Programmable m⁶A modification of cellular RNA with a Cas13-directed methyltransferase Christopher Wilson, Peter J. Chen, Zhuang Miao, David R. Liu

SUPPLEMENTARY INFORMATION

Supplementary Figure 1. *In vitro* kinetics of m⁶A methyltransferases Supplementary Figure 2. Structural analysis of METTL3:METTL14 and PbuCas13b Supplementary Figure 3. Orthogonal assay for on-target RNA methylation by TRM editors in *E. coli* Supplementary Figure 4. MeRIP-seq of Cluc–Socs2 targeted by TRM editors Supplementary Figure 5. Effect of dCas13 binding on transcript stability and translation Supplementary Figure 6. Validation of targeted *Actb* methylation by TRM editors Supplementary Figure 7. Cellular protein expression of TRM editors Supplementary Figure 8. Validation of targeted *Gapdh* methylation by TRM editors Supplementary Figure 9. Validation of targeted *Foxm1* methylation by TRM editors Supplementary Figure 10. Validation of targeted Sox2 methylation by TRM editors Supplementary Figure 11. Orthogonal validation of TRM with MazF-qPCR Supplementary Figure 12. MeRIP-seq of *Actb* mRNA targeted by TRM editors Supplementary Figure 13. TRM editing window on *Actb* Supplementary Figure 14. Sequence preferences of TRM editors Supplementary Figure 15. Effect of TRM editors on cellular m⁶A content Supplementary Figure 16. Off-target methylation by TRM editors Supplementary Figure 17. Endogenous methylation levels of TRM editor off-targets Supplementary Figure 18. Effects of TRM editors on transcriptome-wide distribution of m⁶A Supplementary Figure 19. Effects of TRM editors on cellular transcriptome abundances

Supplementary Figure 20. Comparison of TRM editors with M3M14–dCas9 editors

Supplementary Figure 21. Gapdh RNA expression changes from TRM editing

Supplementary Table 1. RNA oligonucleotides used for *in vitro* kinetics assays

Supplementary Table 2. Sequences of Cas13 guide RNA spacers used in this work

Supplementary Table 3. Sequences of Cas9 guide RNA spacers and PAMmers used in this work

Supplementary Table 4. Sequences of guide RNA-quenching DNA oligonucleotides used for RNA purification

Supplementary Table 5. Sequences of RT-qPCR primers used for MeRIP-RT-qPCR assays

Supplementary Table 6. Sequences of primers used for semi-quantitative PCR in alternative splicing assays

Supplementary Sequences 1. Amino acid sequences of TRM editor constructs

Supplementary Sequences 2. Sequences of exogenous reporter transcripts targeted by TRM editor constructs

Supplementary References.

Supplementary Figure 1. *In vitro* kinetics of m⁶A methyltransferases. Michaelis-Menten kinetics of purified METTL3 and METTL3:METTL14 activity on a ssRNA substrate. k_{obs} = observed catalytic rate. Values reflect the mean±s.e.m. of n=3 independent reactions.

Supplementary Figure 2. Structural analysis of METTL3:METTL14 and PbuCas13b. (a) Crystal structure of the METTL3³⁶⁹⁻⁵⁷⁰:METTL14¹¹⁷⁻⁴⁰² heterodimer (PDB 5IL1)¹. **(c)** Co-crystal structure of *Prevotella buccae* Cas13b (PbuCas13b, brown) bound to the CRISPR RNA hairpin of a guide RNA (PDB 6DTD, grey and blue)². The N-terminus (red) and C-terminus (blue) are shown for each protein.

Supplementary Figure 3. Orthogonal assay for on-target RNA methylation by TRM editors in E.

coli. Fluorescence measurements of indicated quantities of RNA captured and stained with fluorescent anti-m⁶A antibodies to assay relative levels of m⁶A modification. Columns 1-2: m⁶A-modified control RNA and unmodified control RNA were commercially synthesized and served as positive and negative controls. Columns 3-5: synthetic transcript was targeted with indicated TRM editors within *E. coli*, purified from cells, selectively enriched, then quantified for m⁶A abundance. dCas13–dM3 represents a methyltransferase-inactive dCas13–M3^{D395} control. a.u. = fluorescence in arbitrary units.

Supplementary Figure 4. MeRIP-seq of Cluc–*Socs2* **targeted by TRM editors.** *Cluc–Socs2* read coverage of input (grey) and m⁶A-immunoprecipitated (red, m⁶A IP) RNA from MeRIP-seq of transfected HEK293T cells. TRM constructs **(a)** dCas13–M3 and **(b)** dCas13–M3M14 targeted the *Socs2* 3' UTR under the following conditions: active editor with a target guide RNA, inactive editor with a target guide RNA, and active editor with a non-target guide RNA. Inactive TRM editors contain a methyltransferase-inactivating D395A mutation within M3. The target guide RNA (purple) and targeted m⁶A sites are shown. Cpm = counts per million reads. MeRIP-seq analysis was performed with n=3 independent biological replicates.

Supplementary Figure 5. Effect of dCas13 binding on transcript stability and translation. (a) Schematic of dCas13 targeting assay. Nucleus- (dCas13nes) or cytoplasm-localized dCas13 (dCas13nls), guide RNAs (purple), and a dual luciferase plasmid were transfected in HEK293T cells prior to measurement of luciferase RNA abundance and luminescence. *Cypridina* luciferase (*Cluc*, green) reporter transcripts were targeted by dCas13, while *Gaussia* luciferase (*Gluc*, orange) served as a dosing control for normalization. (b) dCas13 targeting *Cluc* with guide RNAs tiled across the Cluc coding sequence (CDS). (c) dCas13 targeting the 3' UTRs of *Cluc*–syn, and 3' UTRs of endogenous *Socs2 and Nanog* fused to a *Cluc* reporter. (d) dCas13 targeting the 5' UTRs of endogenous *Hspa1a and Hsph1* attached to a *Cluc* reporter. Indicated dCas13 guide RNAs (purple) were tiled across each reporter. NT = non-targeting guide RNA; NES = nuclear export signal; NLS = nuclear localization signal. For (b-d) mRNA and (d) protein, values and error bars reflect the mean±s.e.m. of n=3 independent biological replicates. For (b-c) protein, values and error bars reflect the mean±s.e.m. of n=5 independent biological replicates.

Supplementary Figure 6. Validation of targeted *Actb* methylation by TRM editors. (a) MeRIP-RT-qPCR of *Actb* A1216 from HEK293T cells transfected with a vector control or full-length METTL3. (b) MeRIP-RT-qPCR of indicated TRM editors or TRM methyltransferase domains with *Actb*-targeting or non-targeting guide RNAs. M3 and M3M14 refer to methyltransferase components lacking dCas13. Values and error bars reflect the mean±s.e.m. of n=3 independent biological replicates.

Supplementary Figure 7. Cellular protein expression of TRM editors. Representative western blots of 3×HA-tagged TRM editors compared with inactive TRM controls. HEK293T cells were co-transfected with non-targeting guide RNAs in all conditions. Editors were stained with an anti-HA antibody and histone H3 served as a loading control. Inactive TRM editors used methyltransferase-inactive M3^{D395} instead of M3 and are indicated by active MTase (–). Every active and inactive pair from the same TRM construct comes from the same Western blot. Western blots were performed twice with similar results.

