Reviewers' comments:
Reviewer #1 (Remarks to the Author):

The authors first show that applying unsupervised clustering to scRNA-Seq data from
unfractionated total bone marrow (TBM) samples and weakly lineage-depleted bone marrow (DBM)
Cd45/Ter119 dual negative subsets from three different mice results in the segregation of 19
different cell types into distinct clusters. Indeed, the distance between these clusters, measured
using adjacency relationships, corresponded to the known structure of the hierarchical structure of
cell types in the hematopoietic cell lineages of the BM. I remark that while the authors used t-SNE
to cluster their data, a simpler approach such as PCA will likely produce similar results and should
be included in the paper as a baseline. PCA has the advantage that it is linear and deterministic,
making interpretation much easier.

The authors then use a multi-layer perceptron with a single hidden layer of 14 units to to classify
individual cells from their gene expression profiles. This model was able to reliably identify the 14
cell types that have a unique human orthologue, achieving average balanced classification
accuracy of 96.7+0.9% using five-fold cross validation. Given the distinct clusters achieved by
unsupervised clustering, this strong performance is not surprising. It would be useful to compare
the performance of the ANN with a simple classifier that uses e.g. distance in the space described
by the first few (or many?) t-SNE dimensions or PCA components. This would provide a much
simpler path to determine which genes are most strongly associated with each cell identity, since
model coefficients could simply be read off. In general the lack of baseline models is concerning,
particularly since such a simple NN performs so well at this task. Figure 1c suggests that a simple
classifier that uses cosine similarity in the t-SNE or PCA embedding space will also perform well.

The authors then tackle the challenge of Human BM biology. They sequenced BM samples from
three humans, obtaining gene expression profiles for 9,394 cells. As for the mouse case,
unsupervised clustering yielded a classification of the data by cell type. The authors applied their
mouse ANN to the human data, to ask how well it performed at classifying these cells - it performs
well for some cell types, and less well for others. An important question that the authors must
address is how a baseline simple classifier will perform at this task. It is completely unclear to me
that there is any need for an ANN to solve this problem. For example, if they use the first few (or
many) principal components to build a simple linear classifier for the mouse data, then they could
immediately apply this classifier to the human data and measure performance. This would amount
to identifying a linear combination of genes whose expression indicates specific cell types, where
the same linear combination works for mouse and human.

The benefit of a linear model, or any other simple model, is that it is much more interpretable and
understandable then any neural network. There is also much less danger of model overfitting,
because fewer parameters are used. Simple approaches could also be applied to transfer the
simple model from mouse to human. Essentially this involves defining a similarity metric on the
space of gene expression profiles, where only genes with both mouse and human homologues are
considered in the profiles, and learning for different cell types how much the profiles differ
between human and mouse.

Major comments:

I urge the authors to consider writing a much simpler version of this paper, which compares the
performance of different models at this task, and gets at the underlying question which is how
similar the gene expression profiles are for different BM cell types between mouse and human. The
authors have access to a great dataset, and carrying out the simplest possible analysis would
really illuminate the similarities and differences between these profiles. Currently the use of the
ANN appears largely unnecessary and obfuscates the underlying biology, which is not helpful.



Most importantly, the authors make a large appeal to the power of transfer learning in the
discussion. There is nothing particularly surprising or novel about the way in which the authors
have transferred between mouse and human data here. Transfer learning in this context simply
involves (i) describing the cell-specific gene expression profile for a specific cell type in one
species, and (ii) modifying (or not) this expected profile, or prior, using data from a few labelled
cells from another species. The extent of the modification required depends on how similar gene
expression profiles for these cell types are between the two species, and the amount of data
needed will depend on how homogeneous gene expression profiles for this cell type are in the new
species. Indeed, fig 3c shows that similar performance is achieved with 6-8 samples and no
transfer learning, as with the mouse data and 0-5 human samples. I don't feel that success at this
task warrants the extensive claims about 'transfer learning' that are plastered throughout the
manuscript, or the extensive generalisation claims made in the discussion.

