this Bayes’ posterior that is more precise
than the mean-field approximation of the previous section but requires less involved
computations than the determination of Z(A). While one attempt is to partition the
full graph into smaller graphs and apply a naive mean-field approximation inside of each
subgraph, known as a structured mean-field approximation [7], the Bethe approximation
follows a slightly different approach. It is the simplest version of the cluster variation
methods often attributed to Kikuchi [8], a family of region-based free energy
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approximations [9], where one keeps beliefs over different sections of the factor graph.
Specifically, in the Bethe assumption, the regions consist of each factor and its
neighbouring nodes, which can also be seen as allowing pair-wise interactions. Following
the systematic treatment in [9], the Bethe approximation for our example consists of
seven belief functions, one for each factor, b1, . . . , b4, and one for each variable, bS , bS′ ,
and bX′ ,

q(S, S′, X ′|A) =
b1(S)b2(S, S′)b3(S′, X ′)b4(X ′)

bS(S)bS′(S′)bX′(X ′)
(A7)

where the marginals of the factor beliefs are required to be consistent with the
single-variable beliefs. Thus, the variational free energy F (A) can be written as

F (A) =

4∑
k=1

〈
log

bk
fk

〉
bk

−
∑

Y ∈{S,S′,X′}

〈log bY 〉bY

which has to be minimized under the consistency and normalization contraints, leading
to the Lagrangian

F (A) +
∑
s

λ1(s)
(
bS(s)− b1(s)

)
+
∑
s

λ2S(s)

(
bS(s)−

∑
s′

b2(s, s′)

)
+
∑
s′

λ2S′(s′)

(
bS′(s′)−

∑
s

b2(s, s′)

)

+
∑
s′

λ3S′(s′)

(
bS′(s′)−

∑
x′

b3(s′, x′)

)
+
∑
x′

λ3X′(x′)

(
bX′(x′)−

∑
s′

b3(s′, x′)

)
+
∑
x′

λ4(x′)
(
bX′(x′)− b4(x′)

)
+

4∑
k=1

γk

(∑
bk − 1

)
+

∑
Y ∈{S,S′,X′}

γY

(∑
bY − 1

)
where the Lagrange multipliers for the consistency constraints are denoted by λ and the
Lagrange multipliers for the normalization constraints by γ. The equations for the
beliefs at the stationary points (zeroes of the derivatives of the Lagrangian) are

b1(s) ∝ f1(s) eλ1(s) , bS(s) ∝ eλ1(s) eλ2S(s) ,

b2(s, s′) ∝ f2(s, s′) eλ2S(s) eλ2S′ (s′) , bS′(s′) ∝ eλ2S′ (s′) eλ3S′ (s′) ,

b3(s′, x′) ∝ f3(s′, x′) eλ3S′ (s′) eλ3X′ (x′) , bX′(x′) ∝ eλ3X′ (x′) eλ4(x
′) ,

b4(x′) ∝ f4(x′) eλ4(x
′) ,

where the proportionality sign ∝ means that the left-hand side results from normalizing
the right hand-side to obtain a probability distribution. By writing ml := eλl for all
l ∈ {1, 2S, 2S′, 3S′, 3X ′, 4}, we obtain from the stationarity conditions and the
consistency constraints

m2S(s) ∝ f1(s) (A8a)

m1(s) ∝
∑

s′
f2(s, s′)m2S′(s′) (A8b)

m3S′(s′) ∝
∑

s
f2(s, s′)m2S(s) (A8c)

m2S′(s′) ∝
∑

x′
f3(s′, x′)m3X′(x′) (A8d)

m4(x′) ∝
∑

s′
f3(s′, x′)m3S′(s′) (A8e)

m3X′(x′) ∝ f4(x′) . (A8f)
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The update equations for the beliefs in (A7) can be obtained by iterating the equations
in (A8) and using the stationarity conditions that express the beliefs in terms of the ml.
Note that the quantities denoted by ml are usually interpreted as local messages that
are sent between the nodes and factors of the underlying graphical model [9], e.g. m3S′

is considered a message sent from node S′ to factor 3, which can be used to determine
the message m4 from factor 3 to node X ′ by weighing with f3 and summing over S′, etc.
By this identification, variational inference under the Bethe approximation is equivalent
to belief propagation. While in (A8) there is at most one message that is multiplied to
the factor fk before the sum is taken, in more complex factor graphs, where more than 2
nodes are connected to a factor, the messages coming in to a factor from the neighboring
nodes are multiplied before they are summed to calculate the outgoing message, which
is why this type of message-passing is also known as the sum-product algorithm.
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