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A Computational Phenotype of Disrupted Moral Inference in 
Borderline Personality Disorder 

Supplemental Information 

SUPPLEMENTAL METHODS 

Moral Inference Task  

In the Moral Learning Task, participants predicted a series of 50 decisions, made by each of two 
agents. For each decision, agents chose whether to increase their own profit at the expense of a 
greater amount of harm, in the form of electric shocks, to an anonymous stranger (Figure 1a). 
Thus, each choice involved choosing between a more harmful option (more money and more 
shocks) and a less harmful option (less money and less shocks). We simulated the agents to have 
significantly different preferences towards harming the stranger: one agent was more harmful, 
accepting less money to increase shocks to the victim (‘bad’ agent; $0.43 per shock), and the other 
was less harmful and required more money to increase shocks (‘good’ agent; $2.40 per shock; 
Figure 1b). After predicting each choice, participants received feedback about their accuracy. 
Participants did not receive any information about the agents’ harm preference prior to the task. 
Thus, to optimally predict the agents’ decisions participants must gather information across trials 
and learn about the agents’ harm preference (i.e., the agent’s exchange rate between money and 
shocks). For complete details about the task and how the agent’s choices were simulated, see Siegel 
et al. 2018 (1).  

On every third trial participants indicated their general impression of the agent’s moral character 
(from 0 = nasty to 100 = nice) and how certain they were about their impression (from 0 = very 
uncertain to 100 = very certain). This provided us, for each subject and agent, a trajectory of trial-
wise subjective impression ratings and uncertainty ratings. Before observing any of the agent’s 
choices, participants additionally indicated how nasty or nice they expected the agents would be 
and how certain they were. This provided an indication of participants’ prior expectations about 
people’s moral character in general and their confidence in those prior expectations. 

Hierarchical Gaussian Filter (HGF) 

The HGF (2,3) draws on the idea that the brain has evolved to process information in a manner 
that approximates statistical optimality given individually varying priors about the nature of the 
process being predicted; effectively maintaining and updating a generative model of its inputs to 
infer on hierarchically organized hidden states. A basic feature of the model is the division into 
perceptual and response models, which describes both how participants update their beliefs about 
hidden states from inputs (perceptual model) and how they are used to make predictions (response 
model).  
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Perceptual model. Our model comprises only two hidden states x1i and x2i, where i signifies the 
trial index. The first state, x1, is time-varying and denotes the agent’s upcoming choice. x1 is binary 
because there are only two options that the agent can choose: the more harmful option (greater 
profit for the self and more shocks for the victim) or the less harmful option (less profit for the self 
and fewer shocks for the victim). The probability that an agent will choose the more harmful option 
(x1i = 1) versus the less harmful option (x1i = 0) is governed by the next state in the hierarchy, x2. 
x2 is a continuous state evolving over time as a Gaussian random walk, and signifies the belief 
about the agent’s exchange rate between money and pain. The hierarchical coupling between x1i 
and x2i explains that a participant’s prediction about an agent’s choice on trial i is dependent on 
their current belief about that agent’s exchange rate between money and pain, defined as a 
probability density.  

The conditional probability of x1 given x2 is described in Equation 1. 

Equation 1 

𝑝𝑝(𝑥𝑥1|𝑥𝑥2) = 𝑠𝑠(𝑥𝑥2)𝑥𝑥1�1 − 𝑠𝑠(𝑥𝑥2)�1−𝑥𝑥1 = Bernoulli(𝑥𝑥1; 𝑠𝑠(𝑥𝑥2)) 

Where s(·) is a logistic sigmoid (softmax) function: 

Equation 2 

𝑠𝑠(𝑥𝑥) ≝
1

1 + exp(−𝑥𝑥)
 

 

The temporal evolution of x2 is governed by a participant-specific parameter ω, which allows for 
inter-individual differences in belief updating. Thus, ω captures inter-individual variability in the 
rate at which beliefs evolve over time, and consequently how rapidly people update their beliefs 
about the agent’s harm aversion across all trials. As ω approaches ∞ beliefs become increasingly 
unstable and new information is favored over historical information. Conversely, as ω approaches 
-∞ beliefs become increasingly stable, so greater weight is instead placed on historical information. 
Given ω and the previous value (with time index 𝑖𝑖 − 1) of 𝑥𝑥2, we now have the generative model 
for the current values (with time index 𝑖𝑖) of 𝑥𝑥1 and 𝑥𝑥2 in Equation 3 (for details see (2)).  

