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Supplemental	Methods	 	

Computational	modelling		
As	described	in	the	main	methods,	five	models	of	increasing	complexity	were	fitted	to	quantify	putative	
mechanisms	that	may	drive	motivational	bias.		

For	all	models,	action	weights	(𝑤)	are	estimated	for	each	response	option	(𝑎)	for	all	trials	(𝑡)	per	cue	(𝑠).	
Choice	probabilities	are	computed	using	a	softmax	function	based	on	these	action	weights:	

	
𝑝 𝑎( 𝑠( =

exp	(𝑤 𝑎(, 𝑠( )
exp	(𝑤 𝑎/, 𝑠( )0/

	
(1)	

In	 the	 simplest,	 Rescorla-Wagner,	model	 (M1)	 the	 action	weights	 are	 fully	 determined	by	 the	 learned	
action	values	(Q-values).	These	action	values	are	learned	through	a	standard	delta-rule	learning	with	two	
free	parameters:	a	learning	rate	(𝜀)	which	scales	the	update	term,	and	feedback	sensitivity	(𝜌)	scaling	the	
outcome	value	(comparable	to	the	softmax	temperature):	

	 𝑄( 𝑎(, 𝑠( = 𝑄(45 𝑎(, 𝑠( + 	𝜀(𝜌𝑟( − 𝑄(45 𝑎(, 𝑠( )	 (2)	

Outcomes	are	reflected	by	r,	which	incorporates	negative,	neutral	and	positive	outcomes:	𝑟 ∈ (−1,0,1).	
As	cue	valence	was	instructed	(through	green	and	red	cue	edges),	initial	Q-values	(𝑄<)	are	set	to	𝜌 ∗ 0.5	
for	Win	cues	and	𝜌 ∗ −0.5	for	Avoid	cues.	

In	M2	we	 add	 a	 go	 bias	 parameter	 (𝑏)	 to	 allow	 for	 a	 differential	 ‘base	 rate’	 of	Go	 responding	 across	
individuals,	independent	of	valence.		

	 𝑤 𝑎(, 𝑠( = 	 𝑄 𝑎(, 𝑠( + 𝑏				𝑖𝑓	𝑎 = 𝐺𝑜
𝑄 𝑎(, 𝑠( 												𝑒𝑙𝑠𝑒											

	 (3)	

In	models	M3-5,	we	 implement	different	mechanisms	through	which	motivational	valence	could	affect	
choice.	In	M3	a	motivational	bias	parameter	𝜋	is	added	that	modulates	action	weights	according	to	cue	
valence	 (𝑉).	 For	 positive	 values	 of	 𝜋,	 action	 weights	 for	 Go	 actions	 are	 increased	 the	 weight	 of	 Go	
responses	for	Win	and	decreased	for	Avoid	cues:	

	 𝑤 𝑎(, 𝑠( = 	
𝑄 𝑎(, 𝑠( + 𝜋𝑉 I + 𝑏				𝑖𝑓	𝑎 = 𝐺𝑜
𝑄 𝑎(, 𝑠( 																											𝑒𝑙𝑠𝑒											

	

𝑉 I = 			0.5				𝑖𝑓	𝑠 = 𝑤𝑖𝑛	𝑐𝑢𝑒			
𝑉 I = −0.5			𝑖𝑓	𝑠 = 𝑎𝑣𝑜𝑖𝑑	𝑐𝑢𝑒	

(4)	

Note	that	𝑉	is	fixed	because	cue	valence	is	instructed.		

