
Supporting Materials for
Persistent spectral graph

Rui Wang1, Duc Duy Nguyen1, and Guo-Wei Wei1,2,3 ∗
1 Department of Mathematics, Michigan State University, MI 48824, USA

2 Department of Biochemistry and Molecular Biology
Michigan State University, MI 48824, USA

3 Department of Electrical and Computer Engineering
Michigan State University, MI 48824, USA

∗Address correspondences to Guo-Wei Wei. E-mail:wei@math.msu.edu

1



Contents

S1 Proprieties of the spectra of Laplacian 1

S2 Examples of betti numbers of simplicial complexes 2

S3 The connection between Betti number and the dimension of the rank of the Laplacian 2

S4 Persistence Homology 4
S4.1 Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
S4.2 Persistent homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

S5 Implement PST to distinguish different topological structures 5

S6 Additional Laplacian matrices and their properties 7

2



S1 Proprieties of the spectra of Laplacian

Property S1.1. Let G(V,E) be a simple graph of order N , then the largest eigenvalue

λN ≤ max{deg(u) + deg(v)|(u, v) ∈ E}, (S1.1)

where deg(u) is the degree of vertex u ∈ V .

Property S1.2. Let G(V,E) be a simple graph of order N rather than a complete graph with vertex connectivity
κ(G) and edge connectivity κ′(G). Then

2κ′(G)(1− cos(π/N)) ≤ λ2(G) ≤ κ(G) ≤ κ′(G). (S1.2)

The vertex connectivity κ(G) is the minimum number of nodes whose deletion disconnects G and edge connectivity
κ′(G) to be the minimum number of edges whose deletion from a graph G disconnects G.

The charts in the top row of Figure 1 show 5 different types of regular convex polyhedrons, which are
called platonic solids. The charts in the bottom row are platonic graphs that intuitively describe the vertices
and edges as points and line segments in the Euclidean plane. In the three-dimensional (3D) space, objects
(vertices) and the relationship (edges) between objects can be expressed by the Laplacian matrix and vice
versa. Taking tetrahedron as an example, we denote the top vertex as v1, while the other 3 vertices on the
plane are denoted as v2, v3, and v4. The Laplacian matrix of the tetrahedron can be expressed as:

LTetra =


3 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3


with eigenvalues being λ1 = 0, λ2 = 4, λ3 = 4, and λ4 = 4. Topological information can be extracted from
this Laplacian matrix. First, the multiplicity of 0 eigenvalue is 1, which means there is only one connected
component. Secondly, all of the entries in LTetra are non-zero and all the entries in the diagonal equal to 3,
which means the corresponding graph is a complete 3-regular graph. Moreover, as stated by Properties S1.1
and S1.2, the largest eigenvalue λ4 ≤ max{deg(u)+deg(v)|(u, v) ∈ E} = 6. The second smallest eigenvalue
λ2 is controlled by κ(G) = 4 and greater than 2κ′(G)(1−cos(π/N)) = 2×3×(1−cos(π/4)) ≈ 1.75735931288.
A similar analysis can be applied to other 4 platonic solids. Table 1 shows some characteristics of platonic
solids.

(b) (c) (d) (e)

Figure 1: Platonic solids (top row) and its platonic graphs (bottom row). (a) Tetrahedron and tetrahedral graph. (b) Octa-
hedron and octahedral graph. (c) Cube and cubical graph. (d) Dodecahedron and dodecahedral graph. (e) Icosahedron
and icosahedral graph.
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Table 1: Characteristics of platonic solids in Figure 1. V,E, β0, κ, κ′, d, and λ̃2 stand for the number of vertices, the
number of edges, the number of zero eigenvalues, vertex connectivity, edge connectivity, and the smallest non-zero
eigenvalue, respectively. Here, all the platonic graphs are connected simple graphs, so λ2 = λ̃2.