Supplementary Figure 8. Validation of targeted *Gapdh* **methylation by TRM editors. (a)** MeRIPseq coverage of *Gapdh* mRNA from un-transfected HEK293T cells. (b) MeRIP-RT-qPCR of *Gapdh* A690 from HEK293T cells transfected with a control plasmid or full-length METTL3. (c) MeRIP-RTqPCR of indicated TRM editors or TRM methyltransferase domains with *Gapdh*-targeting or nontargeting guide RNAs. M3 and M3M14 refer to methyltransferase components lacking dCas13. Values and error bars reflect the mean±s.e.m. of n=4 independent biological replicates.

Supplementary Figure 9. Validation of targeted *Foxm1* **methylation by TRM editors. (a)** MeRIP-RT-qPCR of *Foxm1* 3'UTR m⁶A sites (A3488 and A3504) from HEK293T cells transfected with a control plasmid or full-length METTL3. **(b)** MeRIP-RT-qPCR of indicated TRM editors or TRM methyltransferase domains with *Foxm1*-targeting or non-targeting guide RNAs. M3 and M3M14 refer to methyltransferase components lacking dCas13. Values and error bars reflect the mean±s.e.m. of n=3 independent biological replicates.

Supplementary Figure 10. Validation of targeted Sox2 methylation by TRM editors. (a) MeRIP-RT-qPCR of *Sox2* 3'UTR m⁶A sites (A1398 and A1405) from HEK293T cells transfected with a control plasmid or full-length METTL3. **(b)** MeRIP-RT-qPCR of indicated TRM editors or TRM methyltransferase domains with *Sox2*-targeting or non-targeting guide RNAs. M3 and M3M14 refer to methyltransferase components lacking dCas13. Values and error bars reflect the mean±s.e.m. of n=3 independent biological replicates.

Supplementary Figure 11. Orthogonal validation of TRM with MazF-qPCR. (a) Schematic of MazF-qPCR method for base-resolution m⁶A measurement. MazF ribonuclease specifically digests ACA but not m⁶ACA, allowing m⁶A detection within <u>A</u>CA motifs by measurement of MazF digestion efficiency. Cellular RNA samples are treated with (+MazF) or without MazF (-MazF), followed by RT-qPCR of a target amplicon spanning the interrogated ACA motif. +MazF/-MazF amplicon abundance provides single-base quantification of relative m⁶A/A ratios at the targeted ACA motif. **(b)** MazF-qPCR of *Gapdh* A690. **(c)** MazF-qPCR of *Sox2* A1398. Inactive TRM editors contain a methyltransferase-inactivating D395A mutation within M3. Values and error bars reflect the mean±s.e.m. of n=3 independent biological replicates.

Supplementary Figure 12. MeRIP-seq of *Actb* **mRNA targeted by TRM editors. (a,b)** *Actb* read coverage of m⁶A-immunoprecipitated (m⁶A IP) RNA from MeRIP-seq of transfected HEK293T cells. *Actb* A1216 was targeted with (a) dCas13–M3nls or (b) dCas13–M3M14nes with the following conditions: active editor with a target guide RNA, inactive editor with a target guide RNA, and active editor with a non-target guide RNA. All DR<u>A</u>CH motifs susceptible to TRM modification are annotated as ticks underneath the IGV track. The target guide RNA (purple) and targeted A1216 site (grey) are shown. Inactive TRM editors contain a methyltransferase-inactivating D395A mutation within M3. MeRIP-seq analysis was performed with n=5 independent biological replicates.

Supplementary Figure 13. TRM editing window on *Actb* and *Gapdh*. MeRIP-RT-qPCR of (a) *Actb* A1216 and (b) *Gapdh* A690 targeted by dCas13–M3nls and dCas13–M3M14nes with 30-nt guide RNAs (purple) ending at the indicated bp from the target adenine. NT = non-targeting. Inactive TRM editors contain a methyltransferase-inactivating D395A mutation within M3. Values and error bars reflect the mean±s.e.m. of n=3 independent biological replicates.

Supplementary Figure 14. Sequence preferences of TRM editors. Sequence logos of m⁶Aenriched RNA from HEK293T cells expressing indicated constructs and guide RNAs. Logos for offtarget sites from active dCas13–M3nls and dCas13–M3M14nes + *Actb* gRNA (2nd row) were created from 1,018 and 3,144 m⁶A peaks, respectively, not found in the inactive TRM + *Actb* gRNA conditions. All other logos were generated from the 5,000 most-methylated m⁶A peaks for each condition. The modified adenine is denoted as m⁶A below the logos. Inactive TRM editors contain a methyltransferase-inactivating D395A mutation within M3. MeRIP-seq analysis for producing sequence logos was performed with n=5 independent biological replicates.

Supplementary Figure 15. Effect of TRM editors on cellular m⁶A content. Relative m⁶A/A in polyA+ RNA normalized to a transfected vector control. HEK293T cells were transfected with indicated TRM editors and non-targeting guide RNAs. Equal amounts of cellular mRNA were captured and detected with anti-m⁶A antibodies to quantify m⁶A/A ratios. Inactive TRM editors contain a methyltransferase-inactivating D395A mutation within M3. Values and error bars reflect the mean±s.e.m. of n=6 independent biological replicates. *P* values were calculated using a two-tailed Student's *t*-test.

Supplementary Figure 16. Off-target methylation by TRM editors. (a,b) Differential m⁶A enrichment of >21,000 methylated sites in HEK293T cells transfected with **(a)** dCas13–M3nls or **(b)** dCas13–M3M14nes and *Actb* A1216-targeting or non-target guide RNAs. Top: differential methylation of m⁶A sites between conditions indicated above. Only differentially methylated sites with statistical significance (*P*<0.001) are shown. Bottom: Venn diagrams depicting overlap of all methylated m⁶A sites for the above comparisons. **(c)** Overlay of dCas13–M3nls (blue) and dCas13–M3M14nes (grey) differential methylation with the following comparisons: left, active editors with *Actb* guide RNAs vs. inactive editors with *Actb* guide RNAs; right, active editors with non-target guide

RNAs vs. inactive editors with *Actb* guide RNAs. The targeted *Actb* A1216 site is outlined in black. Inactive TRM editors contain a methyltransferase-inactivating D395A mutation within M3. MeRIP-seq analysis was performed with n=5 independent biological replicates. Statistical significance was calculated using a logs likelihood-ratio test with false discovery rate correction.

Supplementary Figure 17. Endogenous methylation levels of TRM editor off-targets. (a) Density plot depicting the m⁶A enrichment (log₂ m⁶A IP/input) of 566 dCas13–M3nls off-target sites in a methyltransferase-inactive TRM control. 50 off-targets did not have measurable methylation in the control. **(b)** Density plot depicting the m⁶A enrichment (log₂ m⁶A IP/input) of 2,438 dCas13–M3M14nes off-target sites in a methyltransferase-inactive TRM control. 1,708 off-targets did not have measurable methylation in the control. MeRIP-seq analysis was performed with n=5 independent biological replicates.

Supplementary Figure 18. Effects of TRM editors on transcriptome-wide distribution of m⁶A. (a) Metagenome plots of m⁶A distribution within mRNA (left) and IncRNA (right) in HEK293T cells transfected with indicated TRM editors and *Actb* guide RNAs. (b,c) Bar plots depicting the percentage of m⁶A peaks within distinct mRNA regions, from HEK293T cells treated with the specified TRM editors and guide RNAs. *Actb* guide RNAs target the A1216 site, and *Gapdh* guide RNAs target the A690 site. 10,000 of the most-methylated m⁶A peaks from each sample was used for each analysis. (d,e) Transcriptome-wide distribution of off-target m⁶A sites from (d) dCas13–M3nls and (e) dCas13–M3M14nes, with 97.5% confidence intervals shaded in. Inactive TRM editors contain a methyltransferase-inactivating D395A mutation within M3. MeRIP-seq analysis for generating all plots was performed with n=5 independent biological replicates.