Equation 3 

𝑝𝑝�𝑥𝑥1𝑖𝑖 , 𝑥𝑥2𝑖𝑖 , |𝜔𝜔, 𝑥𝑥2𝑖𝑖−1� = 𝑝𝑝�𝑥𝑥1𝑖𝑖 �𝑥𝑥2𝑖𝑖 �𝑝𝑝�𝑥𝑥2𝑖𝑖 �𝑥𝑥2𝑖𝑖−1,𝜔𝜔� 

with 

Equation 4 

𝑝𝑝�𝑥𝑥2𝑖𝑖 �𝑥𝑥2𝑖𝑖−1,𝜔𝜔� = 𝒩𝒩�𝑥𝑥2𝑖𝑖 ; 𝑥𝑥2𝑖𝑖−1, exp(𝜔𝜔)� 
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Model inversion was used to optimize the posterior densities over hidden states, x1 and x2, and 
parameter ω. Participants’ posterior beliefs were represented by probability distributions with 
mean µ and variance σ. Variational Bayesian inversion yields a simple update equation under a 
mean-field approximation, where beliefs are updated as a function of precision-weighted 
prediction errors. For the present study we focus on the update at level 2 of the hierarchy (2).   

Equation 5 

∆µ ∝ 𝜎𝜎2𝛿𝛿1𝑖𝑖  
with 

Equation 6 

𝛿𝛿1𝑖𝑖 = 𝜇𝜇1𝑖𝑖 − µ
^
1
𝑖𝑖  

and 

Equation 7 

𝜎𝜎2 =
𝜋𝜋
^
1
𝑖𝑖

𝜋𝜋
^
2
𝑖𝑖 𝜋𝜋

^
1
𝑖𝑖 + 1

 

Where π is the precision (i.e., the inverse variance) in participants’ posterior belief 1
𝜎𝜎
 , and 𝛿𝛿1𝑖𝑖 is the 

prediction error on the trial outcome. Caret symbols (^) are used to denote predictions prior to 
observing the outcome at trial i. Thus, 𝜋𝜋^1𝑖𝑖 is the precision of the prediction at the first hierarchical 
level and 𝜋𝜋^2𝑖𝑖  is the precision of the prediction of the posterior belief. It can be shown from Equation 
7 that prediction errors are given a larger weight when the precision of the prediction of the agent’s 
choice is high, or when the precision of the belief about the agent’s preference (i.e., exchange rate 
between money and pain) is low. In summary, these equations describe trial-wise updating of 
beliefs about an agent’s preference towards harming the victim, which approximates Bayes 
optimality (in an individualized sense given differences in ω) and determines the participant’s 
estimate of the probability that an agent will harm. Crucially, our model provides a trial-by-trial 
estimate of the subject’s uncertainty about the agent’s preference towards harming the victim as 
measured by the variance of beliefs, σ. The variance weights predictions errors on a trial-by-trial 
basis and thus represents a dynamic learning rate because it accounts for the precision of the belief 
at any given time.   

Decision model. The decision model describes how the participant’s posterior belief about the 
agent’s preference maps onto their predictions of the agent’s decisions (y). In the HGF, this belief 
µ
^
1
𝑖𝑖 corresponds to the logistic sigmoid transformation of the predicted preference 𝜇𝜇2𝑖𝑖−1of the agent 

towards harming the victim. 
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Equation 8 

µ
^
1
𝑖𝑖 = 𝑠𝑠(𝜇𝜇2𝑖𝑖−1) 

For the present study, we assumed that participants would predict others’ decisions using a similar 
rationale to how they make decisions themselves. In other words, we assumed that people’s 
preferences are described by a utility model, and that people think others’ preferences are described 
by the same model. Consequently, we applied a decision model that accurately describes human 
choices in the same choice setting (4–6).  

