# **Supplementary Material**

# Recent progress in translational engineered *in vitro* models of the central nervous system

Polyxeni Nikolakopoulou<sup>1\*</sup>, Rossana Rauti<sup>2\*</sup>, Dimitrios Voulgaris<sup>3</sup>, Iftach Shlomy<sup>2</sup>, Ben M. Maoz<sup>2,4,5#</sup> Anna Herland<sup>1,3#</sup>

<sup>1</sup>AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
<sup>2</sup>Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
<sup>3</sup>Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
<sup>4</sup>Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
<sup>5</sup>The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel

\*These authors contributed equally to the work

<sup>#</sup>Correspondence to: Assistant Professor, Ben M. Maoz <u>bmaoz@tauex.tau.ac.il</u> Associate Professor, Anna Herland, <u>aherland@kth.se</u> +46700877005

### **Supplementary Figure 1**



Α

**Supplementary Figure 1:** Modeling the complexity of the human CNS. A) The neural tissue is characterized by an immense cytoarchitectural complexity, illustrated in levels from left to right. The unique brain microenvironment, the vivid interplay among specialized neural cells, and the distinct regional characteristics are instrumental for brain functionality in health and disease. B) In CNS research, when attempting to create translatable models of the human brain, it is critical to reproduce the brain's unique functions, regions, and pathophysiology. Here, we have made an overviewing comparison of rodent *in vivo* models (the most commonly used mammal), standard two-dimensional (2D) cell culture models, organoid cultures and Organs-on-a-Chip (OoC) for their human specificity and their capacity to model human diseases, systemic effects, brain regionality, behavior, drug absorption, distribution, metabolism and excretion, and toxicity (ADME-Tox). We also rate the possibility for electrophysiological studies, detailed mechanistic studies, high throughput studies (HTS), and the cost of the model. For the three *in vitro* models, we divided them into the accessible cell sources, human primary cells, rodent primary cell and hiPCS, and cell lines. Notably, we want to emphasize that human primary cells from the CNS are scares. We further wish to highlight that this rating, the appropriateness of each model, varies for each specific study, and our rating should be used as a general guideline of what is possible to achieve with each model.

| Model                                                      | Refs                                                                                                                                                    | Shear  | Cell-cell                                                                                             | High                                                               | Similarity to                                                                                                                | Graphical representation <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                            |                                                                                                                                                         | stress | interactions                                                                                          | through                                                            | human                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TW <sup>2</sup>                                            | (Zenker et al.,<br>2003; Colgan<br>et al., 2008;<br>Helms et al.,<br>2014; Labus et<br>al., 2014;<br>Canfield et al.,<br>2017; Delsing<br>et al., 2018) | No     | Co-culturing<br>possible, tri-<br>culturing more<br>challenging to<br>evaluate cell<br>populations    | Yes / Low                                                          | Minimal, ECM<br>present only as<br>anchoring<br>points, 2D<br>geometry                                                       | BMECs<br>Co-Culture Cell Types                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Porous-tube<br>models                                      | (Neuhaus <i>et</i><br><i>al.</i> , 2006;<br>Cucullo <i>et al.</i> ,<br>2008; Marino<br><i>et al.</i> , 2018;<br>Moya <i>et al.</i> ,<br>2020)           | Yes    | Same as TW                                                                                            | Minimal /<br>Moderate                                              | Improved<br>similarity to<br>human<br>physiology<br>(shear stress,<br>3D lumical<br>geometry), but<br>minimal ECM<br>present | a)<br>$n_p \text{ pores}$ external environment<br>inflow $rac{1}{}$ inflow $rac{1}{}$ inflo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Microfluidic<br>chips<br>(membrane-<br>based) <sup>3</sup> | (Booth and<br>Kim, 2012;<br>Prabhakarpan<br>dian et al.,<br>2013; Achyuta<br>et al., 2013;<br>Wang et al.,<br>2017; Maoz et<br>al., 2018)               | Yes    | Capability of<br>compartmentalizati<br>on and studying<br>interactions<br>between cell<br>populations | Yes,<br>however<br>more time<br>consuming<br>than TW /<br>Moderate | Same as porous-<br>tube models                                                                                               | a<br>binflux BBB chip<br>Perivasc 1<br>Brain chip<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>Brain<br>B |