Supplementary Figure 19. Effects of TRM editors on cellular transcriptome abundances.

Volcano and scatter plots depict differential gene transcript abundance in HEK293T cells transfected with (a) dCas13–M3nls and (b) dCas13–M3M14nes, each compared with its corresponding inactive TRM editor using methyltransferase-inactive $M3^{D395}$ instead of M3. Cells were co-transfected with non-targeting guide RNAs for all conditions. Differentially expressed genes (*P*<0.05 and fold-change>2) are shown in red and counted in each volcano plot. TPM = transcripts per million. Differential RNA-seq analysis was performed with n=3 independent biological replicates, and more than 196,000 total transcripts from over 15,000 total genes were analyzed in each experiment. Statistical significance was calculated using a two-tailed Student's *t*-test with false discovery rate correction.

Supplementary Figure 20. Comparison of TRM editors with M3M14–dCas9 + PAMmer editors³. (a) Actb read coverage of m⁶A-immunoprecipitated (m⁶A IP) RNA fragments from MeRIP-seq of HEK293T cells transfected with indicated M3M14–dCas9 editors and single guide RNAs (sgRNAs) with corresponding PAMmers. The following conditions are shown: M3M14–dCas9 with sgRNA and PAMmers targeting Actb A1216 (red), M3M14–dCas9 with non-targeting sgRNA and PAMmers (blue), and inactive editor control with sgRNA and PAMmers targeting Actb A1216 (black outline). All DRACH motifs susceptible to TRM modification are shown as black tick marks underneath the IGV track. The target guide RNA (purple) and targeted A1216 site (grey) are shown. (b) Differential m⁶A enrichment of >15,000 methylated sites in HEK293T cells transfected with M3M14-dCas9 and either Actb A1216-targeting sgRNA or non-targeting sgRNA with corresponding PAMmers. Top: differential methylation of m⁶A sites between conditions indicated above. Only differentially methylated m⁶A sites with statistical significance (p<0.01) are shown. Bottom: Venn diagrams depicting overlap of all methylated m⁶A sites for the above comparisons. Inactive M3M14–dCas9 editor control bears a catalytically-inactivating D395 mutation within its METTL3 methyltransferase domain. MeRIP-seq analysis was performed on n=5 independent biological replicates. Statistical significance was calculated using a logs likelihood-ratio test with false discovery rate correction.

Supplementary Figure 21. *Gapdh* RNA expression changes from TRM editing. Differential RNA expression of HEK293T cells transfected with (a) dCas13–M3nls or (b) dCas13–M3M14nes and either the *Gapdh* A690-targeting guide RNA or a non-targeting guide RNA. The targeted GAPDH gene is marked in red. Inactive TRM control indicates editors containing a methyltransferase-inactivating M3 D395A mutation with a *Gapdh*-targeting guide RNA. Non-target gRNA control indicates methyltransferase-active TRM editors with a non-targeting guide RNA. Differential RNA-seq analysis was performed with n=5 independent biological replicates. Statistical significance was calculated using a two-tailed Student's *t*-test with false discovery rate correction.

Supplementary Table 1. RNA oligonucleotide sequences for *in vitro* kinetics assays. The adenine susceptible to methylation is bolded within the GG<u>A</u>CU m⁶A motif (red).

Name	RNA sequence
ssRNA	AGCUCGGUUCCGGUUGGGUU <mark>GGACU</mark> GAAAUAUGGAUUACUUGGUAGAA

Supplementary Table 2. Cas13 guide RNA spacer sequences used in this study. A guanosine (lower-case g) was added to the 5' end of 30-nt guide RNA spacers (upper-case sequences) used in HEK293T cells, because the human U6 promoter has a strong preference for G at the transcription start site. TRM = targeted RNA methylation. IF = immunofluorescence.

Name	Guide RNA spacer sequence	Figures used in
Synthetic target guide	TGCAGAGTAGAGGCCGCAGGATAGTTTAGAAC	2c,d; SI 3
Non-targeting guide (<i>E. coli</i>)	GTAATTCCCTGGTCCGTCGACGCATAGTCTG	2c
Non-targeting guide (HEK293T)	gGTAATGCCTGGCTTGTCGACGCATAGTCTG	3b-c; 4a-e; 5a-e; 6a-d; SI 4a-b; SI 5b-d; SI 6b; SI 7; SI 8c; SI 9b; SI 10b; SI 11b-c; SI 12a-b; SI 13a-b; SI 14; SI 15; SI 16a-c; SI 18a-c; SI 19a-b; SI 21a-b
Cluc-syn guide 1	gTAGTCCGAGTCCAGTCCGGAGTCCGAGCAT	SI 5c
Cluc–syn guide 2	gTTCCAAACTATCCTGCGGCCTCTACTCTGC	3b; SI 5c
Cluc–Socs2 guide 1	gTACATAGCTGCATTCGGAGATACTCTATGT	3c; SI 4a-b; SI 5c
Cluc–Socs2 guide 2	gGATAAAACGCGACTTCAGCCTTTACATGCG	SI 5c
Actb guide IF	gGGGGGATGCTCGCTCCAACCGACTGCTGTC	4a
Actb A1216 guide -1	gCCGCCTAGAAGCATTTGCGGTGGACGATGG	SI 13a
Actb A1216 guide -8	gGAAGCATTTGCGGTGGACGATGGAGGGGCC	4b; 6a,b; SI 6b; SI 12a-b; SI 13a; SI 14; SI 16a-c; SI 18a- b
Actb A1216 guide -15	gTTGCGGTGGACGATGGAGGGGCCGGACTCG	SI 13a
Actb A1216 guide -22	gGGACGATGGAGGGGCCGGACTCGTCATACT	SI 13a
Gapdh A690 guide -1	gTCTGGAGAGCCCCGCGGCCATCACGCCACA	SI 13b
<i>Gapdh</i> A690 guide -8	gAGCCCCGCGGCCATCACGCCACAGTTTCCC	4c; 5a-e; SI 8c; SI 11b; SI 13b; SI 17a-b; SI 18c-e; SI 21a-b
Gapdh A690 guide -15	gCGGCCATCACGCCACAGTTTCCCGGAGGGG	SI 13b
Gapdh A690 guide -22	gCACGCCACAGTTTCCCGGAGGGGCCATCCA	SI 13b
<i>Foxm1</i> A3488, A3504 guide	gGTATGATTGGGGACATTATCAGAGAAACAT	4d, SI 9b
Sox2 A1398, A1405 guide	gTCACATGTGTGAGAGGGGGCAGTGTGCCGTT	4e, SI 10b; SI 11c
Cluc CDS guide 1	gAGGTTCTCCAGGGTGATGGACACCTTCCAG	SI 5b
Cluc CDS guide 2	gGTCTGTATCTTCCATCATTTTAAGATCTCC	SI 5b
Cluc CDS guide 3	gAATTGGTATCTTGCTTTGTCAAATGTATCG	SI 5b
Cluc CDS guide 4	gATGGATCTCTAATATGTACGACGAGCAGTT	SI 5b
Cluc CDS guide 5	gTACTTCTAGGGTGTCTCCATGCTTTATGTA	SI 5b
Cluc-Nanog guide 1	gGCCAGTGTCCAGACTGAAATTGAGTAATAT	SI 5c
Cluc-Nanog guide 2	gCACTCCAGCCTGGGCGACAGAGCAAGACTC	SI 5c
Hspa1a-Cluc guide 1	gGGGAAGCCTTGGGACAACGGGAGTCACTCT	SI 5d
Hspa1a–Cluc guide 2	gGGAACACTGGATCCGCGAGAAGAGCTCGGT	SI 5d
Hsph1–Cluc guide 1	gCCTCAGCCTTATGTATCGCACTGATCAGAA	SI 5d
Hsph1–Cluc guide 2	gCTCCGGCCCCCTGCCTGCTTCTCCTGCCGC	SI 5d