Platonic Solid V E κ κ′ β0 λ̃2
Tetrahedron 4 6 4 3 1 4.00

Octahedron 6 12 4 4 1 4.00

Cube 8 12 3 3 1 2.00

Dodecahedron 20 30 3 3 1 0.7639

Icosahedron 12 30 5 5 1 2.76

S2 Examples of betti numbers of simplicial complexes

(A supplemental example for Section 2.2.) To illustrate the simplicial complex and its corresponding Betti
number, we have designed two simple models as is shown in Figure 2. The Betti number of simplicial
complexes are listed in Table 2. 1

(a) (b) (c) (d) (e) (f)
Figure 2: Illustrations of simplicial complexes

Table 2: The Betti number of simplicial complexes in Figure 2. Each color represents different faces. The tetrahedron-
shaped simplicial complexes are demonstrated in (a)-(c), and the cube-shaped simplicial complexes are depicted in (d)
- (f). (a) and (d) only has 0-simplices and 1-simplices, (b) has four 2-simplices, and (c) has one more 3-simplex. (e) and
(f) do not have any 2-simplex.

Betti number Fig. 3 (a) Fig. 3 (b) Fig. 3 (c) Fig. 3 (d) Fig. 3 (e) Fig. 3 (f)
β0 1 1 1 1 1 1

β1 3 0 0 5 0 0

β2 0 1 0 0 1 0

S3 The connection between Betti number and the dimension of the
rank of the Laplacian

(A supplemental example for Section 2.3.2.) To illustrate the connection between Betti number and the
dimension of the rank of q-combinatorial Laplacian matrix, we consider the tetrahedron-shaped structures
in Figure 3. For the sake of brevity, we will use i to represents 0-simplex [vi], ij to represents 1-simplex
[vi, vj ], and ijk to represents [vi, vj , vk]. Then, 1- and 2-boundary operators map:

∂1(ij) = j − i,
∂2(ijk) = jk − ik + ij.

Since different orientations result in the same spectrum, there is no need to label the orientation in Figure 3.
In the following, we analyze three tetrahedron-shaped simplicial complexes:

1These examples show in an intuitive way to count Betti numbers. However, In Section 2.3, it is impossible to generate structures
(b), (e), and (f).
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K1 K3K2

0 0 0
1 1 1

2 2 2

3 3 3

Figure 3: Illustration of three different tetrahedron-shaped simplicial complexes. There are four 0-simplices and six
1-simplices in K1. Here, K2 has four more 2-simplices than K1 does, while K3 owns one more 3-simplex than K2

does.

K1. The left most chart in Figure 3 has four 0-simplices: 0, 1, 2, and 3, and six 1-simplices: 01, 02, 03, 12, 13,

and 23. It is clear that Cq(K1) is an empty set and ∂q is an zero map when q ≥ 2. Then, its Laplacian
operators are

∆1 = ∂∗1∂1, ∆0 = ∂1∂
∗
1 + ∂∗0∂0.

The combinatorial Laplacian matrices are:

L1 = BT1 B1, L0 = B1BT1 + BT0 B0.

The matrix representation B1 for ∂1 : C1(K1) −→ C0(K1) is:

B1 =

01 02 03 12 13 23

0

1

2

3


−1

1

0

0

−1

0

1

0

−1

0

0

1

0

−1

1

0

0

−1

0

1

0

0

−1

1

. (S3.1)

and B0 is

B0 =
0 1 2 3

[ 0 0 0 0 ]

Therefore, the associated combinatorial Laplacian matrices are

L1(K1) =



2 1 1 −1 −1 0

1 2 1 1 0 −1

1 1 2 0 1 1

−1 1 0 2 1 −1

−1 0 1 1 2 1

0 −1 1 −1 1 2


, L0(K1) =


3 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3

 .

As shown in Table 3, we can calculate the spectra and ranks from combinatorial Laplacian matrices.
We have β0 = 1, β1 = 3, which reveal that one connected component and three 1-cycles are exist in
K1.

Table 3: Table of dimensions, ranks, nullity, spectra and Betti numbers of combinatorial Laplacian matrices L0, and L1
for simplicial complex K1.

L1(K1) L0(K1)

Betti number β1 = 3 β0 = 1

dim 6 4

rank 3 3

nullity 3 1

Spectra {0, 0, 0, 4, 4, 4} {0, 4, 4, 4}
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K2. We analyze the middle chart in Figure 3 in a similar manner. As one can see, K2 has four 0-simplices:
0, 1, 2, and 3, six 1-simplices: 01, 02, 03, 12, 13, and 23, and four 2-simplices: 012, 013, 023, and 123. The
associated Laplacian operators are

∆2 = ∂∗2∂2, ∆1 = ∂2∂
∗
2 + ∂∗1∂1, ∆0 = ∂1∂

∗
1 + ∂∗0∂0.