Equation 9 

𝑉𝑉harm𝑖𝑖 = �1 − µ
^
1
𝑖𝑖 � ∆m𝑖𝑖 − µ

^
1
𝑖𝑖 ∆s𝑖𝑖 

This applied the predicted belief about the agent’s preference derived from the perceptual model 
µ
^
1
𝑖𝑖  to compute the value that the agent will choose the more harmful option on trial i, given the 

difference in money (∆𝑚𝑚) and shocks (∆𝑠𝑠) between the two options. The probability that the 
participant predicts the more harmful option (y = 1) as opposed to the more helpful option (y = 0) 
is described by the softmax function in Equation 10. 

Equation 10 

𝑃𝑃harm𝑖𝑖 = 𝑠𝑠(𝛽𝛽𝑉𝑉harm𝑖𝑖 ) 

Where β is a free parameter (individually estimated like 𝜔𝜔) that describes how sensitive predictions 
are to the relative utility of different outcomes, or the prediction noise.  

Estimation of model parameters. A crucial aspect of Bayesian inference is the specification of a 
prior distribution for the belief (listed in Supplementary Table S1). We defined the priors based 
on previous research using the same experimental design. Specifically, in keeping with our 
experimental design, which did not give participants any basis for assumptions about the agent’s 
tendency to harm, we chose to initialize the prior mean over µ2 and σ2. such that it amounted to a 
neutral prior belief about κ which was equidistant from the true value of the agents’ preferences. 
For the free parameters ω and β, we chose a prior mean that was relatively uninformative (with 
large variance) to allow for substantial individual differences in learning both between participants 
and within participants (i.e. between agents).  
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Supplementary Table S1 

Prior mean and variance of the perceptual and response model parameters. 

Parameter Notes 
 

mean variance 
ω Constant component of the tonic volatility at the second 

level. Represents the temporal evolution of x2. Estimated 
in native space. 

 
-4 1 

Predictions (x1) Predictions are a sigmoid transformation of x2 , and so do 
not have prior values. 

μ1: none none 
σ1: none none 

Probabilities (x2) The prior mean on x2 (prior belief about agent's harm-
aversion, κ) was fixed to a neutral point that was 
equidistant from the true κ value of both agents. 
Estimated in logit space. 

μ2: 0.5 0 

The prior variance on x2 was fixed to ensure that any 
differences in learning about good and bad agents derived 
from the model could not result from differences in the 
prior estimates. Estimated in log-space.  

σ2: 0.35 0 

β Constant component that describes how sensitive prior 
beliefs are to the relative utility of different outcomes, or 
the prediction noise. Estimated in log-space. 

 
1 1 

 

The perceptual model parameter ω and decision model parameter β were estimated from the trial-
wise predictions using the Broyden Fletcher Goldfarb Shanno optimization algorithm as 
implemented in the HGF Toolbox (https://tnu.ethz.ch/tapas). This allowed us to obtain the 
maximum-a-posteriori estimates of the model parameters and provided us with state trajectories 
and parameters representing an ideal Bayesian observer given the individually estimated parameter 
𝜔𝜔.  

We fit the model separately for participant’s predictions of the bad and good agent. This produced 
for each agent a sequence of trial-wise beliefs about the agent’s preference (µ

^
1
𝑖𝑖 ), as well as the 

precision of each belief (σi), and two participant-specific parameters, ω and β. to the temporal 
emphasis of belief stability in BPD, we focus out analysis on variance of beliefs σ, which reflects 
a dynamic learning rate dictating trial-by-trial belief updating as a function of the precision (i.e., 
inverse uncertainty) of beliefs about the agent’s moral preference.   

Additional Measures 

Borderline evaluation of severity over time (BEST). We used the BEST (7) to assess the severity 
of BPD symptomology in participants with BPD at the time of participation. The BEST is a 15-
item questionnaire which measures thoughts, emotions, and behaviors (positive and negative) 
typical of BPD. Positive behaviors were not measured in this study, and thus participants 
responded to only 12 of the 15 items. Each item asks participants to rate their experience with each 
of the items since their last clinical session; the lowest score of 1 means that it caused little or no 

https://tnu.ethz.ch/tapas)
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problems, and the  highest score of 5 means that it caused extreme distress, severe difficulties with 
relationships, and/or kept them from completing tasks. The scores from the 12 items were added 
together to yield a score between 12 and 60, where higher scores indicated greater BPD severity.  