Brd8 guide 1	gTGAAGCATCCTGTTTGCGGGTAGAATCTCT	6c
Znf638 guide 1	gAAATGTGTAAGCCTGACATCTTGGTTCCAC	6d

Supplementary Table 3. Cas9 guide RNA spacer and PAMmer sequences used for experiments with M3M14-dCas9³. A guanosine (lower-case g) was added to the 5' end of 20-nt single guide RNA (sgRNA) spacers (upper-case sequences) used in HEK293T cells, because the human U6 promoter has a strong preference for G at the transcription start site.

Name	Sequence
M3M14-dCas9 Actb	gCACCGCAAATGCTTCTAGGC
sgRNA	
M3M14-dCas9 non-	gGTATTACTGATATTGGTGGG
targeting sgRNA	
M3M14-dCas9 Actb	mUTmGCmGGmUGmUGGmGAmUGmGAmGGmGGmCCmGGmAC
PAMmer	
M3M14-dCas9 non-	mGCmGGmAGmGAmGCTmUGmCGmAGmCGmGTmGGmUTmGG
targeting PAMmer	

Supplementary Table 4. Sequences of guide-quenching DNA oligonucleotides. Because guide RNAs interfere with RT-qPCR of targeted transcripts, DNA oligos were used to quench guides within total RNA purified from HEK293T cells. DNA oligos were designed to hybridize with guide RNA spacer sequences and the PspCas13b crRNA hairpin. The constant crRNA-binding region is shown in lower-case. A 2',3'-dideoxycytidine modification (/3ddc/) hybridizes with the guide RNA's 5' G and prevents polymerase extension of the guide-quenching oligo in subsequent reverse-transcription and PCR reactions.

Guide RNA name	Guide-quenching DNA oligo sequence
Non-targeting guide (HEK293T)	ggaccttccacaacCAGACTATGCGTCGACAAGCCAGGCATTAC/3ddc/
<i>Cluc–syn</i> guide 1	ggaccttccacaacGCAGAGTAGAGGCCGCAGGATAGTTTGGAA/3ddc/
Cluc–Socs2 guide 1	ggaccttccacaacACATAGAGTATCTCCGAATGCAGCTATGTA/3ddc/
Actb A1216 guide -1	ggaccttccacaacCCATCGTCCACCGCAAATGCTTCTAGGCGG/3ddc/
Actb A1216 guide -8	ggaccttccacaacGGCCCCTCCATCGTCCACCGCAAATGCTTC/3ddc/
Actb A1216 guide -15	ggaccttccacaacCGAGTCCGGCCCCTCCATCGTCCACCGCAA/3ddc/
Actb A1216 guide -22	ggaccttccacaacAGTATGACGAGTCCGGCCCCTCCATCGTCC/3ddc/
Gapdh A690 guide -1	ggaccttccacaacTGTGGCGTGATGGCCGCGGGGCTCTCCAGA/3ddc/
Gapdh A690 guide -8	ggaccttccacaacGGGAAACTGTGGCGTGATGGCCGCGGGGCT/3ddc/
Gapdh A690 guide -15	ggaccttccacaacCCCCTCCGGGAAACTGTGGCGTGATGGCCG/3ddc/
Gapdh A690 guide -22	ggaccttccacaacTGGATGGCCCCTCCGGGAAACTGTGGCGTG/3ddc/
Foxm1 A3488, A3504 guide	ggaccttccacaacATGTTTCTCTGATAATGTCCCCAATCATAC/3ddc/
Sox2 A1398, A1405 guide	ggaccttccacaacAACGGCACACTGCCCCTCTCACACATGTGA/3ddc/

Supplementary Table 5. Primers used for RT-qPCR in TRM methylation assays, mazF, or dCas13 targeting experiments. All probes were synthesized from Bio-Rad and used for TaqMan qPCR.

Name	Sequence	
Synthetic target forward	CCGCAGGATAGTTTGGAACATGGACT	
Synthetic target reverse	GGCCGCGGGGATCCAGACAT	
Synthetic target probe	/56-FAM/CTTTGGACTTGATGAGCGGCCGCGGG/3IABkFQ/	
Cluc-syn forward	GAAGAAACCCGTGGCCAAGATGCTC	
Cluc–syn reverse	GAACATGGACTCTAGGACTGGACTTTG	
<i>Cluc-syn</i> probe	/56-FAM/CCGGACTGGACTCGGACTAATGCAGAGTAGAGG/3IABkFQ/	
Cluc-Socs2 forward	GGGGACTGCCTTTACCAACAAGACTAAAA	
Cluc–Socs2 reverse	CTCAAGTTTTGGTTCTCTTTTACATAGCTGCATTC	
Cluc-Socs2 probe	/56-	
	FAM/CCAGGTATAAATGTTTCTCTTTTTTTTTTTTTTTTTTTT	
Actb A1216 target 1 forward	ATCGTCCACCGCAAATGCTT	
Acth A1216 target 1 reverse	TCATCTTGTTTCTGCGCAAGT	
Actb A1216 target 1 probe	/56-FAM/AGTCCGCCT/ZEN/AGAAGCATTTGCGGT/3IABkFQ/	
Actb A1216 target 2 forward	TCCATCGTCCACCGCAAAT	
Actb A1216 target 2 reverse	TTGTTTTCTGCGCAAGTTAGGT	
Actb A1216 target 2 probe	/5HEX/CCGCCTAGA/ZEN/AGCATTTGCGGTGG/3IABkEQ/	
Actb reference control	Bio-Rad gHsaCEP0036280	
forward		
Actb reference control	Bio-Rad gHsaCEP0036280	
reverse		
Actb reference control probe	Bio-Rad gHsaCEP0036280 (Cy5-labeled)	
Gapdh A690 target forward	CATCACTGCCACCCAGAAGA	
Gapdh A690 target reverse	CAGTAGAGGCAGGGATGATGTT	
Gapdh A690 target probe	/56-FAM/CCCTCCGGG/ZEN/AAACTGTGGCGT/3IABkFQ/	
Gapdh reference control	TCAAGGCTGAGAACGGGAAG	
forward		
Gapdh reference control	GGACTCCACGACGTACTCAG	
reverse		
Gapdh reference control	/5Cy55/TCCAGGAGCGAGATCCCTCC/3IAbRQSp/	
probe		
Foxm1 A3488, A3504 target	TGCCCAGATGTGCGCTATTA	
1 forward		
Foxm1 A3488, A3504 target	CTTCTCAAGCCTCCACCTGA	
1 reverse		
Foxm1 A3488, A3504 target	/56-FAM/TCGTCAATG/ZEN/CCAGTCTCCCTGGT/3IABkFQ/	
1 probe		
Foxm1 A3488, A3504 target	GTGCCCAGATGTGCGCTAT	
2 forward		
Foxm1 A3488, A3504 target	GTCAATGCCAGTCTCCCTGG	
2 reverse		
Foxm1 A3488, A3504 target	/5HEX/CCCAATCAT/ZEN/ACCAGGGAGACTGGCA/3IABkFQ/	
2 probe		