Minor comments

In the abstract the authors point out that there has been no rigorous quantification of the process
of transferring biology from model organisms to man. They address this by showing that transfer
learning can be used to map biology from mouse to man. It is a bit unclear to me how this
mapping helps with the goal of rigorous quantification, and it would be helpful if the authors could
explain this at some point in the manuscript.

I'm a bit surprised at the conclusion, at the bottom of page 9, that 'The mouse is a good model of
human biology for these cell types' because the cell types have similar gene expression profiles. I
would have thought (naively) that there might be other ways in which mouse and human biology
might differ, that might not be captured by gene expression profiles. Is this the case?

Reviewer #2 (Remarks to the Author):
The authors develop a machine learning method to classify mouse BM cells and this method can be
applied to identify human BM cells thus the approach is called transfer learning. Here are some

questions.

1, The authors do not clearly say which gene expression matrices for ANN learning, such as TPM or
counts.

2, Since they are using gene expressions, how many genes are used for training and what is the
proportion of missing values in the single-cell datasets?

3, They state the successful transfer learning. Do they find any interesting things from the ANN
classifier? Such as gene clusters that can be the markers for different cell types.

4, The potential application of the method is not clear.



We are very grateful to the reviewers for their consideration of our paper and suggestions for
improvements. We have revised the paper in accordance with all their comments and we
believe that the paper is substantially improved as a result. Below we provide a point-by-
point response to their queries. Our responses are in blue.

Summary of major changes

The reviewers raised an over-arching query of the extent to which our results could equally
be achieved by a simpler, more-interpretable linear method. We have now revised our
analysis to compare it to a generalized linear model (multiclass logistic regression, MLR).
Indeed, we find that we can achieve comparable accuracy with this model, and so we have
substantially revised the paper to anchor the analysis on this simplified model. For context,
we have also included results from our original artificial neural network in comparison with
this MLR. This comparative analysis highlights the importance of considering both model
performance and interpretability when developing machine learning methods for biology. We
believe that this is a very strong new message that resulted directly from the prompting of
the reviewers. For this we are very grateful.

Reviewer #1

The authors first show that applying unsupervised clustering to scRNA-Seq data from
unfractionated total bone marrow (TBM) samples and weakly lineage-depleted bone marrow
(DBM) Cd45/Ter119 dual negative subsets from three different mice results in the
segregation of 19 different cell types into distinct clusters. Indeed, the distance between
these clusters, measured using adjacency relationships, corresponded to the known
structure of the hierarchical structure of cell types in the hematopoietic cell lineages of the
BM. | remark that while the authors used t-SNE to cluster their data, a simpler approach
such as PCA will likely produce similar results and should be included in the paper as a
baseline. PCA has the advantage that it is linear and deterministic, making interpretation
much easier.

We are very grateful to the reviewer for his careful overall assessment of our work and their
comments that have helped significantly improve our manuscript. The over-arching comment
that we should consider simpler, more interpretable methods is very important and well-
taken. We have revised the manuscript throughout to provide this required analysis. Indeed,
in accordance with this reviewer’s intuition we are able to substantially refine our analysis
and produce a model that is more directly interpretable.

To begin, we would like to emphasize that we only used dimensionality reduction (e.g. tSNE)
to visualise the data. All clustering was performed independently of dimensionality reduction.
This has now been made more apparent in the manuscript.

The suggestion to investigate principal component analysis (PCA) as an alternative linear
dimensionality reduction method is very good. We have now performed this analysis (along
with an additional comparison of UMAP, another dimensionality reduction method) and
included it in the revised manuscript. These results are discussed on page 4 of the revised
manuscript given in full in new Figure S3. In this instance, the clustering structure we
observed was not well preserved by PCA, although it was by nonlinear methods. Although
these results suggest that genomic features combine in a nonlinear way to define cell
identities, the inclusion of the PCA provides extra context and so, we think, improves the
manuscript.