Personality Inventory for DSM-5, brief form (PID-5-BF). We used the PID-5-BF (8), a 25-item 
self-report questionnaire, to assess clinically relevant personality traits that do not necessarily 
constitute a personality disorder. The PID-5-BF constitutes five personality trait domains: negative 
affect, detachment, antagonism, disinhibition, and psychoticism. Each item on the questionnaire 
asks participants to rate how well the item describes him or her generally on a scale from 0 (very 
false or often false) to 3 (very true or often true). The scores from all items were added together to 
produce a score between 0 and 75, with higher scores indicating greater general overall personality 
dysfunction. 

McLean Screening Instrument for BPD (MSI). The MSI (9) was used as a screening measure 
for the presence of clinically relevant BPD in the control group. The validated instrument consists 
of ten true-false self-report questions to assess the occurrence of symptoms typically found in BPD, 
such as “Have you deliberately hurt yourself physically (e.g. punched yourself, cut yourself, burned 
yourself)”. The screen is regarded as positive when seven or more of the symptoms are true.  

Self Report Psychopathy - Revised, short form (SRP-R-SF). We used the SRP-R-SF (10), a 29-
item self-report questionnaire, to assess psychopathic personality traits across BPD participants 
and non-BPD control participants. The instrument constitutes four factors of psychopathy: 
affective callousness, interpersonal manipulation, antisociality, and erratic lifestyle. Each item on 
the questionnaire asks participants to rate the extent to which they thought the item reflected their 
own beliefs using a 5-point likert scale (1 = strongly disagree to 5 = strongly agree). The scores 
from all items were added together to produce a total psychopathy score, with higher scores 
indicating greater general overall psychopathic personality traits. 

Structured Clinical Interview for axis II disorders (SCID-II). The SCID-II is a semi-structured 
clinical interview administered by trained clinical and designed to asses a clinical diagnosis of axis 
II disorders consistent with the DSM-IV. The SCID-II was used to establish a clinical diagnosis 
of BPD in untreated BPD and DTC-treated participants. 
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SUPPLEMENTAL RESULTS 

Motivation to accurately predict the agents’ choices. Because non-BPD and BPD participants 
completed the task under very different experimental settings (non-BPD participants: conducted 
online, BPD participants: conducted in the clinic), we wanted to verify that the groups were equally 
motivated to learn about the agents and predict their decisions. Consequently, after predicting all 
the choices for a given agent, we explicitly asked participants to indicate on a continuous scale 
from 0 (very unmotivated) to 100 (very motivated) “How motivated to be accurate did you feel 
during the task?”. We additionally calculated the percent of choices accurately predicted by each 
participant and compared between groups. We confirmed that BPD and non-BPD participants were 
similarly accurate (% accuracy: bad:  Z = -1.103, p = 0.270; good: Z = 0.295, p = 0.768) and 
motivated in their predictions (motivation rating: bad:  Z = - 0.879, p = 0. 379; good: Z = -1.704, 
p = 0.088). 

Model validation. Three computational models were compared to describe how participants 
learned the agents’ preferences and predicted their choices. We fit the HGF (2,3), which identified 
participant-specific parameters to describe each individual participant’s learning process. Beliefs 
about an agent’s harm preference were updated using a Bayesian reinforcement learning algorithm, 
with precision-weighted prediction errors driving belief updating at the different levels of the 
hierarchical model. Second, we fit a Rescorla Wagner model, in which beliefs were updated by 
prediction errors with a fixed learning rate. Third, we fit a modified Rescorla Wagner model, in 
which beliefs were updated by prediction errors with separate fixed learning rates for helpful and 
harmful outcomes. For details about the alternative models, see Supplementary Table 2.  

Supplementary Table S2 

Details of alternative models for model comparison 

Model Notes Estimated parameters 

Rescorla Wagner 
with one learning 

rate 

Beliefs are symmetrically updated, with a 
single learning rate for each participant. 