The resulting combinatorial Laplacian matrices are

L2 = BT2 B2, L1 = B2BT2 + BT1 B1, L0 = B1BT1 + BT0 B0.

The corresponding matrix representations for B2 and B1 are respectively

B2 =

012 013 023 123

01

02

03

12

13

23



1

−1

0

1

0

0

1

0

−1

0

1

0

0

1

−1

0

0

1

0

0

0

1

−1

1


,
B1 =

01 02 03 12 13 23

0

1

2

3


−1

1

0

0

−1

0

1

0

−1

0

0

1

0

−1

1

0

0

−1

0

1

0

0

−1

1

. (S3.2)

Then, associated combinatorial Laplacian matrices are

L2(K2) =


3 1 −1 1

1 3 1 −1

−1 1 3 1

1 −1 1 3

 , L1(K2) =



4 0 0 0 0 0

0 4 0 0 0 0

0 0 4 0 0 0

0 0 0 4 0 0

0 0 0 0 4 0

0 0 0 0 0 4


,

and L0(K2) = L0(K1). Similarly, from Table 4, we see that there are one connected component and
one 2-cycle (void) in K2.

Table 4: Table of dimensions, ranks, nullity, spectra and Betti numbers of combinatorial Laplacian matrices L0,L1, and
L2 for simplicial complex K2.

L2(K2) L1(K2) L0(K2)

Betti number β2 = 1 β1 = 0 β0 = 1

dim 4 6 4

rank 3 6 3

nullity 1 0 1

Spectra {0, 4, 4, 4} {4, 4, 4, 4, 4, 4} {0, 4, 4, 4}

S4 Persistence Homology

Persistence Homology is an algebraic topology-based method for the multiscale analysis of the topological
invariants of functions and datasets. It has been widely applied in the field of topological data analysis. We
provide a brief introduction to persistent homology and the interested readers are referred to the literature
[1, 2] for more detail.

S4.1 Homology

For a topological space X , a sequences of complexes C0(X), C1(X), · · · describes different dimensional
information of the topological space X , which are connected by homomorphisms (or boundary operators)
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∂k : Ck −→ Ck−1 such that im ∂k ⊆ ker ∂k−1, i.e., ∂k−1∂k = 0. With a k-simplex σk = [v0, · · · , vk] where vi
are all the vertices of σk, ∂kσk can be given by a formal sum with coefficients in the Z2 field

∂kσk =

k∑
i=0

σi
k−1, (S4.1)

where σk−1
i is the (k−1)-simplex with its ith vertex vi being omitted. The algebraic construction to connect

a sequence of complexes by boundary maps is called a chain complex

· · · ∂i+1−→ Ci(X)
∂i−→ Ci−1(X)

∂i−1−→ · · · ∂2−→ C1(X)
∂1−→ C0(X)

∂0−→ 0

and the kth homology group is the quotient group defined by

Hk = ker ∂k/ im ∂k+1. (S4.2)

By studying homology groups, one can derive homological properties of the spaceK. The Betti numbers are
defined by the ranks of kth homology group Hk which counts k−dimensional holes, especially, rank(H0)

reflects the number of connected components, rank(H1) reflects the number of loops, and rank(H2) reveals
the number of voids or cavities. However, rank(Hk) only allows us to express the topological information
for a specific setup. Persistent homology is devised to track the multiscale topological information over
different scales along a filtration.

