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Supplementary Note 
McBride, Mashtalir et al., 2020 
 
Data Processing and Visualization for ChIP Samples 
Alignment of ChIP-seq data was done using Bowtie2, version 2.1.01 and reads were mapped to 
the hg19 human reference genome, using the parameter –k 1.  

To process the aligned data, peaks were called using MACS22 version 2.1.0 against an 
input sample with a q = 0.001 cutoff and broad peaks were called for each antibody in each cell 
line and condition. Those peaks that mapped to unmappable chromosomes (any that were not 
chr1–22, X or Y) or were located in blacklisted regions of ENCODE were excluded. For 
downstream analysis of data, bam files were generated with duplicates removed using the 
samtools rmdup command and the –b option. All ChIP-seq tracks were obtained from the 
bedGraphToBigWig script (UCSC) using bedgraph files generated with MACS2 using the –B –
SPMR options. ChIP-seq tracks were visualized using IGV version 2.4.16 (Broad Institute).  

To identify peaks of BAF complex localization, the merged peak set for V5 in V5-SS18 WT 
and V5-SS18-SSX1 conditions was used with bedtools merge –d 2000 to cause neighboring 
broad peaks to be called as a single peak. Read counts across peak sets were determined by 
calling the Rsubread v1.26.1 bioconductor package function featureCounts() on bam files. 
Subsequently, these values were divided by the total number of mapped reads divided by one 
million to give a normalized value of RPM for each interval contained within the input bed.  

HTSeq was used to calculate metagene read densities with fragment lengths of 200bp to 
account for fragment size selection that occurs during sonication. Total read counts for each 
region was normalized by the number of mapped reads to calculate reads per million mapped 
reads. The metagene plots were created using mean read densities over all sites for each 
condition around the center of the peak. All ChIP-seq heatmaps were created using these same 
HTSeq read densities with sites were then ranked by mean ChIP-seq signal for the indicated 
antibody and condition. Heatmap visualization was obtained from Python matplotlib using a 
midpoint of 0.5 reads per million to set the threshold of visualization for the heatmap color scale. 
 
Data Processing and Visualization for RNA Samples 
STAR was used to determine RPM values for each sample. Significance was determined with the 
DESeq2 R package with input raw read counts obtained from Rsubread featureCounts against 
the hg19 refFlat annotation. Small RNA genes (MIR & SNO) were filtered out from the gene lists 
for all analyses. Genes with a significant change in expression were determined with a Bonferri-
corrected p-value of less than 1e-5, a two-fold change in gene expression (|log2FC|>1), and 
inclusion of expressed genes (RPKM ≥ 1 in a minimum of one sample) to identify significantly 
changing genes. For visualization of RNA-seq data, heatmaps were generated by plotting the z-
scores of RPKM values across each sample of the comparison conditions. 
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