α = Learning rate 
β = Prediction noise 

Rescorla Wagner 
with two learning 

rates 

Beliefs are asymmetrically updated, with 
separate learning rates for positive versus 
negative outcomes, for each participant.  

αpos = Learning rate positive outcomes 
αpos = Learning rate negative outcomes 

β = Prediction noise 

HGF 

A two level model, with one estimated 
parameter governing the volatility of beliefs 
at the second level, and a second estimated 
parameter governing the prediction noise.  

ω = Tonic volatility 
β = Prediction noise 
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The log-model evidence (LME) indicated that the HGF model (sum LME = -7149) outperforms 
both a simple single learning rate RW model (sum LME = -7444) and a RW model with separate 
learning rates for positive and negative outcomes (sum LME = -7192). We validated these findings 
using formal Bayesian Model Selection. To this end, we used LME data to compare between the 
HGF and our two RW models. This analysis yielded a protected exceedance probability 
indistinguishable from 1 for the HGF model for both agents, indicating effectively a 100% 
probability that the HGF model better explains the data than the other models included in the 
comparison.  

Subjective uncertainty ratings in BPD versus non-BPD and DTC-treated participants. For 
completeness, we performed an omnibus robust linear regression analysis on subjective 
uncertainty ratings that included all three groups (BPD, non-BPD, and DTC) in a single model, 
where group was dummy coded with BPD as the reference group. Tests of group effects were 
conducted using Bonferroni adjusted alpha levels of .025 to account for multiple comparisons. The 
analysis yielded a significant main effect of agent (β = -0.155±0.073, t = 2.126, p = .034), 
indicating that participants held more uncertain impressions of the bad agent than the good agent.  
Overall, BPD participants uncertainty ratings did not significantly differ from non-BPD 
participants (β = -0.098±0.056, t = -1.739, p = .082), or DTC-treated participants (β = -
0.089±0.071, t = -1.258, p = .209). The effect of agent was significantly smaller in BPD 
participants, relative to both non-BPD participants (β = 0.264±0.080, t = 3.310, p < .001) and DTC-
treated participants (β = 0.266 ±0.100, t = 2.665, p = .008), as indicated by significant interactions 
between agent and group.  

Learning rates in BPD versus non-BPD and DTC-Treated participants. We performed an 
omnibus robust linear regression analysis on learning rates that included all three groups (BPD, 
non-BPD, and DTC) in a single model, where group was dummy coded with BPD as the reference 
group. Again, this analysis yielded a significant main effect of agent (β = -0.831±0.023, t = 36.888, 
p < .001), indicating that participants updated beliefs about the bad agent at a faster rate than the 
good agent. Overall, learning rates for the untreated BPD participants did not differ from non-BPD 
participants (β = -0.001±0.017, t = -0.060, p = .953), or DTC participants (β = -0.024±0.022, t = -
1.103, p = .270). However, relative to untreated BPD participants, the effect of agent on learning 
rates was significantly larger relative to both non-BPD participants (β = 0.113±0.025, t = 4.607, p 
< .001) and DTC-treated participants (β = 0.319 ±0.031, t = 10.355, p < .001), as indicated by 
significant interactions between agent and group.  

Subjective moral impressions in BPD versus non-BPD participants. Examining subjective 
impression ratings revealed that participants formed more negative impressions about the ‘bad’ 
agent than the ‘good’ agent (mean±SEM, β = -1.178 ± 0.027, t = -44.299, p < .001). The main 
effect of group (β = -0.041 ± 0.047, t = -.872, p = .383) and the interaction between agent and 
group were not significant (β = -0.441 ± 0.067, t = -1.706, p = .088). Thus, the valence of moral 
impressions did not vary as a function of BPD diagnosis.  
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Subjective uncertainty ratings in BPD versus DTC-treated participants. Examining subjective 
uncertainty ratings yielded a significant main effect of agent (β = 0.156±0.070, t = 2.240, p = .025), 
indicating that participants held more uncertain impressions of the bad agent than the good agent. 
DTC-treated and untreated BPD participants were similarly uncertain about their impressions 
overall (β = -0.085 ± 0.067, t = -1.265, p = .206). However, we found that DTC-treated BPD 
participants, relative to untreated BPD participants, showed more uncertain impressions of the bad 
agent (β = 0.188±0.067, t = 2.802, p = .005; Figure 3a) as indicated by significant interactions 
between agent and group (β = 0.277±0.095, t = 2.904, p = .003). 