| Microfluidic<br>chips<br>(ECM-based) | (Brown <i>et al.</i> ,<br>2015; Herland<br><i>et al.</i> , 2016,<br>Xu <i>et al.</i> ,<br>2016 <i>a</i> ;<br>Adriani <i>et al.</i> ,<br>2017; Partyka<br><i>et al.</i> , 2017) | Yes | Same as membrane-<br>based microfluidic<br>chips | Yes,<br>however<br>more time<br>consuming<br>than TW /<br>Moderate | Utmost attmept<br>at in vitro<br>biomimicry<br>(shear stress,3D<br>geometry, ECM<br>present) | I Medium<br>Gel with astrocytes<br>Gel with neurons<br>ECs /Medium |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|

### Supplementary Figure 2: Summary of in vitro models commonly used in BBB research

TW: Transwell; ECM: extracellular matrix; 2D: 2 dimensions; 3D: 3 dimensions; BMECs: brain microvasculature endothelial cells; PDMS: Polydimethylsiloxane; NVC: Neurovascular chip

Porous-tube models

- a. Graphical representation of a microcapillary-mimicking porouts tube that enables exchange with the external environment
- b. Top view of porous tubes, many tubes can run in paraller.

Microfluidic chips (membrane-based)

- a. A simplified graphical representation of the NVU
- b. A linked NVU-on-Chip. hBMECs (magenta) are cultured with brain astrocytes (blue) and pericytes (yellow) in the top compartment of the chips; human brain neuronal cells (green) and astrocytes (blue) are cultured in the lower compartment.

<sup>1</sup>TW model reprinted with permission from (Canfield *et al.*, 2017); microfluidic chip model (membrane-based) reprinted with reuse permission from the original work of the corresponding authors from (Maoz *et al.*, 2018); porous-tube model model reprinted with permission from (Marino *et al.*, 2018); microfluidic model (ECM-based) reprinted with permission from (Adriani *et al.*, 2017);

<sup>2</sup> In this list, we consider studies that use TW in static cultures, there are, however, studies that implement flow in TW (Hinkel *et al.*, 2019).

<sup>3</sup> In this list, microfluidic chips with a temporary membrane (i.e. a membrane that degrades over time) are not included, such as the work of (Tibbe *et al.*, 2018).



#### Not easily adapted to high-throughput assays





The microengineered nerve-on-a-chip device enabling the growth of parallel neural fibers bundles for physiological testing (from Huval et al., 2015).





Scheme of the BBB model, displying the apical chamber (vascular tissue) and the basolateral chamber (brain tissue cells). Porous architecture enables communication between the vascular and brain tissue).



Fluorescent reconstructions of neuronal fibers growth and migration immunostained for  $\beta$ -tubulin III (red) and glial cells (green). Nuclei are visualized by DAPI (blue) (from Huval et al., 2015).



CD-31 (green) stained endothelial cells and GFAP (red) stained astrocytes forming tight cells junctions in the SynBBB device (from Deosarkar et al., 2015) Ideal for clinical nerve compound action potential (CAP) and nerve fiber density (NFD) tests 3D in vitro system Succesfully adapted for electrophysiological recordings Only tested on rat tissue explants Not easily adapted to high-throughput assays

Possibility to maintain and image the micro-vessel for long periods of time Tissue compartment and microvascular channels that mimic the 3D-morphology of in vivo microvessels Porous interface that replace the use of membranes Size of the micro-channels Not easily adapted to high-throughput assays



**Supplementary Figure 3**: **Commercial OoC or chip providers.** Overview on commercial microfluidic chip providers, with a description and application of their device for brain application studies.