Foxm1 reference control	Bio-Rad qHsaCEP0050615
forward	
Foxm1 reference control	Bio-Rad qHsaCEP0050615
reverse	
Foxm1 reference control	Bio-Rad qHsaCEP0050615 (Cy5-labeled)
probe	
Sox2 A1398, A1405 target 1	GGCCATTAACGGCACACTG
forward	
Sox2 A1398, A1405 target 1	TCTTTTGCACCCCTCCCATT
reverse	
Sox2 A1398, A1405 target 1	/56-FAM/TCACACATG/ZEN/TGAGGGCCGGACAG/3IABkFQ/
probe	
Sox2 A1398, A1405 target 2	CGGCCATTAACGGCACACT
forward	
Sox2 A1398, A1405 target 2	CCCTCCCATTTCCCTCGTTTT
reverse	
Sox2 A1398, A1405 target 2	/5HEX/CATGTGAGG/ZEN/GCCGGACAGCGAAC/3IABkFQ/
probe	
Sox2 reference control	Bio-Rad qHsaCEP0039595
forward	
Sox2 reference control	Bio-Rad qHsaCEP0039595
reverse	
Sox2 reference control probe	Bio-Rad qHsaCEP0039595 (Cy5-labeled)
Sox2 A1398, A1405 MazF	CATGTGAGGGCCGGACAG
target forward	
Sox2 A1398, A1405 MazF	TCTTTTGCACCCCTCCCATT
target reverse	
Sox2 A1398, A1405 MazF	/56-FAM/CGAGGGAAA/ZEN/TGGGAGGGGGGGCAAA/3IABkFQ/
target probe	
Sox2 MazF reference control	CATGGGTTCGGTGGTCAAG
forward	
Sox2 MazF reference control	TGGAGTGGGAGGAAGAGGTA
reverse	
Sox2 MazF reference control	/5Cy5/TCCGAGGCCAGCTCCAGCCC/3IAbRQSp/
probe	
EEF1A1 m ⁶ A+ control	CGGTCTCAGAACTGTTTGTTTC
forward	
EEF1A1 m ⁶ A+ control	AAACCAAAGTGGTCCACAAA
reverse	
EEF1A1 m ⁶ A+ control probe	/5TEX615/CGTAAAACCTTCAGAAGGAAAGGAG/3IAbRQSp/
EEF1A1 m ⁶ A- control forward	GGATGGAAAGTCACCCGTAAG
EEF1A1 m ⁶ A- control reverse	TTGTCAGTTGGACGAGTTGG
EEF1A1 m ⁶ A- control probe	/5Cy55/AACCACGCTGCTTGAGGCTC/3IAbRQSp/
Cypridina luciferase forward	ACTGTAAACGGTGGAGCTGA
Cypridina luciferase reverse	AAGCCTGGCATCTCAACAAC
Cypridina luciferase probe	/5Cy5/TCGGCGAGGTCACCATCGCT/3IAbRQSp/
Gaussia luciferase forward	ATCTGCCTGTCCCACATCAA
Gaussia luciferase reverse	CGGACTCTTTGTCGCCTTC

Supplementary Table 6. Primers used for semi-quantitative PCR in alternative splicing assays.

Name	Sequence
Znf638 exon 1 forward	CGTCGAGACTGGAGGCTGAG
Znf638 exon 3 reverse	TGAGTAGATGTATTTTGATGCTGAATCC
Brd8 exon 20 forward	GAGAGATTCTACCCGCAAACAGG
Brd8 exon 22 reverse	TATCTGCTTCAATGGCACAGCGG

Supplementary Sequences 1. Amino acid sequences of nucleus- and cytoplasm-localized TRM

editors. Color coding is as follows:

green = HIV nuclear export signal

red = bipartite SV40 nuclear localization signal

blue = PspCas13b Δ984-1090 H133A (dCas13)

black = linkers

orange = METTL3²⁷³⁻⁵⁸⁰ (for dCas13–M3nes and dCas13–M3nls) or METTL3³⁵⁹⁻⁵⁸⁰ (for dCas13–

M3M14nes and dCas13–M3M14nls)

brown = METTL14¹¹¹⁻⁴⁵⁶

dCas13-M3nes:

MNIPALVENQKKYFGTYSVMAMLNAQTVLDHIQKVADIEGEQNENNENLWFHPVMSHLYNAKNGYD KQPEKTMFIJERLQSYFPFLKIMAENQREYSNGKYKQNRVEVNSNDJFEVLKRAFGVLKMYRDLTNAY KTYEEKLNDGCEFLTSTEQPLSGMINNYYTVALRNMNERYGYKTEDLAFIQDKRFKFVKDAYGKKKS QVNTGFFLSLQDYNGDTQKKLHLSGVGIALLICLFLDKQYINIFLSRLPIFSSYNAQSEERRIIIRSFGINS IKLPKDRIHSEKSNKSVAMDMLNEVKRCPDELFTTLSAEKQSRFRIISDDHNEVLMKRSSDRFVPLLL QYIDYGKLFDHIRFHVNMGKLRYLLKADKTCIDGQTRVRVIEQPLNGFGRLEEAETMRKQENGTFGN SGIRIRDFENMKRDDANPANYPYIVDTYTHYILENNKVEMFINDKEDSAPLLPVIEDDRYVVKTIPSCR MSTLEIPAMAFHMFLFGSKKTEKLIVDVHNRYKRLFQAMQKEEVTAENIASFGIAESDLPQKILDLISG NAHGKDVDAFIRLTVDDMLTDTERRIKRFKDDRKSIRSADNKMGKRGFKQISTGKLADFLAKDIVLFQ PSVNDGENKITGLNYRIMQSAIAVYDSGDDYEAKQQFKLMFEKARLIGKGTTEPHPFLYKVFARSIPA NAVEFYERYLIERKFYLTGLSNEIKKGNRVDVPFIRRDQNKWKTPAMKTLGRIYSEDLPVELPRQMFD NEIKSHLKSLPQMEGIDFNNANVTYLIAEYMKRVLDDDFQTFYQWNRNYRYMDMLKGEYDRKGSLQ HCFTSVEEREGLWKERASRTERYRKQASNKIRSNRQMRNASSEEIETILDKRLSNSRNEYQKSEKVI RRYRVQDALLFLLAKKTLTELADFDGERFKLKEIMPDAEKGILSEIMPMSFTFEKGGKKYTITSEGMKL KNYGDFFVLASDKRIGNLLELVGSDIVSKEDGSLQLPPLERLTLSGSETPGTSESATPESQEFCDYGT KEECMKASDADRPCRKLHFRRIINKHTDESLGDCSFLNTCFHMDTCKYVHYEIDACMDSEAPGSKDH TPSQELALTQSVGGDSSADRLFPPQWICCDIRYLDVSILGKFAVVMADPPWDIHMELPYGTLTDDEM RRLNIPVLQDDGFLFLWVTGRAMELGRECLNLWGYERVDEIIWVKTNQLQRIIRTGRTGHWLNHGKE HCLVGVKGNPQGFNQGLDCDVIVAEVRSTSHKPDEIYGMIERLSPGTRKIELFGRPHNVQPNWITLG NQLDGIHLLDPDVVARFKQRYPDGIISKPKNL

dCas13-M3nls:

