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Appendix A

The model and prior specifications are described in the paper. Here we provide de-
tailed MCMC procedure to estimate each factor in the model iteratively following its
conditional distribution. Denote that
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)
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For β and b(i), we denote that
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Prior distributions of the parameters are as follows:

– λg ∼N (0,Σg);
– σ2

g ∼ InverseGamma(ν1,ν2);
– (αT ,γT )T ∼N (µh,Σh);
– ρq ∼ Gamma(ν3,ν4);
– Dk ∼ InverseWishart(Σb,nb);
– βk = (β0k,β1k)

T ∼ N(0,diag{τ2
0 ,τ

2
1})

where the specific values of these priors are provided in the paper. We use “−” to
represent complementary set of the parameter. Conditional distributions used in the
algorithm are as follows.

– λg|λ−g ∼N (µ̃g,Ψ̃g), where
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– ρq|ρ−q ∼ Gamma(ν̃3, ν̃4), where
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– Dk|D−k ∼
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– Implement Metropolis-Hastings Algorithm to sample α and γ from their con-
ditional distributions. Denote the jump covariance matrix as Σ

jump
h . In the tth

iteration, we draw (α;γ)new from N ((α;γ)t−1,Σ jump
h ) and let
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where (·; ·) is for the column juxtaposition of two vectors. If r≥ 1, we set (α;γ)t =
(α;γ)new. Otherwise, we set (α;γ)t = (α;γ)new with probability r.

To sample β and b(i) more efficiently, we adopt the strategy that samples β̂0, β̂1
from their joint distribution. Similarly, we sample factors in each b(i) jointly.

– For β̂ = (β̂0; β̂ T
1 ), take the jump covariance matrix as Σ

jump
β

. In the tth iteration,

we draw β̂ new from N(β̂ t−1,Σ jump
β
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Operator ⊗ in Equation (S8) represents Kronecker Product. And
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Let
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If r ≥ 1, we set β̂ t = β̂ new. Otherwise, we set β̂ t = β̂ new with probability r.
– For each b̂(i) = (b̂(i)0 ; b̂(i)1 ), take the jump covariance matrix as Σ

jump
b . In the tth

iteration, we draw β̂ new from N(β̂ t−1,Σ jump
b ), denote that
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The covariance matrix Σ̂b in Equation (S11) is obtained from marginal distribu-
tion of b(i)k by inserting each factor to corresponding entry.
Let
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If r≥ 1, we set (b̂(i))t = (b̂(i))new. Otherwise, we set (b̂(i))t = (b̂(i))new with prob-
ability r.

Appendix B

As the scheme for individualized prediction is given in the paper, we implement the
following algorithm to estimate ζ j(t + c|t) = ζ j(u|t) for subject j in the testing data
and given c > 0:

1. Draw parameters θ = (α,γ,ρ,Λ ,β ,σ2
g ,Dk, Σ̂b) from their posterior distribution

fitted by the training data.
2. Draw the initial value (b( j))0 that each b( j)

k following N(0,Dk).
3. Implement Metropolis-Hasting algorithm to draw b( j) from its posterior distribu-

tion conditional on θ and R j(t). More specifically, repeat the following steps for
100 to 200 times:
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– Let

r = exp
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– If r ≥ 1, we set (b̂( j))t = (b̂( j))new. Otherwise, we set (b̂( j))t = (b̂( j))new with
probability r.

4. Calculate and record ζ j(t + c|t) in Equation (S15) with b( j) given by step 3.

ζ j(t + c|t) = S(t + c|θ ,b( j))

S(t|θ ,b( j))
= exp
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η
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}
(S15)

5. Repeat steps 1 to 4 for 1000 to 2000 times to estimate average value and confi-
dence interval of ζ j(t + c|t).

Appendix C

In this section, we include supplemental numerical results to our paper, including
(i) the MCMC convergence diagnostic (trace plot and Deweke score) for simulation
study and real data analysis; (ii) the results of sensitivity analysis for our simulation
study in described in Section 4.4 and (iii) the results of the sensitivity analysis on the
choice of the prior in the real data analysis.

Fig. S1 Diagnostic of MCMC sampling in simulation studies. Some important and representative param-
eters are picked (from left hand side to right hand side): b(8)2,1 (coefficient for random effect of subject 8 of
factor 2), β3,1 (coefficient for fixed effect of factor 3) and ΛΛΛ 10,2 (loading factor for the 10th gene corre-
sponding to factor 2). Their Geweke score between the first 10% and the last 50% samples are respectively:
−1.00,−1.04 and−0.67. When the MCMC converge well, the Geweke score can be regarded as a Z-score.
So when it leaves far from standard normal distribution, there is indication for bad convergence of MCMC.
In our cases, their is no indication from trace plots and the Geweke scores for convergence issue of MCMC.



Fig. S2 Diagnostic of MCMC sampling in simulation studies. Some important and representative pa-
rameters are picked (from left hand side to right hand side): b(1)2,1 (coefficient for random effect of subject
1 of factor 2), β3,1 (coefficient for fixed effect of factor 3) and ΛΛΛ 15,3 (loading factor for the 15th gene
corresponding to factor 3). Their Geweke score between the first 10% and the last 50% samples are re-
spectively: 0.00, −0.08 and −0.63. Again, their is no indication from trace plots and the Geweke scores
for convergence issue of MCMC.



Fig. S3 Sensitivity analysis on the hyper-parameters in our prior. For the real data analysis, we double all
the non-zero hyper-parameters except those of the loading factors ΛΛΛ in the prior (the variance parameter
for the prior of ΛΛΛ will have non-essential effect on the scale of the loading factors and the latent variables).
In the left panel, we show the trace plots of the same parameters as Figure S3 for our original choice on
the prior. While in the right panel, we show the corresponding plots for the prior with doubled hyper-
parameters. It can be seen that there is no essential difference between the results from the two choices on
our prior.