S4.2 Persistent homology

A filtration of a topology space K is a sequence of sub-spaces (Kt)
m
t=0 of K such that

∅ = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Km = K. (S4.3)

A sequence of chain complexes induced by the filtration is defined as

· · · ∂3−→ C1
2

∂2−→ C1
1

∂1−→ C1
0

∂0−→ 0

−→ −→ −→

· · · ∂3−→ C2
2

∂2−→ C2
1

∂1−→ C2
0

∂0−→ 0

99K

99K

99K

· · · ∂3−→ Cm
2

∂2−→ Cm
1

∂1−→ Cm
0

∂0−→ 0

(S4.4)

with Ct
k := Ck(Kt) and ↓ denotes the inclusion [3]. The p-persistent kth homology group of Kt is defined

as
Hp

k (Kt) = ker ∂k(Kt)/(im ∂k+1(Kt+p) ∩ ker ∂k(Kt)), (S4.5)

Intuitively, this homology group records the homology classes of Kt that are persistent at least until Kt+p.
When k = 0, the rank of Hp

k (Kt) reveals the number of connected components in Kt.

S5 Implement PST to distinguish different topological structures

(A supplementary example to distinguish different topological structures by implementing PST in the Sec-
tion 2.3.3.)
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(a) Tetra 1 (b) Tetra 2 (c) Tetra 3

Figure 4: Three tetrahedrons with different topological shape in R3. (a) Regular tetrahedron with edge length 2. (b)

Move v0 along the edge [v0, v1] and construct a new tetrahedron with the length of [v0, v1] to be
√
3. (c) Move v0 along

the edge [v0, v1] and construct a new tetrahedron with the length of [v0, v1] being 12− 6
√
3.

Figure 4 and Figure 5 exemplify the capacity of persistent spectral theory to discriminate between different
structures in R3. In Figure 5(a), we employ the persistent spectral analysis based on the βr+0

0 tendency along
the filtration to distinguish three tetrahedrons. As r grows, isolated points (0-simplices) will gradually grow
into solid 2-spheres, and a new isolated component will be created once two spheres corresponding to two
isolated points overlap with each other. Since βr+0

0 represents the number of isolated components, the value
of βr+0

0 will finally decrease to 1. Take Tetra 2 as an example. It is seen that at the initial setup (r = 0.0), the
number of isolated components is 4, which represents the number of isolated points. When r is around 0.63,
two spheres centered at v0 and v2 with radius 0.63 overlapped with each other. Therefore, βr+0

0 reduces to
3 at this point. With r keeping growing, the sphere centered at v0 overlaps with spheres centered at v1, v2,
and v3, which results βr+0

0 = 1 after r = 0.87. Similarly, the smallest non-zero eigenvalue (λ̃2)r+0
0 changes at

radius 0.63 and 0.87 in Figure 5(b), which also affirms that the solid spheres get overlapped at these specific
filtration parameters. It is clear that Tetrahedron 1, 2, and 3 have different βr+0

0 and (λ̃2)r+0
0 values. Since

1-cycle and 2-cycle are not formed along with the filtration, analysis of βr+0
1 and βr+0

2 will not be mentioned
in this case.

0.0 0.5 1.0 1.5 2.0
r

1.0

1.5

2.0

2.5

3.0

3.5

4.0

β
r+

0
0

Tetra 1
Tetra 2
Tetra 3

(a)

0.0 0.5 1.0 1.5 2.0
r

0

1

2

3

4

(
̃ λ 2
)r+

0
0

Tetrã1
Tetrã2
Tetrã3

(b)

Figure 5: (a) Plot of βr+0
0 with radius filtration r among 3 different tetrahedrons. (b) Plot of (λ̃2)

r+0
0 with radius

filtration r among 3 different tetrahedrons.
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S6 Additional Laplacian matrices and their properties

In this section, we give a further description of additional boundary and Laplacian matrices and their
properties involved in the filtration process in Figure 6. Detailed information are listed in the Table 5 -
Table 23.

K1
K2

K3

K4
K5

K6

0

1

2
4

3

Figure 6: Illustration of filtration. We use 0, 1, 2, 3, and 4 to stand for 0-simplices, 01, 12, 23, 03, 24, 02, and 13 for 1-
simplices, 012, 023, 013, and 123 for 2-simplices, and 0123 for the 3-simplex. Here, K1 has five 0-cycles, K2 has four
0-cycles, K3 has two 0-cycles and a 1-cycle, K4 has a 0-cycle and a 1-cycle, K5 has one 0-cycle, and K6 has a 0-cycle.