MKRTADGSEFESPKKKRKVNIPALVENQKKYFGTYSVMAMLNAQTVLDHIQKVADIEGEQNENNENL WFHPVMSHLYNAKNGYDKQPEKTMFIIERLQSYFPFLKIMAENQREYSNGKYKQNRVEVNSNDIFEV LKRAFGVLKMYRDLTNAYKTYEEKLNDGCEFLTSTEQPLSGMINNYYTVALRNMNERYGYKTEDLAF IQDKRFKFVKDAYGKKKSQVNTGFFLSLQDYNGDTQKKLHLSGVGIALLICLFLDKQYINIFLSRLPIFS SYNAQSEERRIIIRSFGINSIKLPKDRIHSEKSNKSVAMDMLNEVKRCPDELFTTLSAEKQSRFRIISDD HNEVLMKRSSDRFVPLLLQYIDYGKLFDHIRFHVNMGKLRYLLKADKTCIDGQTRVRVIEQPLNGFGR LEEAETMRKQENGTFGNSGIRIRDFENMKRDDANPANYPYIVDTYTHYILENNKVEMFINDKEDSAPL LPVIEDDRYVVKTIPSCRMSTLEIPAMAFHMFLFGSKKTEKLIVDVHNRYKRLFQAMQKEEVTAENIAS FGIAESDLPQKILDLISGNAHGKDVDAFIRLTVDDMLTDTERRIKRFKDDRKSIRSADNKMGKRGFKQI STGKLADFLAKDIVLFQPSVNDGENKITGLNYRIMQSAIAVYDSGDDYEAKQQFKLMFEKARLIGKGT TEPHPFLYKVFARSIPANAVEFYERYLIERKFYLTGLSNEIKKGNRVDVPFIRRDQNKWKTPAMKTLG RIYSEDLPVELPRQMFDNEIKSHLKSLPQMEGIDFNNANVTYLIAEYMKRVLDDDFQTFYQWNRNYR YMDMLKGEYDRKGSLQHCFTSVEEREGLWKERASRTERYRKQASNKIRSNRQMRNASSEEIETILD KRLSNSRNEYQKSEKVIRRYRVQDALLFLLAKKTLTELADFDGERFKLKEIMPDAEKGILSEIMPMSFT FEKGGKKYTITSEGMKLKNYGDFFVLASDKRIGNLLELVGSDIVSKEDGSKRTADGSEFEPKKKRKVS GSETPGTSESATPESQEFCDYGTKEECMKASDADRPCRKLHFRRIINKHTDESLGDCSFLNTCFHM DTCKYVHYEIDACMDSEAPGSKDHTPSQELALTQSVGGDSSADRLFPPQWICCDIRYLDVSILGKFA VVMADPPWDIHMELPYGTLTDDEMRRLNIPVLQDDGFLFLWVTGRAMELGRECLNLWGYERVDEII WVKTNQLQRIIRTGRTGHWLNHGKEHCLVGVKGNPQGFNQGLDCDVIVAEVRSTSHKPDEIYGMIE RLSPGTRKIELFGRPHNVQPNWITLGNQLDGIHLLDPDVVARFKQRYPDGIISKPKNL

dCas13-M3M14nes:

MNIPALVENQKKYFGTYSVMAMLNAQTVLDHIQKVADIEGEQNENNENLWFHPVMSHLYNAKNGYD KQPEKTMFIIERLQSYFPFLKIMAENQREYSNGKYKQNRVEVNSNDIFEVLKRAFGVLKMYRDLTNAY KTYEEKLNDGCEFLTSTEQPLSGMINNYYTVALRNMNERYGYKTEDLAFIQDKRFKFVKDAYGKKKS QVNTGFFLSLQDYNGDTQKKLHLSGVGIALLICLFLDKQYINIFLSRLPIFSSYNAQSEERRIIIRSFGINS IKLPKDRIHSEKSNKSVAMDMLNEVKRCPDELFTTLSAEKQSRFRIISDDHNEVLMKRSSDRFVPLLL QYIDYGKLFDHIRFHVNMGKLRYLLKADKTCIDGQTRVRVIEQPLNGFGRLEEAETMRKQENGTFGN SGIRIRDFENMKRDDANPANYPYIVDTYTHYILENNKVEMFINDKEDSAPLLPVIEDDRYVVKTIPSCR MSTLEIPAMAFHMFLFGSKKTEKLIVDVHNRYKRLFQAMQKEEVTAENIASFGIAESDLPQKILDLISG NAHGKDVDAFIRLTVDDMLTDTERRIKRFKDDRKSIRSADNKMGKRGFKQISTGKLADFLAKDIVLFQ PSVNDGENKITGLNYRIMQSAIAVYDSGDDYEAKQQFKLMFEKARLIGKGTTEPHPFLYKVFARSIPA NAVEFYERYLIERKFYLTGLSNEIKKGNRVDVPFIRRDQNKWKTPAMKTLGRIYSEDLPVELPRQMFD NEIKSHLKSLPQMEGIDFNNANVTYLIAEYMKRVLDDDFQTFYQWNRNYRYMDMLKGEYDRKGSLQ HCFTSVEEREGLWKERASRTERYRKQASNKIRSNRQMRNASSEEIETILDKRLSNSRNEYQKSEKVI RRYRVQDALLFLLAKKTLTELADFDGERFKLKEIMPDAEKGILSEIMPMSFTFEKGGKKYTITSEGMKL KNYGDFFVLASDKRIGNLLELVGSDIVSKEDGSLQLPPLERLTLSGGSSGGSSGSETPGTSESATPES SGGSSGGSVGGDSSADRLFPPQWICCDIRYLDVSILGKFAVVMADPPWDIHMELPYGTLTDDEMRR LNIPVLQDDGFLFLWVTGRAMELGRECLNLWGYERVDEIIWVKTNQLQRIIRTGRTGHWLNHGKEHC LVGVKGNPQGFNQGLDCDVIVAEVRSTSHKPDEIYGMIERLSPGTRKIELFGRPHNVQPNWITLGNQ HNDYCQHFVDTGHRPQNFIRDVGLADRFEEYPKLRELIRLKDELIAKSNTPPMYLQADIEAFDIRELTP KFDVILLEPPLEEYYRETGITANEKCWTWDDIMKLEIDEIAAPRSFIFLWCGSGEGLDLGRVCLRKWG YRRCEDICWIKTNKNNPGKTKTLDPKAVFQRTKEHCLMGIKGTVKRSTDGDFIHANVDIDLIITEEPEIG NIEKPVEIFHIIEHFCLGRRRLHLFGRDSTIRPGWLTVGPTLTNSNYNAETYASYFSAPNSYLTGCTEEI ERLRPKSPPPKSKSDRGGGAPRGGGRGGTSAGRGRERNRSNFRGERGGFRGGRGGAHRGGFPP R

dCas13-M3M14nls:

