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Separation of model and state variables

In Q-value Active Inference, action and perception do not optimize the same variational
free energy but two different free energy expressions. This is motivated from the
separation of model variables M and state variables in standard variational Bayesian
inference, where the full free energy can be split up into a sum of a state free energy FM

averaged over models M and a KL term that is independent of state distributions.
Optimizing the full free energy can then be done separately by alternatingly doing
perceptual inference by optimizing FM for each model M and optimizing the full free
energy to find the model distribution q(M). In Active Inference, where actions A might
be thought of analogous to models M in Bayesian inference, the full free energy is
analogously split up into a sum of a state free energy FA averaged over actions A and a
KL term which—in contrast to standard Bayesian inference—does depend on state
distributions. However, Active Inference essentially ignores this extra q-dependency by
following the analogous optimization scheme to Bayesian inference: one alternatingly
optimizes FA with respect to state distributions and then the full free energy with
respect to the action distributions q(A). In particular, this separation into state and
action free energies is not a consequence of optimizing the full variational free energy,
but a deliberate choice made by Active Inference.

In the following, we discuss in more detail how this separation follows from
optimizing the full free energy in standard Bayesian inference and highlight how
Q-value Active Inference adopts the same optimization scheme but by giving up the
optimization of a single variational free energy.

A. Bayesian inference

Consider the case of multiple probabilistic models pm(X,Z) that are indexed by a label
m, where each pm describes a different probabilistic relationship between data X and
hidden states Z. Given data X = x, one could find the best m by selecting the model
with the largest marginal likelihood pm(x) =

∑
z pm(x, z). A popular method to

accomplish this is the basic EM algorithm [1], where m is optimized greedily while Z is
inferred using Bayesian inference for a given m (either exact or approximate). In a
purely Bayesian treatment, one also assumes a prior distribution over models p0(M), so
that the full joint over data X, hidden states Z, and models M becomes

p0(X,Z,M) := pM (X,Z) p0(M) =: p0(X,Z|M) p0(M) .

The Bayes’ posterior p(M |X) can then simply be determined from the Bayes’ posterior
p(Z,M |X) through marginalization over Z. As discussed in the article (Section 3.2), if
direct Bayesian inference is infeasable then a variational formulation might be useful,
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where trial distributions q(Z,M) over the unknown variables M and Z are fitted to the
reference φ(Z,M) := p0(x, Z,M) by minimizing the variational free energy

F (q‖φ) =
〈
log

q(Z,M)

p0(x, Z,M)

〉
q(Z,M)

.

By writing q and p0 in their factorized forms

q(Z,M) = q(Z|M)q(M), p0(X,Z,M) = p0(X,Z|M)p0(M) ,

the variational free energy can be decomposed as

F (q‖φ) =
〈
log

q(Z|M)q(M)

p0(x, Z|M)p0(M)

〉
q

=
〈〈

log
q(Z|M)

p0(x, Z|M)

〉
q(Z|M)︸ ︷︷ ︸

=:FM

〉
q(M)

+
〈
log

q(M)

p0(M)

〉
q(M)

= 〈FM 〉q(M) +DKL(q(M)‖p0(M)) . (A1)

Notably, the minimization of F with respect to q splits up into the minimization of the
free energy over states

FM = F
(
q(Z|M)

∥∥p0(x, Z|M)
)

(A2)

with respect to q(Z|M), and the minimization of (A1) with respect to q(M). In
particular, the inference over models and states, (M,Z), separates into inference over
hidden states for each model, which determines FM for each M , and inference over M .

B. Active Inference

In Q-value Active Inference, action selection is treated similarly to model selection in
Bayesian inference discussed in the previous section. However, the KL term in (A1) also
depends on trial distributions over states, which means that a separation into action
and state variables analogous to the separation in model selection is not possible when
considering the problem of action and perception as the minimization of a single free
energy functional, which is usually the conceptual starting point in the Active Inference
literature [2, 3].

More precisely, as discussed in Section 5, the reference function φ that enters the
variational free energy in Q-value Active Inference is constructed from a given
probabilistic model p0 and a value function Q by replacing the fixed prior p0(A) over
actions with the modified distribution p̃0(A) :=

1
Z p0(A)e

Q(A). As can be seen
exemplarily in the one-step case in Equation (26), the value function Q depends on trial
distributions q over hidden states and therefore p̃0(A) depends on q as well. Despite this
dependency, the total free energy F (q‖φ) can still be written as

F (q‖φ) =
〈
log

q(X ′,S|A)q(A)
p0(x,X ′,S|A)p̃0(A)

〉
q

= 〈FA〉q(A) +DKL

(
q(A)‖p̃0(A)

)
(A3)

with
FA := F

(
q(X ′,S|A)

∥∥p0(x,X ′,S|A)
)
. (A4)

in the case of the one-step example of Section 5.2. Equations (A3) and (A4) are
analogous to Equations (A1) and (A2), respectively. However, when optimizing the full
free energy F (q‖φ) with respect to the factor q(X ′,S|A), one would have to consider
both terms in the decomposition (A3), since, unlike p0(M) in the previous section, here
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p̃0(A) does depend on trial distributions over states (the factor q(S′|A)). It should be
noted that this dependency is non-linear and non-local, and therefore a closed-form
solution cannot be derived (cf. (ii) in Section 5.3).

In Active Inference, this complication is avoided by simply ignoring the
q-dependency of Q when deriving the update equations, or, put differently, one
optimizes two different free energies for perception and action: one first optimizes FA

with respect to state distributions for each action A and then one optimizes the full free
energy (A3) with respect to q(A). This is in analogy to Bayesian model selection of the
previous section, where this separation was a consequence of the minimization of the full
free energy. However, here, due to the extra dependency of p̃0(A) on q, it is not a
consequence but a choice made by Active Inference. This means that one no longer does
variational inference over the combined set of states and actions, but variational
inference over states with free energy FA and variational inference over actions with free
energy (A3). In particular, there is not a single free energy that is optimized by both
perception and action, but two different ones.
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