Learning rates in BPD versus DTC-Treated participants. Again, we observed a significant 
main effect of agent on learning rates (β = 0.153±0.037, t = 4.115, p < .001), indicating that BPD 
participants updated beliefs about the bad agent at a faster rate than the good agent. Overall, 
learning rates for the DTC-treated and untreated BPD participants did not significantly differ (β = 
-0.031 ± 0.036, t = -0.870, p = .384). However, we found that DTC-treated BPD participants, 
relative to untreated BPD participants, showed faster learning rates for the bad agent (β = 
0.543±0.040, t = 13.698, p < .001; Figure 3b), as indicated by significant interactions between 
agent and group (β = 0.589±0.052, t = 11.588, p < .001). 

Effect of individual differences in the severity of BPD symptomology on subjective 
uncertainty ratings and learning rates. We used a robust linear regression model that included 
the effects of agent (bad, good), and Borderline Evaluation of Severity over Time (BEST) scores, 
and their interaction (controlling for trial number) to investigate their effects on subjective 
uncertainty ratings and learning rates. Consistent with prior findings, participants overall held 
more uncertain impressions of the bad agent than the good agent (main effect of agent: β = 
0.904±0.171, t = 5.272, p < .001) and faster learning rates for the bad agent than the good agent (β 
= 1.308±0.052, t = 25.193, p < .001). However this effect decreased with increasing BPD 
symptomology (interaction between agent and BEST: uncertainty rating, β = -0.018±0.005, t = -
3.784, p < .001; learning rate, β = -0.004±0.001, t = -2.821, p = .005). Specifically, higher BEST 
scores were associated with less uncertain impressions of the bad agent (β = -0.012 ± 0.003, t=-
3.262, p = .001), though the effect on learning rates did not reach significance (β = -0.003 ± 0.002, 
t=-1.514, p = .130). Higher BEST scores were associated with more uncertain impressions of the 
good agent (β = 0.007 ± 0.003, t=2.078, p = .038), and faster belief updating (β = 0.003 ± 0.001, 
t=6.118, p < .001).   

Prior expectations in moral inference. BPD participants expressed more pessimistic 
expectations about the agents’ moral behavior than non-BPD participants. Thus, a plausible 
explanation for more certain beliefs about bad agents and less certain beliefs about good agents is 
that the good agent violated BPD participants’ expectations to a greater degree than the bad agent.  
In other words, the bad agent’s behavior would be more consistent with patient’s prior expectation 
(and therefore increase confidence and rigidity of posterior beliefs) while the good agent’s 
behavior would be less consistent with patient’s prior expectations (thus, decrease confidence and 
rigidity of posterior beliefs).  



Siegel et al.  Supplement 

10 

Previous work suggests that prior moral expectations are unlikely to impact the ability to adapt 
learning as a function of moral information in healthy adults (1). Human may have evolved to 
adapt learning according to moral information to aid survival. In turn, this adaptive mechanism 
may enable healthy adults to discount expectations to build richer models of agents when harmful 
outcomes are expected (i.e., in response to negative moral expectations). One possibility is that 
patients with BPD lack the mechanism for adapting learning according to moral information. That 
is, while healthy adults may be able to override prior expectations and rapidly adjust their learning 
for putatively bad agents, this adaptive mechanism may be absent in BPD. As a result, learning 
may be more sensitive to prior expectations in BPD. If this is the case, we would expect learning 
in BPD to be more strongly influenced by prior moral expectations than learning in non-BPD 
participants.   

