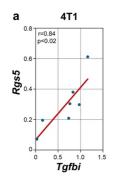
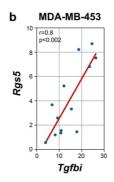
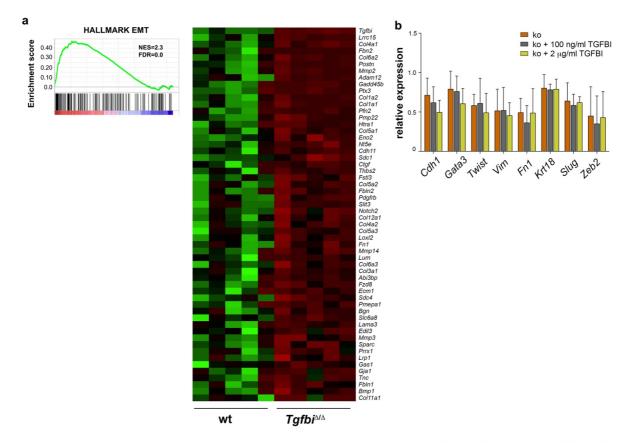

Supplemental File 1: (a) CD11b⁺ cells from fresh MMTV-PyMT tumours were sorted by MACS and reanalysed by FACS for their expression of F4/80. (b) TGFBI immunohistochemistry of MMTV-PyMT, MMTV-Erbb2, C(3)TAg, and 4T1 tumours. (c) Genotyping PCR of *Tgfbi*^{+/+}, *Tgfbi*^{Δ/Δ} and *Tgfbi*^{Δ/+} mice. (d) Western blot for TGFBI and vinculin (loading control) for 3 MMTV-PyMT; *Tgfbi* +/+ and 3 MMTV-PyMT; *Tgfbi* +/+ and a MMTV-PyMT; *Tgfbi* +/+ and MMTV-PyMT; *Tgfbi* +/- and MMTV-PyMT; *Tgfbi* +/-

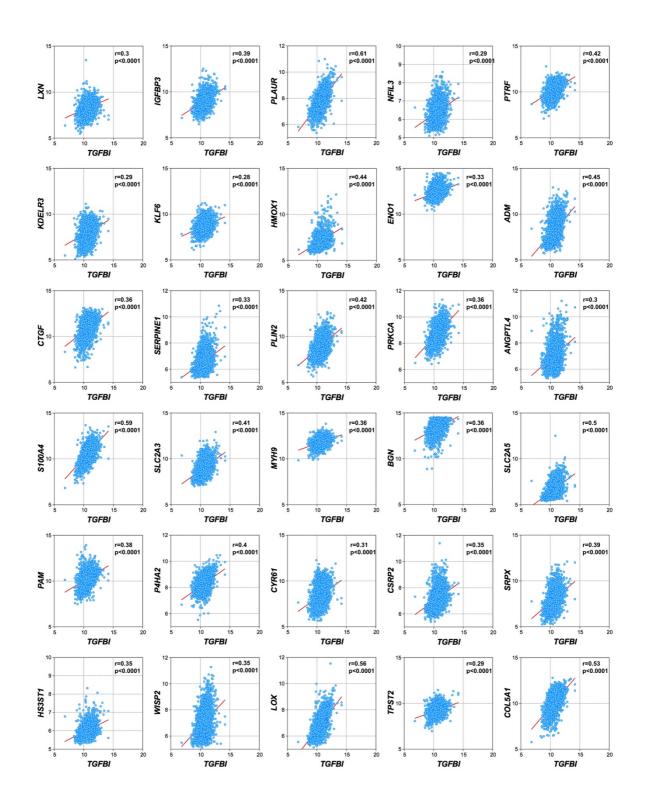

Supplemental File 2: (a) C(3)TAg cells were infected with lentiviruses containing a CRISPR-Tafbi, cells were selected and tested for expression of Tafbi by gPCR. Data were analysed by unpaired t test (n=2). *Rplp0* was used as a housekeeping gene. (b) C(3)TAg cells wt or ko for TGFBI were seeded as spheres (10³ cells/ well). Spheres were counted 10 days later. Data were analysed by unpaired t test (n =5 wt, n=5 ko). (c) C(3)TAg cells wt or ko for TGFBI were analysed by FACS using the AldeFluor assay. (d) 5x10⁵ C(3)TAg cells wt or ko for TGFBI were injected into NSG mice via tail vein. Metastatic foci were counted 4 weeks later. Data were analysed by unpaired t test (n=3). (e) Tgfbi qPCR in MDA-MB-453 cells infected with control or Tgfbi lentiviruses. SNRPD3 was used as a housekeeping gene. (f) MDA-MB-453 cells overexpressing *Tgfbi* and their respective controls were seeded as spheres (10³ cells/ well). Spheres were counted 10 days later. Data were analysed by unpaired t test (n =5 wt, n=4 Tafbi-OE). (a) MDA-MB-453 cells overexpressing Tafbi and their respective controls were analysed by FACS for the presence of CD24lowCD44high cells. (h) MDA-MB-453 cells overexpressing *Tgfbi* and their respective controls were trypsinised, counted, and injected orthotopically in limiting dilution assays in NSG mice. The presence or absence of tumours was evaluated for a maximum of 3 months after injection. Data were analysed using ELDA (*P*=0.14).