In	model	M4	 and	M5	we	 extend	M3	 to	 explore	 whether	 there	 is	 additional	 evidence	 for	 differential	
learning	 based	 as	 a	 function	 of	 outcome	 or	 cue	 valence,	 to	 test	 for	 previously	 observed	 effects	 of	
dopaminergic	medication	on	reward	versus	punishment	learning	(Frank	et	al.,	2004;	Cools	et	al.,	2006)	.	In	
M4,	the	learning	rate	depends	on	sign	of	the	prediction	error;	any	outcome	that	is	better	than	expected	
results	in	a	positive	learning	rate	𝜀OPQ		(i.e.	a	neutral	outcome	for	Avoid	cues,	or	a	win	for	Win	cues),	while	
impact	of	outcomes	that	are	worse	than	expected,	will	be	governed	by	for	𝜀RSTT.		
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	 𝜀

=
	𝜀OPQ	: 𝑖𝑓	𝑟 = 				1 &						𝑠 = 	𝑤𝑖𝑛	𝑐𝑢𝑒					OR 𝑖𝑓	𝑟 = 0	 	&		𝑠 = 	𝑎𝑣𝑜𝑖𝑑	𝑐𝑢𝑒	
	𝜀RSTT	: 𝑖𝑓	𝑟 = −1 &		𝑠 = 	𝑎𝑣𝑜𝑖𝑑	𝑐𝑢𝑒					OR 𝑖𝑓	𝑟 = 0	 &						𝑠 = 	𝑤𝑖𝑛	𝑐𝑢𝑒 	

(5)	

In	contrast,	 in	model	M5,	 the	 two	 learning	 rates	are	based	on	cue	valence,	 so	 that	patients	may	 learn	
differently	from	outcomes	on	Win	trials	relative	to	Avoid	trials:			

	 𝜀 =
	𝜀OPQ:		𝑖𝑓					𝑠 = 	𝑤𝑖𝑛	𝑐𝑢𝑒
	𝜀0YSPZ:		𝑖𝑓	𝑠 = 	𝑎𝑣𝑜𝑖𝑑	𝑐𝑢𝑒	

(6)	

To	estimate	model	parameters	and	model	fit,	we	used	an	MCMC	sampling-	based	method	for	hierarchical	
Bayesian	estimation	of	group-level	and	participant-level	parameters.	Here,	group-level	parameters	(𝑋)	
serve	as	priors	 for	 the	 individual-level	parameters(𝑥),	 such	 that	𝑥~𝒩(𝑋, 𝜎).	The	hyperpriors	 for	𝑠	are	
specified	by	a	half-Cauchy	(Gelman,	2006)	with	a	scale	of	2.	The	hyperpriors	for	𝑋	are	centered	around	0	
(with	the	exception	of	(𝑋`)	and	weakly	informative:	𝑋𝜌	~	N𝒩(2,3),	𝑋𝜀	~	N𝒩(0,2)	,			𝑋𝑏, 𝜋	~	N𝒩(0,3).	
Parameters	𝑏, 𝜋	are	unconstrained,	ρ	was	constrained	to	be	positive	through	and	exponential	transform,	
learning	rates	ε	were	constrained	to	[0	1]	through	an	inverse	logit	transform.		

Model	estimation	procedure	was	identical	to	(Swart	et	al.,	2017),	using	Stan	software	in	R	(RStan)	(Stan-
Development-Team,	2016).	Stan	provides	full	Bayesian	inference	with	Markov	chain	Monte	Carlo	(MCMC)	
sampling	methods	(Metropolis	et	al.,	1953).	The	number	of	Markov	chains	was	set	at	4,	with	200	burn-in	
iterations	and	1000	post	burn-in	 iterations	per	chains	(4000	total).	Model	convergence	was	considered	
when	the	potential	scale	reduction	factor	R^	<	1.1	for	all	parameters	(Gelman	and	Rubin,	1992).	Model	
comparison	was	 evaluated	 using	 the	Watanabe-Akaike	 Information	 Criteria	 (WAIC)	 (Watanabe,	 2010).	
WAIC	is	an	estimate	of	the	likelihood	of	the	data	given	the	model	parameters,	penalized	for	the	effective	
number	of	parameters	to	adjust	for	overfitting.	Lower	(i.e.	more	negative)	WAIC	values	 indicate	better	
model	fit.	As	WAIC	is	reported	on	a	deviance	scale	(Gelman	et	al.,	2014),	a	difference	in	WAIC	value	of	2–
6	is	considered	positive	evidence,	6–10	strong	evidence,	and	>10	very	strong	evidence	(Kass	and	Raftery,	
1995).		

