

advances.sciencemag.org/cgi/content/full/6/49/eabb1899/DC1

Supplementary Materials for

Designing high-performance hypergolic propellants based on materials genome

Wen-Li Yuan, Lei Zhang, Guo-Hong Tao, Shuang-Long Wang, You Wang, Qiu-Hong Zhu, Guo-Hao Zhang, Zhang Zhang, Ying Xue, Song Qin, Ling He*, Jean'ne M. Shreeve*

*Corresponding author. Email: lhe@scu.edu.cn (L.H.); jshreeve@uidaho.edu (J.M.S.)

Published 4 December 2020, *Sci. Adv.* **6**, eabb1899 (2020) DOI: 10.1126/sciadv.abb1899

This PDF file includes:

Supplementary Text Figs. S1 to S5 Tables S1 to S5

Supplementary Text

a. Toxicity assessment

The change of luminescence intensity of Vibrio bacterial are recorded after contact with the samples for 15 min. The EC₅₀ values are determined by plotting log Γ against log c, where log Γ = log (inhibition (in %)/100 - inhibition (in %)) and c is the concentration of the test sample. A series aqueous solution of MMH, BmimMHT and BmimMHT/BmimDCA are prepared from 1000 ppm to 0.1 ppm.

b. Density prediction of ionic liquids

Density can be estimated reasonably well by the ratio of molar mass M to the molecular volume V_m . In this work, densities for the screened ionic liquids are estimated by following formula which introduces empirical parameters to reduce calculation errors.

density = a
$$\left[\alpha \frac{M}{V_m} + \beta \left(\frac{\overline{V_s^+}}{\overline{A_s^+}} \right) + \gamma \left(\frac{\overline{V_s^-}}{\overline{A_s^-}} \right) + \delta \right]$$

where V_s^+ is the volume of a cation's surface which shows positive electrostatic potential, V_s^- is the volume of a anion's surface which shows negative electrostatic potential, A_s^+ is the average value of that cation's potential and A_s^- is the average value of that anion's potential. The α , β , γ , δ and a are constants.

d. Comprehensive evaluation criteria of the propellants

Based on the existing literature, we choose 13 representative liquid propellant fuels that are widely used and studied. Their comprehensive behaviours are evaluated from the following aspects.

1.Toxicity: Doses leading to acute toxicity to human or aquatic organisms. This parameter is closely related to the fuels' production and transportation. The toxicity data is comes from literature and MSDS tables.

2.Stability: Temperatures of the decomposition of the fuels. The stability data is from NIST. 3.Volatility: The saturated vapor pressure of the fuels at 298 K, 0.1 MPa. Volatility is closely related to the safety of the fuels in case of combustion and explosion. The source of fuels' volatility is NIST.

4.Ignition delay time: Hypergolic ability of the fuels which affects the structure and the cost of the rocket engine.

5.Energy density of the fuels: The total energy carried by rockets which determines the flight range of the rockets. The unit of energy density is kJ/kg.

e. Code for molecular screening program

Core code is uploaded on GitHub database https://github.com/whyx1993/smallmolecular for download.

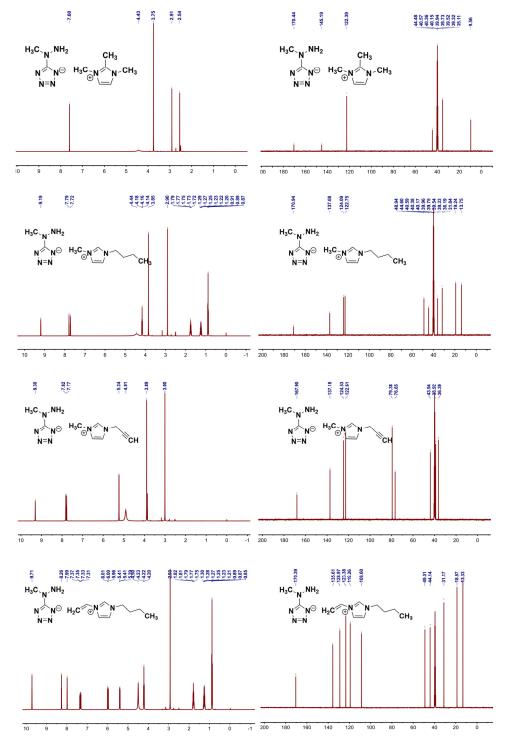
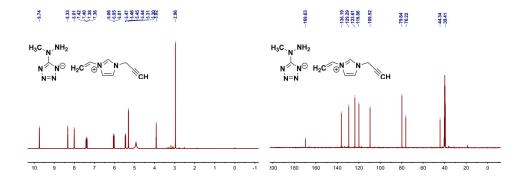
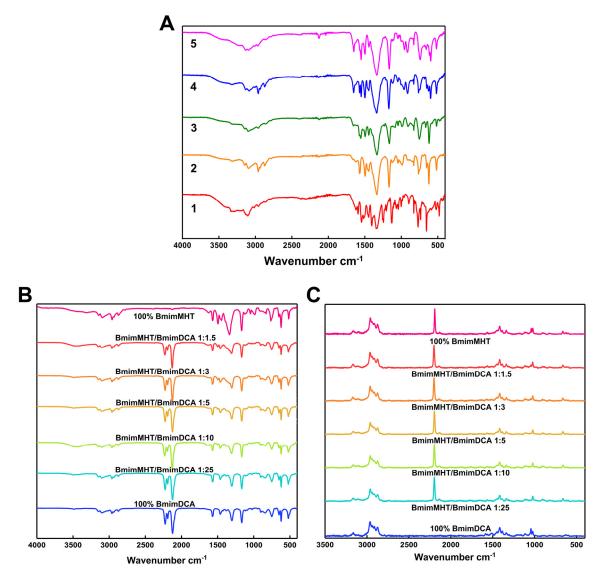