The authors then use a multi-layer perceptron with a single hidden layer of 14 units to to
classify individual cells from their gene expression profiles. This model was able to reliably
identify the 14 cell types that have a unique human orthologue, achieving average balanced



classification accuracy of 96.7+0.9% using five-fold cross validation. Given the distinct
clusters achieved by unsupervised clustering, this strong performance is not surprising. It
would be useful to compare the performance of the ANN with a simple classifier that uses
e.g. distance in the space described by the first few (or many?) t-SNE dimensions or PCA
components.

This is an extremely important point, and one that was clearly overlooked in the first draft of
the manuscript. To rectify this, we wanted to implement a method that was (1) easily
interpretable and (2) able to capture the clustering structure that was not immediately
apparent in PCA (i.e. to take into account inherent nonlinearities in the data). Since tSNE
dimensions are not easily interpretable, projecting onto 2 dimensions (for example) using
tSNE and then building a simplified classifier in this 2-dimensional space did not provide an
easily interpretable model. As an alternative, we chose to implement a multiclass logistic
regression (MLR) model. Multiclass (alternatively multinomial) logistic regression is a
multiclass generalization of logistic regression. This method was chosen since it is a simple
generalized linear method (i.e. it makes predictions based on linear combinations of inputs
via a nonlinear output function) that has been shown to be as powerful as more complex
machine learning methods in other biomedical contexts while maintaining superior
interpretability. Importantly, while gaining the benefits model interpretability due to its simple
linear structure (gene importances can simply be read-off, as noted by the reviewer in a later
comment) it is also able to learn complex patterns via a nonlinear activation function.

In accordance with the reviewer’s intuition this model performed as well as our original ANN.
This is a very significant point that was missing from the previous paper. To make this
apparent we have revised the manuscript throughout to focus on the results on the MLR, yet
we have also chosen to keep the original ANN results in the manuscript (see Figure S4 and
S5 and text throughout the manuscript) in order to provide a comparative analysis. This
comparative analysis highlights the importance of considering both model performance and
interpretability when developing machine learning methods for biology. We believe that this
is a very strong new message for the paper that resulted directly from the prompting of the
reviewer. For this we are very grateful.

We also emphasise that the ANN has a hidden layer of 16 units. In Figure 1 of the original
submission, the ANN architecture was described incorrectly (as having 14 hidden units), we
acknowledge an error in the manuscript text, which we have corrected in the revised
manuscript.

This would provide a much simpler path to determine which genes are most strongly
associated with each cell identity, since model coefficients could simply be read off. In
general the lack of baseline models is concerning, particularly since such a simple NN
performs so well at this task. Figure 1c suggests that a simple classifier that

uses cosine similarity in the t-SNE or PCA embedding space will also perform well.

Now that we have included the MLR model we can do exactly as the reviewer suggests, and
feature importances can be simply read off from model coefficients. This analysis has now
been included in the paper (see Supplementary Table 1). Feature importances from the
MLR model have also been compared to those we previously inferred from our sensitivity
analysis of the ANN (now included in Supplementary Table 3). A very good concordance
was observed. This analysis is included in new Figure S4d. Moreover, Gene Ontology term
analysis of top-ranking features from both models reveals similar enrichment of biological
processes (compare Supplementary Tables 2 and 4). Collectively these results suggest
that both models are identifying common biological mechanisms, and argue for use of the
MLR over the ANN.

The authors then tackle the challenge of Human BM biology. They sequenced BM samples



from three humans, obtaining gene expression profiles for 9,394 cells. As for the mouse
case, unsupervised clustering yielded a classification of the data by cell type. The authors
applied their mouse ANN to the human data, to ask how well it performed at classifying
these cells - it performs well for some cell types, and less well for others. An important
question that the authors must address is how a baseline simple classifier will perform at this
task. It is completely unclear to me that there is any need for an ANN to solve this problem.
For example, if they use the first few (or many) principal components to build a simple linear
classifier for the mouse data, then they could immediately apply this classifier to the human
data and measure performance. This would amount to identifying a linear combination of
genes whose expression indicates specific cell types, where the same linear combination
works for mouse and human. The benefit of a linear model, or any other simple model, is
that it is much more interpretable and understandable then any neural network. There is also
much less danger of model overfitting, because fewer parameters are used.