Nuisance	and	Confound	analyses	
To	quantify	relevant	clinical	or	demographic	differences	between	groups	(controls	vs.	patients,	and	tremor	
vs.	non-tremor	patients)	we	used	a	series	of	two-tailed	T-tests	for	our	continuous	variables	–	cf.	table	1	–	
main	article).	When	a	difference	between	groups	was	detected,	we	followed	this	up	with	extra	control	
analyses	dedicated	 to	 this	particular	 variable,	which	will	 be	 reported	here.	 Specifically,	we	observed	a	
difference	 in	 the	 delay	 between	 medication	 intake	 and	 behavioural	 testing.	 To	 assess	 whether	 this	
difference,	putatively	 leading	 to	a	difference	 in	effective	dopamine	 levels,	 could	explain	patient	 group	
differences,	 we	 reanalysed	 the	 behavioural	 data	 using	 a	 smaller	 subset	 of	 tremor	 patients	 that	 was	
matched	with	respect	to	the	delay.	The	short-delay	tremor	subgroup	consisted	of	15	patients,	with	a	mean	
delay	of	139	mins	(std	17,	range	:	101-155).	The	delay	in	this	matched	subgroup	did	not	significantly	differ	
from	the	non-tremor	patients	(2-sample	t-test	t(33)	=	0.84	,	p	=	.4).	Note	that	for	this	analysis,	we	collapsed	
across	levodopa	responsive	and	non-responsive	Tremor	patients,	so	attain	large	enough	subgroups.	This	
is	warranted	by	the	absence	of	any	significant	differences	between	these	groups.	 	We	further	compare	
behaviour	 between	 the	matched	 and	 non-matched	 subsets,	 to	 see	 whether	 these	 significantly	 differ.	
Finally,	to	assess	the	robustness	of	our	findings,	our	main	ANOVA	was	extended	with	nuisance	variables	
drug-delay,	LEDD	and	age	(covariates),	and	gender	(factor).		



	 3	

Supplemental	Results	
Supplemental	table	1.	Data	availability	per	group	and	testing	session.		

Group	 total	N	 Data	available	

	 	 both	sessions	 session	1	only	 session	2	only	

healthy	control		 22	 19	 3	 0	

tremor	nonresponsive	 20	 19	 0	 1	

tremor	responsive	 23	 21	 2	 0	

non	tremor	 20	 18	 2	 0	

	
Test-retest	effect		
The	degree	to	which	participants	were	able	to	learn	from	reward	versus	punishment	feedback	changed	
over	testing	days	(valence	x	day:	[F(1,76)=14.4,	η2=0.16,	p<.001],	see	Supplemental	Figure	1),	such	that	
participants	learnt	better	for	Win	cues	on	day	1	(Day	1:	Win	vs.	Avoid,	[F(1,76)=8.1,	η2=0.10,	p=.006]	and	
better	for	Avoid	cues	on	day	2	(Day	2:	Win	vs.	Avoid,	[F(1,76)=4.3,	η2=0.05,	p=0.042].	This	interaction	was	
significant	for	both	patients	(Valence	x	Day;	[F(1,57)=9.2,	η2=0.14,	p=0.004]	and	controls	(Valence	x	Day;	
F(1,18)=5.1,	η2=0.22,	p=.036].	Because	of	this	significant	difference	between	performance	on	day	1	and	2	
in	terms	of	valence	effects,	we	added	‘testing	order’	as	a	factor	in	the	within-participant	analysis	of	patient	
data	 to	assess	whether	potential	 test-retest	effects	 interacted	with	effects	of	medication.	There	was	a	
Valence	 x	Medication	 x	 TestOrder	 interaction	 [F(1,54)=	 8.9,	 η2=0.14,	 p=.004],	 in	 addition	 to	Valence	 x	
Action	x	a	Medication	x	TestOrder	interaction	[F(1,54)=	5.3,	η2=0.09,	p=.025].	Here,	it	should	be	noted	that	
a	Medication	x	TestOrder	interaction	is	mathematically	identical	to	a	main	effect	of	testing	day.	Given	the	
presence	of	such	an	effect	of	testing	day	in	the	healthy	controls,	it	is	not	possible	to	meaningfully	interpret	
the	 Medication	 x	 Testorder	 interaction.	 Therefore,	 we	 restricted	 our	 analysis	 to	 data	 from	 day	 1,	
considering	Medication	as	a	between-participants	factor	instead	of	a	within-participants	factor.	