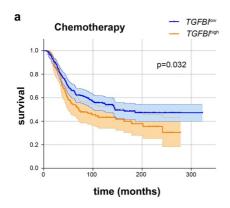


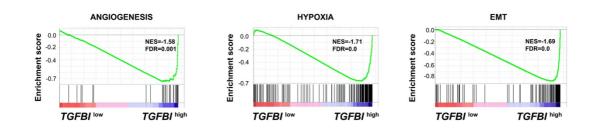
Supplemental File 3: Heatmaps of statistically significant changed genes from the enrichment score analyses showed in Figure 2a.



Supplemental File 4: List of genes found to have a positive enrichment score in the analyses of hallmark hypoxia, GO angiogenesis and hallmark EMT in the RNAseq of tumours coming from MMTV-PyMT; $Tgfbi^{+/+}$ and MMTV-PyMT; $Tgfbi^{\Delta/\Delta}$ mice.




Supplemental File 5: Correlation analyses of *Rgs5* and *Tgfbi* transcripts in 4T1 (n=7) and MDA-MB-453 (n=13) tumours. Tumours were pulverised, their RNA was extracted, subjected to reverse transcription, and analysed by qPCR for the expression of *Rgs5* and *Tgfbi*. *Rplp0* was used as a housekeeping gene for mouse and *SNRPD3* for human.


Supplemental File 6: (a) Enrichment score analysis of MMTV-PyMT; $Tgfbi^{+/+}$ and MMTV-PyMT; $Tgfbi^{\Delta/\Delta}$ tumours for Hallmark EMT (n=5) and heatmap of statistically significant changed genes. (b) qPCR of MMTV-PyMT; $Tgfbi^{\Delta/\Delta}$ tumour cells grown with either 100 ng/ml or 2 μ g/ml exogenous TGFBI. Data were analysed using one-way ANOVA, and are presented as mean and SD (n=5). Rplp0 was used as a housekeeping gene.

Supplemental File 7: Spearman's correlation of hypoxia-related genes with *TGFBI* in the METABRIC cohort.

Supplemental File 8: Survival curves of breast cancer patients in the METABRIC cohort who received chemotherapy classified according to the expression of *TGFBI*. Patients were stratified using the application *Evaluate cutpoints*, and the survival curves were compared using the Log-rank (Mantel-Cox) test (n_{high}=123, n_{low}=250).

Supplemental File 9

Supplemental File 9: Enrichment score analyses of *TGFBI*^{low} (<75th percentile) and *TGFBI*^{high} (≥75th percentile) tumours in the METABRIC

Supplemental File 10. Table 1: Primer Sets Used in This Study.

ID	Forward 5'-3'	Reverse 5'-3'
Rplp0	GATTCGGGATATGCTGTTGG	GTTCTGAGCTGGCACAGTGA
Krt18	CGAGGCACTCAAGGAAGAAC	AATCTGGGCTTCCAGACCTT
Aldh1a3	GAGCGATCCTGGCTACTCTG	GACGAAAAAGGCATGAAGGA
Tgfbi	ATCACCAACAACATCCAGCA	CCAGCACGGTATTGAGTCCT
TGFBI	AAGTCTCTCCAAGGTGACAAGC	CCTTGTTGACACTCACCACATT
SNRPD3	GCCCAGATTGTGAAGGACAT	TCAGCTCAGCACGGTAGTTG
Gata3	GCTACGGTGCAGAGGTATCC	AGAGATCCGTGCAGCAGAG
Mmp2	ACACTGGGACCTGTCACTCC	TGTCACTGTCCGCCAAATAA
<i>Мтр9</i>	CCAGATGATGGGAGAGAAGC	TTGAGGCCTTTGAAGGTTTG
Snai2	GAACCCACACATTGCCTTGT	GCAGAAGCGACATTCTGGAG
Zeb2	CTATTCCCCTGCATCAGCAT	GGCTTGTCAGTCCTTTCTCG
Vim	GCGAGGAGAGCAGGATTTCTC	GGGTGTCAACCAGAGGAAGT
Fn1	TGCACGTGTGTGGGGAACGG	CCCGGCCCTGACCAAAGCAG
Rgs5	AGACGGTTCCACCAGGTTC	CAGACAGAGGCCCTAAAGA
Hif1a	CAGTCGACACAGCCTCGATA	CGGCTCATAACCCATCAACT