MKRTADGSEFESPKKKRKVNIPALVENQKKYFGTYSVMAMLNAQTVLDHIQKVADIEGEQNENNENL WFHPVMSHLYNAKNGYDKQPEKTMFIIERLQSYFPFLKIMAENQREYSNGKYKQNRVEVNSNDIFEV LKRAFGVLKMYRDLTNAYKTYEEKLNDGCEFLTSTEQPLSGMINNYYTVALRNMNERYGYKTEDLAF IQDKRFKFVKDAYGKKKSQVNTGFFLSLQDYNGDTQKKLHLSGVGIALLICLFLDKQYINIFLSRLPIFS SYNAQSEERRIIIRSFGINSIKLPKDRIHSEKSNKSVAMDMLNEVKRCPDELFTTLSAEKQSRFRIISDD HNEVLMKRSSDRFVPLLLQYIDYGKLFDHIRFHVNMGKLRYLLKADKTCIDGQTRVRVIEQPLNGFGR LEEAETMRKQENGTFGNSGIRIRDFENMKRDDANPANYPYIVDTYTHYILENNKVEMFINDKEDSAPL LPVIEDDRYVVKTIPSCRMSTLEIPAMAFHMFLFGSKKTEKLIVDVHNRYKRLFQAMQKEEVTAENIAS FGIAESDLPQKILDLISGNAHGKDVDAFIRLTVDDMLTDTERRIKRFKDDRKSIRSADNKMGKRGFKQI STGKLADFLAKDIVLFQPSVNDGENKITGLNYRIMQSAIAVYDSGDDYEAKQQFKLMFEKARLIGKGT TEPHPFLYKVFARSIPANAVEFYERYLIERKFYLTGLSNEIKKGNRVDVPFIRRDQNKWKTPAMKTLG RIYSEDLPVELPRQMFDNEIKSHLKSLPQMEGIDFNNANVTYLIAEYMKRVLDDDFQTFYQWNRNYR YMDMLKGEYDRKGSLQHCFTSVEEREGLWKERASRTERYRKQASNKIRSNRQMRNASSEEIETILD KRLSNSRNEYQKSEKVIRRYRVQDALLFLLAKKTLTELADFDGERFKLKEIMPDAEKGILSEIMPMSFT FEKGGKKYTITSEGMKLKNYGDFFVLASDKRIGNLLELVGSDIVSKEDGSKRTADGSEFEPKKKRKVS GGSSGGSSGSETPGTSESATPESSGGSSGGSVGGDSSADRLFPPOWICCDIRYLDVSILGKFAVVM ADPPWDIHMELPYGTLTDDEMRRLNIPVLQDDGFLFLWVTGRAMELGRECLNLWGYERVDEIIWVKT NQLQRIIRTGRTGHWLNHGKEHCLVGVKGNPQGFNQGLDCDVIVAEVRSTSHKPDEIYGMIERLSPG TRKIELFGRPHNVQPNWITLGNQLDGIHLLDPDVVARFKQRYPDGIISKPKNLGGSGGSGGSGGSGGSGG SGGSGGSGGSGGSGSGSGSGSLNPHNDYCQHFVDTGHRPQNFIRDVGLADRFEEYPKLRELIRLKDELI AKSNTPPMYLQADIEAFDIRELTPKFDVILLEPPLEEYYRETGITANEKCWTWDDIMKLEIDEIAAPRSFI FLWCGSGEGLDLGRVCLRKWGYRRCEDICWIKTNKNNPGKTKTLDPKAVFQRTKEHCLMGIKGTVK RSTDGDFIHANVDIDLIITEEPEIGNIEKPVEIFHIIEHFCLGRRRLHLFGRDSTIRPGWLTVGPTLTNSNY NAETYASYFSAPNSYLTGCTEEIERLRPKSPPPKSKSDRGGGAPRGGGRGGTSAGRGRERNRSNF RGERGGFRGGRGGAHRGGFPPR

Supplementary Sequences 2. Sequences of exogenous reporter transcripts targeted by TRM editor constructs. Color coding is as follows:

black = reporter sequence, with the TRM guide RNA-targeted protospacer <u>underlined</u> green = *Cypridina* luciferase CDS

red = targeted m⁶A motifs (DR<u>A</u>CH), with target adenines marked in **bold**

Synthetic target (*E. coli* Tuner DE3):

Cluc–syn (HEK293T):

AUGAAGACCUUAAUUCUUGCCGUUGCAUUAGUCUACUGCGCCACUGUUCAUUGCCAGGACUG UCCUUACGAACCUGAUCCACCAAACACAGUUCCAACUUCCUGUGAAGCUAAAGAAGGAGAAUG UAUUGAUAGCAGCUGUGGCACCUGCACGAGAGACAUACUAUCAGAUGGACUGUGUGAAAAUA AACCAGGAAAAACAUGUUGUCGAAUGUGUCAGUAUGUAAUUGAAUGCAGAGUAGAGGCCGCA GGAUGGUUUAGAACAUUCUAUGGAAAGAGAUUCCAGUUCCAGGAACCUGGUACAUACGUGUU ACCAAGGGGGGCUGUGCUGACCAAGACAAGACUGGAAGUGGCUGGAGACAUCAUUGACAUCGC UCAAGCUACUGAGAAUCCCAUCACUGUAAACGGUGGAGCUGACCCUAUCAUCGCCAACCCGU ACACCAUCGGCGAGGUCACCAUCGCUGUUGUUGAGAUGCCAGGCUUCAACAUCACCGUCAUU GAGUUCUUCAAACUGAUCGUGAUCGACAUCCUCGGAGGAAGAUCUGUAAGAAUCGCCCCAGA CACAGCAAACAAAGGAAUGAUCUCUGGCCUCUGUGGAGAUCUUAAAAUGAUGGAAGAUACAG ACUUCACUUCAGAUCCAGAACAACUCGCUAUUCAGCCUAAGAUCAACCAGGAGUUUGACGGU UGUCCACUCUAUGGAAAUCCUGAUGACGUUGCAUACUGCAAAGGUCUUCUGGAGCCGUACAA GGACAGCUGCCGCAACCCCAUCAACUUCUACUACUACACCAUCUCCUGCGCCUUCGCCCGCU GUAUGGGUGGAGACGAGCGAGCCUCACACGUGCUGCUUGACUACAGGGAGACGUGCGCUGC UCCCGAAACUAGAGGAACCUGCGUUUUGUCUGGACAUACUUUCUACGAUACAUUUGACAAAG CAAGAUACCAAUUCCAGGGUCCCUGCAAGGAGAUUCUUAUGGCCGCCGACUGUUUCUGGAAC ACUUGGGAUGUGAAGGUUUCACACAGGAAUGUUGACUCUUACACUGAAGUAGAGAAAGUACG AAUCAGGAAACAAUCGACUGUAGUAGAACUCAUUGUUGAUGGAAAACAGAUUCUGGUUGGAG GAGAAGCCGUGUCCGUCCCGUACAGCUCUCAGAACACUUCCAUCUACUGGCAAGAUGGUGAC AUACUGACUACAGCCAUCCUACCUGAAGCUCUGGUGGUCAAGUUCAACUUCAAGCAACUGCU CGUCGUACAUAUUAGAGAUCCAUUCGAUGGUAAGACUUGCGGUAUUUGCGGUAACUACAACC AGGAUUUCAGUGAUGAUUCUUUUGAUGCUGAAGGAGCCUGUGAUCUGACCCCCAACCCACCG GGAUGCACCGAAGAACAGAAACCUGAAGCUGAACGACUCUGCAAUAGUCUCUUCGCCGGUCA AAGUGAUCUUGAUCAGAAAUGUAACGUGUGCCACAAGCCUGACCGUGUCGAACGAUGCAUGU CGGACUGGACUCGGACUAAUGCAGAGUAGAGGCCGCAGGAUAGUUUGGAACAUGGACUCUA GGACUGGACUUUGGACUUGAUGAGCGGCCGCGGGGGAUCCAGACAUGA