The reviewer is absolutely correct, and we have now performed this analysis using the MLR
described above. We have revised the paper throughout to focus on this generalized linear
model.

Simple approaches could also be applied to transfer the simple model from mouse to
human. Essentially this involves defining a similarity metric on the space of gene expression
profiles, where only genes with both mouse and human homologues are considered in the
profiles, and learning for different cell types how much the profiles differ between human and
mouse.

This is an excellent idea. We have now included a comparison of the mouse and human cell
populations exactly as suggested. Using a cosine similarity metric to determine relationships
between gene expression profiles we observe that there is a strong association between
comparable cell types in mouse and human. This analysis is included in Figure 2e and
discussed on page 9.

Major comments:

| urge the authors to consider writing a much simpler version of this paper, which compares
the performance of different models at this task, and gets at the underlying question which is
how similar the gene expression profiles are for different BM cell types between mouse and
human. The authors have access to a great dataset, and carrying out the simplest possible
analysis would really illuminate the similarities and differences between these profiles.
Currently the use of the ANN appears largely unnecessary and obfuscates the underlying
biology, which is not helpful.

We whole-heartedly agree and have restructured the paper throughout to do this.

Most importantly, the authors make a large appeal to the power of transfer learning in the
discussion. There is nothing particularly surprising or novel about the way in which the
authors have transferred between mouse and human data here. Transfer learning in this
context simply involves (i) describing the cell-specific gene expression profile for a specific
cell type in one species, and (ii) modifying (or not) this expected profile, or prior, using data
from a few labelled cells from another species. The extent of the modification required
depends on how similar gene expression profiles for these cell types are between the two
species, and the amount of data needed will depend on how homogeneous gene expression
profiles for this cell type are in the new species. Indeed, fig 3¢ shows that similar
performance is achieved with 6-8 samples and no transfer learning, as with the mouse data
and 0-5 human samples. | don't feel that success at this task warrants the extensive claims
about 'transfer learning' that are plastered throughout the manuscript, or the extensive
generalisation claims made in the discussion.



The referee is absolutely right in his assessment of the transfer learning approach. The
principle of transfer learning is to fine-tune the parameters of a model trained in a source
domain using a small number of additional training examples from a (related) target domain.
Thus, the number of training examples and extent of training needed for optimal
classification performance can be substantially reduced in the target domain.

Direct comparison of naive and transfer learning indicates that the advantage of transfer
learning in this (particularly easy) learning problem is neutralized if 9 cells per class (i.e. 100
training examples) are available (Figure S5h). Although in the context of single-cell data,
this is not an unattainable number (as demonstrated in this study), and it is expected that
experiments will yield many times over the number of cells required for training. We do
argue, however, that this is not always the case. For instance, if tissues with limited access
are compared (for example cells from the germline) it is extremely difficult to obtain a large
number of human cells due to low cell numbers and prohibitive ethical concerns. As another
example, some cell types may be exceptionally rare and only a small number of cells of a
certain type can be found within a tissue. In these cases, the transfer learning approach can
be particularly useful.

While we only present one example of transfer learning for comparative physiology in this
paper, the success of transfer learning in other areas, for instance image classification tasks
has been overwhelming and we therefore strongly believe that transfer learning will be
useful across many domains of biology. Furthermore, the transfer learning process itself can
provide insight into similarities and differences between the source and target domains (here
mouse and human bone marrow), and thus can be a tool for better understanding shared
biological features, even when data is abundant in both domains. Nevertheless, we
recognize that our discussion should be tempered. We have now rebalanced our discussion
of transfer learning to address the reviewers concern and expanded more on the specifics of
our approach and the limitations (outlined here and below).