In line with this prediction, we found a significant three-way interaction between prior 
expectations, BPD diagnosis, and agent (β = 0.004±0.002, t = 2.214, p = .027).  To unpack the 
interaction, we performed a similar regression splitting the data as a function of BPD diagnosis. 
Consistent with previous findings (1), prior expectations were not associated with differences in 
learning rates between the good and bad agent in non-BPD control participants (β = -0.001±0.001, 
t = -1.454, p = .146; Supplementary Figure S1). Conversely, prior expectations predicted 
asymmetric learning rates for good and bad agents in BPD participants: more pessimistic 
expectations were associated with a smaller learning asymmetry (β = 0.003±0.001, t = 2.250, p = 
.025; Supplementary Figure S1). The findings provide preliminary evidence to suggest that the 
mechanisms underlying the ability to rapidly adapt learning towards moral information in healthy 
adults may be absent in BPD.  

 

Supplementary Figure S1.  Prior moral expectations moderate belief updating in BPD. Effect of 
prior moral expectations on estimated learning rates for the control (i.e., non-BPD) group (left) 
and BPD group (right). Prior moral expectations were measured on a continuous scale before 
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observing any of the agent’s choices. The scale asked participants to indicate how nasty or nice 
they expected the agents would be in the task. Error bands represent 95% confidence intervals. 

 

Prior expectations did not significantly differ between DTC-treated and untreated BPD 
participants. Nonetheless, we performed a similar regression analysis to explore the three-way 
interaction and observed a significant interaction between prior expectations, agent, and group on 
learning rates (β = -0.010±0.002, t = -4.752, p < .001; Supplementary Figure S2). To unpack the 
interaction, we fit the regression model separately for untreated BPD and DTC treated participants. 
Again, we found that worse expectations were associated with smaller asymmetric updating 
between agents in the BPD group (β = 0.003±0.001, t = 2.250, p = .025). However, the opposite 
pattern was observed for the DTC treated group: worse expectations were associated with larger 
asymmetric updating between agents (β = -0.007±0.002, t = -4.615, p < .001). These findings 
suggest that even though DTC-treated and untreated BPD groups had similar moral expectations, 
the groups differed in how expectations subsequently shaped learning. 

 

Supplementary Figure S2.  Prior moral expectations moderate belief updating. Effect of prior 
moral expectations on estimated learning rates for the DTC group (left) and BPD group (right). 
Prior moral expectations were measured on a continuous scale before observing any of the agent’s 
choices. The scale asked participants to indicate how nasty or nice they expected the agents would 
be in the task. Error bands represent 95% confidence intervals. 

 

BPD, medication use, and moral inference. A supplementary analysis investigated the 
interaction between group (DTC vs. BPD) and agent (bad vs. good) on subjective uncertainty and 
learning rates, controlling for medication use. Medication use was entered into the regression as a 
dummy variable and indicated whether the participants were receiving psychotropic or 
antidepressant medication during the time of participation. Medication use did not significantly 
predict subjective uncertainty ratings (β = 0.027±0.048, t = 0.551, p = .582) nor did patient group 
(β = -0.082±0.068, t = -1.201, p = .230). Overall, participants were more uncertain about their 
impressions of the bad agent relative to the good agent (β = 0.156±0.070, t = 2.240, p = .025). The 
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interaction between group and agent on subjective uncertainty remained significant after 
controlling for medication use (uncertainty: β = 0.277±0.095, t = 2.898, p = .004; learning rates: β 
= 0.577±0.050, t = 11.441, p < .001). Relative to untreated BPD participants, DTC-treated 
participants were more uncertain about their impressions of the bad agent (β = 0.183±0.068, t = 
2.691, p = .007) but did not significantly differ in their uncertainty about their impressions of the 
good agent (β = -0.068±0.069, t = -0.998, p = .318). 

Patient group did not significantly predict overall learning rates (β = -0.051±0.036, t = -1.427, p = 
.154). Medication use was associated with slower learning rates overall (β = -0.180±0.026, t = -
7.050, p < .001) and participants had higher learning rates for the bad agent relative to the good 
agent (β = 0.169±0.037, t = 4.587, p < .001). Notably, the interaction between group and agent on 
learning rates remained significantly after controlling for medication use (β = 0.577±0.050, t = 
11.441, p < .001). Relative to untreated BPD participants, DTC-treated participants had higher 
learning rates for bad agent (β = 0.516±0.040, t = 12.853, p < .001) but marginally lower learning 
rates for the good agent (β = -0.058±0.030, t = -1.922, p = .055). 
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