	

Supplemental	Figure	1.	Test-retest	differences.	Both	Healthy	
Controls	and	Parkinson’s	disease	patients	show	better	learning	
for	Win	cues	on	day	1	versus	day	2,	while	showing	worse	
learning	for	Avoid	cues	on	day	1	relative	to	day	2.	
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Robustness	analyses		
Drug-delay	matched	subgroup	analysis		
As	reported	in	the	main,	manuscript,	there	was	a	difference	in	average	“task-delay”	(i.e.	the	delay	between	
medicine	administration	and	 the	onset	of	 the	behavioural	 task)	of	approximately	30	minutes.	This	 is	a	
potential	confound	for	group	comparison,	as	longer	time	between	drug	intake	and	task	onset	could	affect	
levodopa	levels	during	the	task.	To	assess	this	potential	confound	(in	addition	to	adding	task-delay	as	a	
covariate	of	no	interest,	as	reported	above),	we	test	whether	the	main	results	are	altered	when	restricting	
analysis	to	a	subgroup	of	tremor	patients	with	delay	that	matches	the	delay	of	the	non-tremor	group.	As	
shown	in	supplemental	figure	1,	the	results	do	not	change.	Using	this	matched	subgroup,	the	impact	of	
medication	 on	 valence	 was	 still	 strongly	 modulated	 by	 patient-group	 [Tremor	 Group	 x	 Medication	 x	
Valence:	F(1,31)=	12.0,	η2=0.28,	p=.002],	where	the	tremor	sub-group	still	showed	a	significant	modulation	
by	 levodopa	 of	 performance	 on	Win	 versus	 Avoid	 cues	 [Medication	 x	 Valence	 F(1,13)=	 8.05,	 η2=0.38,	
p=0.014).	Furthermore,	there	is	still	no	main	effect	of	levodopa	medication	on	the	Win	versus	the	Avoid	
trials	[F(1,31)=	0.05,	η2=0.001,	p=.8].		

	

	

Supplemental	 Figure	 1.	 Differential	
performance	 associated	 with	
levodopa	 administration	 (positive	 =	
higher	 performance	 On	 levodopa).	
There	 is	 no	 difference	 in	 effects	
between	 the	overall	 tremor	patient	
group	and	the	subgroup	of	patients	
who	were	matched	in	terms	of	delay	
between	 drug	 intake	 and	
behavioural	testing.		