Cluc-Socs2 (HEK293T):

AUGAAGACCUUAAUUCUUGCCGUUGCAUUAGUCUACUGCGCCACUGUUCAUUGCCAGGACUG UCCUUACGAACCUGAUCCACCAAACACAGUUCCAACUUCCUGUGAAGCUAAAGAAGGAGAAUG UAUUGAUAGCAGCUGUGGCACCUGCACGAGAGACAUACUAUCAGAUGGACUGUGUGAAAAUA AACCAGGAAAAACAUGUUGUCGAAUGUGUCAGUAUGUAAUUGAAUGCAGAGUAGAGGCCGCA GGAUGGUUUAGAACAUUCUAUGGAAAGAGAUUCCAGUUCCAGGAACCUGGUACAUACGUGUU ACCAAGGGGGGCUGUGCUGACCAAGACAAGACUGGAAGUGGCUGGAGACAUCAUUGACAUCGC UCAAGCUACUGAGAAUCCCAUCACUGUAAACGGUGGAGCUGACCCUAUCAUCGCCAACCCGU ACACCAUCGGCGAGGUCACCAUCGCUGUUGUUGAGAUGCCAGGCUUCAACAUCACCGUCAUU GAGUUCUUCAAACUGAUCGUGAUCGACAUCCUCGGAGGAAGAUCUGUAAGAAUCGCCCCAGA CACAGCAAACAAAGGAAUGAUCUCUGGCCUCUGUGGAGAUCUUAAAAUGAUGGAAGAUACAG ACUUCACUUCAGAUCCAGAACAACUCGCUAUUCAGCCUAAGAUCAACCAGGAGUUUGACGGU UGUCCACUCUAUGGAAAUCCUGAUGACGUUGCAUACUGCAAAGGUCUUCUGGAGCCGUACAA GGACAGCUGCCGCAACCCCAUCAACUUCUACUACUACACCAUCUCCUGCGCCUUCGCCCGCU GUAUGGGUGGAGACGAGCGAGCCUCACACGUGCUGCUUGACUACAGGGAGACGUGCGCUGC UCCCGAAACUAGAGGAACCUGCGUUUUGUCUGGACAUACUUUCUACGAUACAUUUGACAAAG CAAGAUACCAAUUCCAGGGUCCCUGCAAGGAGAUUCUUAUGGCCGCCGACUGUUUCUGGAAC ACUUGGGAUGUGAAGGUUUCACACAGGAAUGUUGACUCUUACACUGAAGUAGAGAAAGUACG AAUCAGGAAACAAUCGACUGUAGUAGAACUCAUUGUUGAUGGAAAACAGAUUCUGGUUGGAG GAGAAGCCGUGUCCGUCCCGUACAGCUCUCAGAACACUUCCAUCUACUGGCAAGAUGGUGAC AUACUGACUACAGCCAUCCUACCUGAAGCUCUGGUGGUCAAGUUCAACUUCAAGCAACUGCU CGUCGUACAUAUUAGAGAUCCAUUCGAUGGUAAGACUUGCGGUAUUUGCGGUAACUACAACC AGGAUUUCAGUGAUGAUUCUUUUGAUGCUGAAGGAGCCUGUGAUCUGACCCCCAACCCACCG GGAUGCACCGAAGAACAGAAACCUGAAGCUGAACGACUCUGCAAUAGUCUCUUCGCCGGUCA AAGUGAUCUUGAUCAGAAAUGUAACGUGUGCCACAAGCCUGACCGUGUCGAACGAUGCAUGU UUUUAAACAUGUCUCACAUAGAGUAUCUCCGAAUGCAGCUAUGUAAAAGAGAACCAAAACUUG AGUGCUCUGGAUAACUAUAUGGAAUGCUUUCUAAGAACAGCUGAAGCUAAUCUAAUUUAAAUU UAACAGCUUGAAGAGGUAGCUAGGUGUUUAAAGUUCCUCCAGAUACUUUUACCUGAGUGAUG CUUCCCUUCCUAAGGCUGACCAAGACCUGUUGAUCCUUUUAGAUUAAAAAUAAAAUGUCGCAU CAAAGGUCCAGGCUCCAGUAGGAGAGAGAAGAACUCCUCAUAGGAAUACUGAAGAAGUGGGAA GGAACCAAGCUGACACAGGCCUCACUGCAAUUUGAUAUGCCUGCUGAUCAGAGUCUCUUGGG AUUUAUCCCAUUUUAUGCAAUUAACCAAAUCAACCAAAAAAAGUGACCAUGAAGUCCUGUAUU UGUCUUUUUACUACAUGUAGGAACUCUCAUGUGAAUGAGUACUGUAGUAAUCCAUUCUAUGG GAGCCUUAUUUCAGAAAUAUUUCAAACUGGUGCAAAUGGAAAAGACUUUCUCUUUUCCUUUAA AGCUAAAGACAAGAAUAUCAUGCUAUACAGGUGCAACUCAAUCCCCGUUAAUAAAAACCAAUG UAGGUAUAGGCAUUCUACCCUUUGAAAUAGCUGUGUCCCAACCUGUUGCCAUUGAUUUUUUG GAAAUGGCUUUAGAAAUAUCCAAGUUGUCCUUGAAUUGUCUAACCAUGGACAUAAACAGUUG UCUCCCUUCUACUGUGUAGAAUACUUUGACUUAAUUUUCUUCCAGAUACAGGGGGGAUACCUG

AACCUGAUUUCUACAAGUUGCACUUAUUGAGUUCUAGAGAACGUACACUUUCAUGGUAAUAG AGGAUUGCCAUAAAAACUUACGUCAAGUGAAAUAAGCCAAUUAUUCAACAAAAGGUAGAACAU UACUUGCCAUUCUGUAAAGUUAUGGGCUGUACCUGCCCCCUUUGCAAUUUGGAAAGCAUGGU UUAGAAACUACAGGCAUUGUCAAGUGGCCGGGUCUUUUAUAAUUUGAAUAGGCAUAACACUG AUGUCCUCUGUGUUUCCAAAAACAUGGUUUAGAAACUACAAACAUUAUGACAUGGCCAGUCUU UUACAAGUUGAGUAGGCAUAAUACUAAAGAAAAAUACAAAGUUUUGUGGCCACUUAUUUUUUG CUAUGUUAGUCUGCAUAACUGUUAUAAAUGUACCAUCUUUUCUAGAGUCCAGACAUUAUUUUUG UUUAUGGCUUUAAAAUUUUCCUGCAUAGCUACAAUCCUGUGGUGUGUCACCAUAAAGGUGGA CCCUGUGUGAAUGAGAAAAUUCAGUUAUAAAUUGUAAUAAAACCUGCUUACUGC

Supplementary References

- 1 Wang, X. *et al.* Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. *Nature* **534**, 575-578, doi:10.1038/nature18298 (2016).
- 2 Slaymaker, I. M. *et al.* High-Resolution Structure of Cas13b and Biochemical Characterization of RNA Targeting and Cleavage. *Cell Reports* **26**, 3741-3751.e3745, doi:10.1016/j.celrep.2019.02.094 (2019).
- 3 Liu, X.-M., Zhou, J., Mao, Y., Ji, Q. & Qian, S.-B. Programmable RNA N6-methyladenosine editing by CRISPR-Cas9 conjugates. *Nature Chemical Biology*, doi:10.1038/s41589-019-0327-1 (2019).