Table 5: K1 → K1

q q = 0 q = 1 q = 2

B1+0
q+1 / / /

B1q
0 1 2 3 4

[ 0 0 0 0 0
] / /

L1+0
q


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 / /

β1+0
q 5 / /

dim(L1+0
q ) 5 / /

rank(L1+0
q ) 0 / /

nullity(L1+0
q ) 5 / /

Spectra(L1+0
q ) {0, 0, 0, 0, 0} / /

7



Table 6: K2 → K2

q q = 0 q = 1 q = 2

B2+0
q+1

01

0

1

2

3

4


−1

1

0

0

0


/ /

B2q
0 1 2 3 4

[ 0 0 0 0 0 ]

01

0

1

2

3

4


−1

1

0

0

0


/

L2+0
q


1 −1 0 0 0

−1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 [2] /

β2+0
q 4 0 /

dim(L2+0
q ) 5 1 /

rank(L2+0
q ) 1 1 /

nullity(L2+0
q ) 4 0 /

Spectra(L2+0
q ) {0, 0, 0, 0, 2} 2 /
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Table 7: K3 → K3

q q = 0 q = 1 q = 2

B3+0
q+1

01 12 23 03

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0


/ /

B3q
0 1 2 3 4

[ 0 0 0 0 0 ]

01 12 23 03

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0


/

L3+0
q


2 −1 0 −1 0

−1 2 −1 0 0

0 −1 2 −1 0

−1 0 −1 2 0

0 0 0 0 0




2 −1 0 1

−1 2 −1 0

0 −1 2 1

1 0 1 2

 /

β3+0
q 2 1 /

dim(L3+0
q ) 5 4 /

rank(L3+0
q ) 3 3 /

nullity(L3+0
q ) 2 1 /

Spectra(L3+0
q ) {0, 0, 2, 2, 4} {0, 2, 2, 4} /
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Table 8: K5 → K5

q q = 0 q = 1 q = 2

B5+0
q+1

01 12 23 03 24 02

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0

0

0

−1

0

1

−1

0

1

0

0



012 023

01

12

23

03

24

02



1

1

0

0

0

−1

0

0

1

−1

0

1


0123

012

023

[
−1

1

]

B5q
0 1 2 3 4

[ 0 0 0 0 0 ]

01 12 23 03 24 02

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0

0

0

−1

0

1

−1

0

1

0

0



012 023

01

12

23

03

24

02



1

1

0

0

0

−1

0

0

1

−1

0

1



L5+0
q


3 −1 −1 −1 0

−1 2 −1 0 0

−1 −1 4 −1 −1

−1 0 −1 2 0

0 0 −1 0 1





3 0 0 1 0 0

0 3 −1 0 −1 0

0 −1 3 0 1 0

1 0 0 3 0 0

0 −1 1 0 2 −1

0 0 0 0 −1 4


[

4 0

0 4

]

β5+0
q 1 0 0

dim(L5+0
q ) 5 6 2

rank(L5+0
q ) 4 6 2

nullity(L5+0
q ) 1 0 0

Spectra(L5+0
q ) {0, 1, 2, 4, 5} {1, 2, 2, 4, 4, 5} {4, 4}
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Table 9: K1 → K2

q q = 0 q = 1 q = 2

B1+1
q+1

01

0

1

2

3

4


−1

1

0

0

0


/ /

B1q
0 1 2 3 4

[ 0 0 0 0 0 ]
/ /

L1+1
q


1 −1 0 0 0

−1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 / /

β1+1
q 4 / /

dim(L1+1
q ) 5 / /

rank(L1+1
q ) 1 / /

nullity(L1+1
q ) 4 / /

Spectra(L1+1
q ) {0, 0, 0, 0, 2} / /
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Table 10: K1 → K3

q q = 0 q = 1 q = 2

B1+2
q+1

01 12 23 03

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0


/ /

B1q
0 1 2 3 4

/
[

0 0 0 0 0
] / /

L1+2
q


2 −1 0 −1 0

−1 2 −1 0 0

0 −1 2 −1 0

−1 0 −1 2 0

0 0 0 0 0

 / /

β1+2
q 2 / /

dim(L1+2
q ) 5 / /

rank(L1+2
q ) 3 / /

nullity(L1+2
q ) 2 / /

Spectrum(L1+2
q ) {0, 0, 2, 2, 4} / /
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Table 11: K1 → K4