	
Nuisance	variables		
The	main	ANOVA	with	factors	Action,	Valence,	Medication,	Patient	Group	(3	levels)	was	repeated	using	
the	nuisance	covariates	age,	drug-delay	and	LEDD,	and	nuisance	factor	gender.	Most	importantly,	inclusion	
of	these	nuisance	variables	did	not	change	our	main	findings:	The	impact	of	medication	on	valence	was	
still	strongly	modulated	by	patient-group	[Group	x	Medication	x	Valence:	F(1,47)=	6.2,	η2=0.21,	p=.004,	
while	globally,	levodopa	medication	did	not	significantly	alter	performance	on	Win	versus	the	Avoid	trials	
[Medication	 x	 Valence:	 F(1,47)=	 0.2,	 η2=0.004,	 p=.7].	 Regarding	 the	 nuisance	 variables	 themselves,	
accuracy	decreased	with	increasing	age	[F(1,47)=12.0,	η2=0.20,	p<.001].	There	were	no	significant	main	
effects	 of	 gender	 [F(1,47)=1.2,	 η2=0.03,	 p=.28],	 drug-delay	 [F(1,47)=0.06,	 η2=0.001,	 p=.8],	 or	 LEDD	
([F(1,47)=0.3,	 η2=0.006,	 p=.6]).	Given	 that	 LEDD	may	 reflect	 baseline	hypodopaminergic	 state,	 it	 could	
potentially	have	a	direct	effect	on	dopamine-sensitive	behaviour.	We	 therefore	also	assessed	whether	
LEDD	predicted	performance	independent	of	medication,	testing	the	hypothesis	that	variability	in	LEDD	
would	have	a	similar	effect	to	medication	administration.	LEDD	did	not	interact	with	Valence	([F(1,47)=1.4,	
η2=0.029,	p=.25]).		
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Day	2	analyses		
For	completeness,	we	also	performed	the	primary	ANOVA	on	data	of	day	2	only	(3	patient	levels).		The	
main,	medication-independent	results	on	the	task	replicate,	with	strong	evidence	for	good	learning	of	the	
task	 (RequiredAction:	 F(1,53)=	 83.1,	 η2=0.61,	 p<	 .001),	 and	 presence	 of	 a	 motivational	 bias	
(RequiredAction	 x	 Valence	 F(1,53)=	 133.0,	 η2=0.71,	 p<.001).	 Furthermore,	 as	 on	 day	 1,	 data	 failed	 to	
replicate	previous	reports	that	levodopa	medication	improved	performance	on	the	Win	versus	the	Avoid	
trials	[Valence	x	Medication	F(1,53)=	0.04,	η2=0.001,	p=.8].	However,	in	contrast	to	day	1,	there	was	no	
modulation	by	patient	group	of	the	interaction	of	medication	and	valence	(Patient	Group	x	Medication	x	
Valence:	F(1,53)=	1.5,	η2=0.05,	p=.23).	Absence	of	this	effect	on	day	2	may	be	due	to	the	observed	test-
retest	differences	in	Valence-dependent	learning	described	in	the	main	manuscript,	i.e.	a	shift	from	better	
learning	from	Win	cues	on	day	1	to	better	 learning	from	Avoid	cues	on	day	2.	 Importantly,	this	shift	 in	
baseline	 performance	 was	 also	 observed	 in	 healthy	 controls,	 and	 may	 mask	 or	 affect	 any	 effects	 of	
medication.		
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Computational	modelling	–	parameter	distributions	
We	assessed	whether	parameter	estimates	were	normally	distributed	using	a	Kolmogorov-Smirnov	test	
on	the	(z-scored)	parameter	estimates.	The	learning	rate	and	outcome	sensitivity	parameter	
distributions	deviated	significantly	from	normal	(ewin:	p	=	4e-5;	eavoid:	p	=	.005;	r:	p	=	7e-7),	while	the	
motivational	and	go	bias	parameters	did	not	significantly	deviate	(p:	p=.9;	gobias	p=.6;	see	supplemental	
figure	2A).	To	assess	the	independence	of	the	parameters,	we	report	the	covariance	between	each	
parameter	pair.	Given	the	non-parametric	distributions	of	the	parameters	(for	9/10	parameter	pairs),	we	
report	non-parametric	Kendall	correlations.	Only	the	learning	rates	ewin	and	eavoid	were	significantly	
correlated	(p	=	0.035).	Given	that	these	learning	rates	are	estimated	on	independent	data	(Win	vs	Avoid	
trials),	this	correlation	does	not	stem	from	a	problem	with	identifiability	of	the	parameters,	but	rather	
reflects	a	true	underlying	property	of	the	individual;	some	people	learn	faster	than	others.	However,	
note	that	this	p-value	does	not	survive	correction	for	multiple	comparisons	for	10	correlations.	
	
A	

	
B	

	
Supplemental	figure	2.	A.	parameter	distributions	for	the	winning	model	M5.	density	plots	and	
individual	data	point	for	all	parameters.	ewin,	eavoid	and	r	distributions	deviated	significantly	from	
normal.	B.	Parameter	covariance	for	the	winning	model	M5.	The	only	significant	correlation	is	
between	ewin	and	eavoid.	Correlations	are	computed	across	all	patients,	but	markers	illustrate	different	
patients	group/conditions.		
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