Fig. S1. ¹H spectra (left) and ¹³C spectra (right) of MHT ionic liquids.

Fig. S2. Spectra characterization of MHT ionic liquids. (A) IR spectra of MHT ionic liquids, (B, C) IR and Raman spectra of BmimMHT and BmimDCA ionic liquids with different ratios for homogeneity tests.

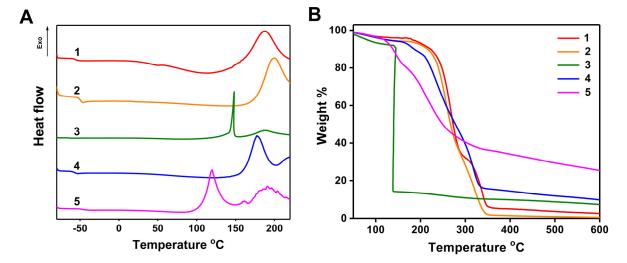
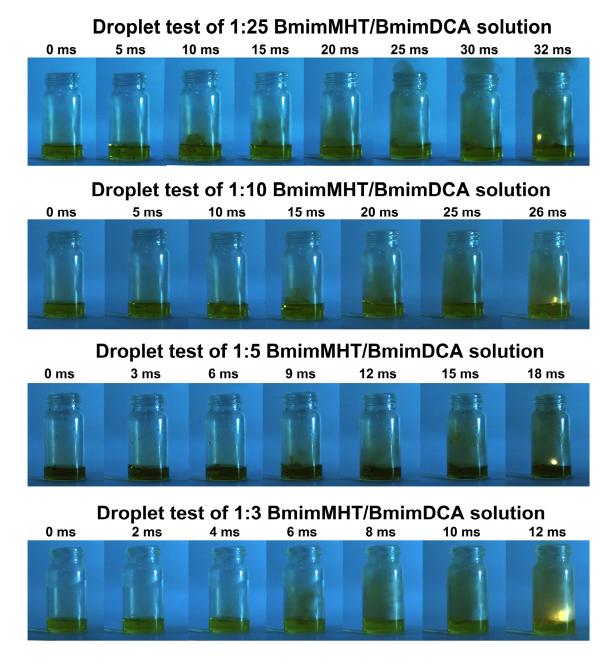
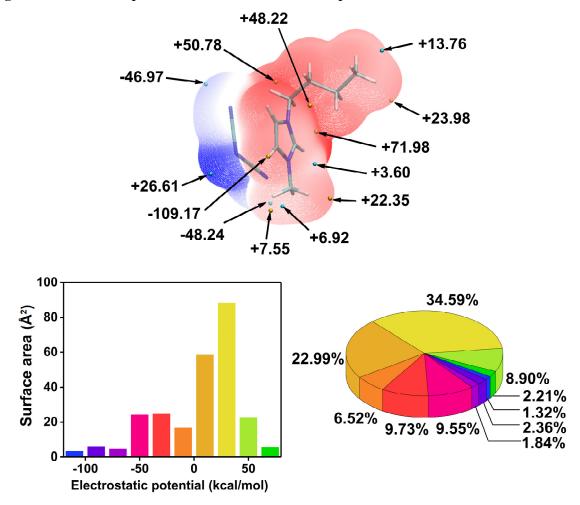




Fig. S3. Thermal evaluation of MHT ionic liquids by (A) DSC and (B) TGA analysis.

Fig. S4. Droplet test of BmimMHT/BmimDCA ionic liquids with a series of molar ratios. Photo credit: Wen-Li Yuan, Sichuan University.