Minor comments

In the abstract the authors point out that there has been no rigorous quantification of the
process of transferring biology from model organisms to man. They address this by showing
that transfer learning can be used to map biology from mouse to man. It is a bit unclear to
me how this mapping helps with the goal of rigorous quantification, and it would be helpful if
the authors could explain this at some point in the manuscript.

This is a valuable point that we have now tried to clarify throughout manuscript (see in
particular the discussion on page 8). Essentially, we argue that the performance of the
source classifier in the target domain provides an insight into the cell type mapping. We
hope that this is now clearer in the revised paper.

I'm a bit surprised at the conclusion, at the bottom of page 9, that "The mouse is a good
model of human biology for these cell types' because the cell types have similar gene
expression profiles. | would have thought (naively) that there might be other ways in which
mouse and human biology might differ, that might not be captured by gene expression
profiles. Is this the case?

This is an important point and we have now included a paragraph to the discussion to
explain the limitations of our approach, including the issue of epigenetic differences raised
by the reviewer.

Reviewer #2

The authors develop a machine learning method to classify mouse BM cells and this method



can be applied to identify human BM cells thus the approach is called transfer learning. Here
are some questions.

We are extremely grateful to the reviewer for their consideration of our paper. We have
revised the manuscript throughout to address their concerns.

1, The authors do not clearly say which gene expression matrices for ANN learning, such as
TPM or counts.

We are grateful to the referee for highlighting this point as not sufficiently clear. For the
machine learning part, we used discretized gene counts and we describe this in the Methods
section of our manuscript (see Methods - Data pre-processing). In our revised manuscript,
we also describe this point in the main text to improve clarity and we have made this more
explicit in the Methods section.

2, Since they are using gene expressions, how many genes are used for training and what is
the proportion of missing values in the single-cell datasets?

We use 4372 genes for training (see Figure 1g). The proportion of missing values (sparsity)
in the single cell dataset is 93.25% on average in mouse (95.94% in human — this difference
not significant according to a Wilcoxon rank sum test, p=0.1). Such sparsity is commonly
observed in single-cell gene expression data (see for example, Lahnemann et al 2020
PMID: 32033589). We have now included the level of sparsity in Figure S3e and added to
the main text of the manuscript to clarify this point (see page 1 and page 6).

3, They state the successful transfer learning. Do they find any interesting things from the
ANN classifier? Such as gene clusters that can be the markers for different cell types.

In the revised manuscript we have compared the performance of the ANN from the original
paper with a simpler multiclass logistic regression model. In the revised paper we have
identified the genes that correlate with different cell identities for both models (see page 6 of
the revised manuscript). These genes can used as markers for different cell types. We
observed a strong overlap in the markers associated with the two models, indicating that
they identify the same driving biological processes. Moreover, the gene expression patterns
of these important genes are broadly preserved between species (e.g. see Fig. S4i, j). A full
list of the genes associated with each cell type, both in mouse and human, are now included
in Supplementary Tables S1-4.

4, The potential application of the method is not clear.

In our manuscript, we demonstrate that machine learning methods can be combined with
experiment to better understand biology and how it maps between the species. Thus, our
results shed light on species-specific and shared biological process. Practically, analysis of
features (i.e. genes) that drive different cellular phenotypes, and how these features vary
between species, can be used to define cellular populations more precisely. The MLR model
that we consider in the paper is easily interpretable, and so more easily applicable than the
ANN described in the original paper. We have now rewritten the discussion to make this
point clear.



Reviewers' comments:
Reviewer #1 (Remarks to the Author):

The article has significantly improved with the addition of the multinomial logistic regression
model.

I am not an expert in the field of single cell RNAseq data analysis, and in particular the question of
cross species comparisons of this data. However, I do recall that for the context of human and
mouse, there was quite some controversy over the question of whether data from the ENCODE
consortium clustered by species rather than by tissue type (see
https://www.pnas.org/content/111/48/17224/, https://f1000research.com/articles/4-121/v1 and
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0853-4, more recently
https://www.nature.com/articles/s41586-018-0590-4). I am a bit surprised that this and related
prior work does not appear to be cited in this paper. Prior findings include that this data clusters
by tissue type rather than by species when human and mouse data are compared, and by cell type
when data from multiple mice is combined. The novel contribution of this paper beyond the
transfer learning result is not clear to this reviewer.