Fig. S5. Electrostatic potential of BmimDCA ionic liquid.

C8H16N8
224.29
293.28
Monoclinic
P2(1)/c
7.70468(17)
11.4875(2)
12.9461(3)
90
96.4806(19)
90
1138.51(4)
4
1.309
0.743
480.0
1.54184
6122
0.0251
1.049
150
0.0544
0.1538
0.0597
0.1603
-0.49

 Table S1. Crystal data and structure refinement for the crystal 1.

 $\frac{\Delta \rho_{\min \text{ and max}} e A}{w=1/\left[\sigma^2 (F_o^2) + (0.0460P)^2 + 0.23P\right] P = (\text{Max}(F_o^2, 0) + 2F_c^2)/3}$

ММН		BmimMHT		BmimMHT/BmimDCA		
log C	Inhibition	log C	Inhibition	log C	Inhibition	
0.82	-0.66	1.36	-1.29	2.04	-2.58	
1.18	-0.51	1.64	-1.03	2.29	-1.84	
1.55	-0.34	1.91	-0.65	2.54	-0.74	
1.91	-0.05	2.18	0.14	2.73	-0.16	
2.27	0.39	2.45	0.93	3.02	0.40	
2.64	0.54	2.73	1.16	3.31	0.81	
3.00	0.65	3.00	1.33	3.40	1.17	

Table S2. Toxicity assessment of MMH, BmimMHT and BmimMHT/BmimDCA ionic liquids. RmimMHT

Anion Anion **Energy gap** Density electrosta Surface номо LUMO No. (g/cm^3) (eV) tic Area potential (Å²) 300 5.41/5.00 -83.44 209.22 1.19 5.86 eV 0.45 eV 301 5.48/5.06 -85.04 213.40 1.18 0.51 eV 5.99 eV 377 4.86/4.94 -85.24 210.15 1.20 5.25 eV 0.39 eV 378 4.91/4.94 -90.66 181.18 1.19 0.39 eV 5.30 eV 381 4.88/5.30 -85.51 209.53 1.20 0.75 eV 5.63 eV 382 4.88/5.31 -91.61 182.17 1.19

5.64 eV

0.76 eV

Table S3. Molecular orbitals, hypergolic reactivity and density prediction of screened anion molecules.

	-					
452	1.78 eV	5.34 eV	3.56/6.33	-85.95	206.11	1.20
453	1.84 eV	5.42 eV	3.58/6.39	-86.66	205.99	1.20
456	2.26 eV	5.70 eV	3.44/6.81	-93.85	179.39	1.19
457	0.86 eV	5.71 eV	4.85/5.41	-90.09	177.92	1.19
488	2.16 eV	4.73 eV	2.57/6.71	-101.36	146.00	1.22
490	1.84 eV	4.33 eV	2.49/6.39	-93.42	176.15	1.23
503	0.55 eV	5.88 eV	5.33/5.10	-99.67	146.39	1.23

505	ونی کو	5.42 eV	5.24/4.73	-91.13	179.24	1.23
510	0.15 eV	4.46 eV	4.31/4.70	-99.26	144.34	1.24

Toxicity (1	mg/kg)	Stability (°C)			
Concentration	Score	Temperature	Score		
5001-15000	5	> 201	5		
501-5000	4	200-101	4		
51-500	3	100-51	3		
1-50	2	0-50	2		
< 1	1	< 0	1		
Volatility	(kPa)	Ignition delay	time (ms)		
Saturated vapor pressure	Score	Time	Score		
Nonvolatile	5	< 5	5		
< 10	4	5-10	4		
11-200	3	10-50	3		
201-1000	2	> 50	2		
> 1001	1	Unhypergolic	1		
Energy density (kJ/kg)					
Heat	Score				
>40000	5				
40000-30000	4				
30000-20000	3				
20000-10000	2				
<10000	1				

 Table S4. Comprehensive evaluation criteria of the propellants.

	Toxicity	Stability	Volatility	ID time	Energy density
Kerosene	3	4	4	1	5
UDMH	2	2	3	5	3
Liquid H ₂	5	1	1	1	2
Ethanol	5	2	4	1	3
Methanol	3	2	3	1	2
Liquid Methane	5	1	1	1	3
Hydrazine	1	2	4	5	2
Methyl hydrazine	2	2	4	5	3
Propane	5	1	1	1	3
Ethylene	5	1	1	1	2
Propylene	5	1	2	1	3
n-Butane	5	1	3	1	3
n-Pentane	5	2	3	1	4
BmimDCA	4	5	5	3	4
BmimDCA/BmimMHT	4	5	5	4	4

Table S5. Values of currently liquid propellants and MHT ionic liquids propellants.