Furthermore, it is not at all clear to me that the authors needed to collect experimental data to
obtain this result, given the large amount of data for human and mouse available in the public
domain. Surely at the very least the authors can use existing data from the public domain to
extend their result to other tissue/cell types? As I remark, I am not familiar with this literature,
and so it may be that previous studies have not specifically considered the erythroid, myeloid and
lymphoid branches of the hematopoietic lineage tree. Please could the authors clearly describe the
previous work that has been carried out in this domain in the introduction to their manuscript.

Reviewer #2 (Remarks to the Author):

The questions are addressed with satisfaction.



We would like to thank the referees for their careful assessment of our work. We are very pleased that we were
able to satisfy all of the referee’s queries with the initial revision of our manuscript and we hope that the
additional changes implemented in this second revision will resolve the remaining questions. We provide a
point-by-point response to the comments below - our comments are highlighted in blue.

Reviewer #1 (Remarks to the Author):

The article has significantly improved with the addition of the multinomial logistic regression model.

We are very grateful to the referee for his positive assessment of the revised manuscript and are pleased that
our changes to the manuscript have been recognized as a significant improvement.

I am not an expert in the field of single cell RNAseq data analysis, and in particular the question of cross species
comparisons of this data. However, | do recall that for the context of human and mouse, there was quite some
controversy over the question of whether data from the ENCODE consortium clustered by species rather than
by tissue type . | am a bit surprised that this and related prior work does not appear to be cited in this paper.
Prior findings include that this data clusters by tissue type rather than by species when human and mouse data
are compared, and by cell type when data from multiple mice is combined. The novel contribution of this paper
beyond the transfer learning result is not clear to this reviewer.

We are thankful for this excellent suggestion and we regret that we did not reference the important prior work
of the cross-species comparison in our manuscript. To significantly strengthen the manuscript and set our results
more firmly in context, we have now included references to previous work into the introduction of our revised
manuscript and furthermore discuss the findings from these studies at length in our discussion. We believe that
the addition of this prior work in the revised manuscript, has improved clarity of the motivation and novelty of
our study.

Furthermore, it is not at all clear to me that the authors needed to collect experimental data to obtain this result,
given the large amount of data for human and mouse available in the public domain. Surely at the very least the
authors can use existing data from the public domain to extend their result to other tissue/cell types? As |
remark, | am not familiar with this literature, and so it may be that previous studies have not specifically
considered the erythroid, myeloid and lymphoid branches of the hematopoietic lineage tree. Please could the
authors clearly describe the previous work that has been carried out in this domain in the introduction to their
manuscript.

The reviewer is right in his assessment, that an increasing amount of single-cell data is now available in the public
domain. For the current study it is of paramount importance to conduct experiments that are tailored to our
research question and hence we designed an experimental protocol that enables the direct comparison of
mouse and human data without differences in the practical implementation. This aspect limits the reuse of
public data to extend our results since, for one, there are no equivalent paired human-mouse bone marrow data
available and, for another, analysis of data from another tissue and providing analyses at a similar level of detail
as provided here for the bone marrow would detract from our aim of understanding bone marrow biology
(whichis our area of expertise). However, we do acknowledge the reviewers concerns and agree that the current
emphasis on a general comparison of mouse and human biology in the title may be too strong and detract from
this message. To address these concerns and make our contribution clearer we plan to retitle the paper
“Mapping bone marrow biology from mouse to man using transfer learning”.

(see https://www.pnas.org/content/111/48/17224/, https://f1000research.com/articles/4121/v1 and
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0853-4, more recently https://www.nature.com/articles/s41586-018-
0590-4)



Reviewer #2 (Remarks to the Author):

The questions are addressed with satisfaction.

We are thankful to the reviewer for his time and pleased that we were able to satisfy all queries.