q q = 0 q = 1 q = 2

B1+3
q+1

01 12 23 03 24

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0

0

0

−1

0

1


/ /

B1q
0 1 2 3 4

[ 0 0 0 0 0 ]
/ /

L1+3
q


2 −1 0 −1 0

−1 2 −1 0 0

0 −1 3 −1 −1

−1 0 −1 2 0

0 0 −1 0 1

 / /

β1+3
q 1 / /

dim(L1+3
q ) 5 / /

rank(L1+3
q ) 4 / /

nullity(L1+3
q ) 1 / /

Spectra(L1+3
q ) {0, 0.8299, 2, 2.6889, 4.4812} / /
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Table 12: K1 → K5

q q = 0 q = 1 q = 2

B1+4
q+1

01 12 23 03 24 02

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0

0

0

−1

0

1

−1

0

1

0

0


/ /

B1q
0 1 2 3 4

[ 0 0 0 0 0 ]
/ /

L1+4
q


3 −1 −1 −1 0

−1 2 −1 0 0

−1 −1 4 −1 −1

−1 0 −1 2 0

0 0 −1 0 1

 / /

β1+4
q 1 / /

dim(L1+4
q ) 5 / /

rank(L1+4
q ) 4 / /

nullity(L1+4
q ) 1 / /

Spectra(L1+4
q ) {0, 1, 2, 4, 5} / /
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Table 13: K1 → K6

q q = 0 q = 1 q = 2

B1+5
q+1

01 12 23 03 24 02 13

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0

0

0

−1

0

1

−1

0

1

0

0

0

−1

0

1

0


/ /

B1q
0 1 2 3 4

[ 0 0 0 0 0 ]
/ /

L1+5
q


3 −1 −1 −1 0

−1 3 −1 −1 0

−1 −1 4 −1 −1

−1 −1 −1 3 0

0 0 −1 0 1

 / /

β1+5
q 1 / /

dim(L1+5
q ) 5 / /

rank(L1+5
q ) 4 / /

nullity(L1+5
q ) 1 / /

Spectra(L1+5
q ) {0, 1, 4, 4, 5} / /
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Table 14: K2 → K3

q q = 0 q = 1 q = 2

B2+1
q+1

01 12 23 03

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0


/ /

B2q
0 1 2 3 4

[ 0 0 0 0 0 ]

01

0

1

2

3

4


−1

1

0

0

0


/

L2+1
q


2 −1 0 −1 0

−1 2 −1 0 0

0 −1 2 −1 0

−1 0 −1 2 0

0 0 0 0 0

 [2] /

β2+1
q 2 0 /

dim(L2+1
q ) 5 1 /

rank(L2+1
q ) 3 1 /

nullity(L2+1
q ) 2 0 /

Spectra(L2+1
q ) {0, 0, 2, 2, 4} 2 /
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Table 15: K2 → K4

q q = 0 q = 1 q = 2

B2+2
q+1

01 12 23 03 24

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0

0

0

−1

0

1


/ /

B2q
0 1 2 3 4

[ 0 0 0 0 0 ]

01

0

1

2

3

4


−1

1

0

0

0


/

L2+2
q


2 −1 0 −1 0

−1 2 −1 0 0

0 −1 3 −1 −1

−1 0 −1 2 0

0 0 −1 0 1

 [2] /

β2+2
q 1 0 /

dim(L2+2
q ) 5 1 /

rank(L2+2
q ) 4 1 /

nullity(L2+2
q ) 1 0 /

Spectra(L2+2
q ) {0, 0.8299, 2, 2.6889, 4.4812} 2 /
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Table 16: K2 → K5

q q = 0 q = 1 q = 2

B2+3
q+1

01 12 23 03 24 02

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0

0

0

−1

0

1

−1

0

1

0

0


012 023

01
[

1 0
] /

B2q
0 1 2 3 4

[ 0 0 0 0 0 ]

01

0

1

2

3

4


−1

1

0

0

0


/

L2+3
q


3 −1 −1 −1 0

−1 3 −1 −1 0

−1 −1 4 −1 −1

−1 −1 −1 3 0

0 0 −1 0 1

 [3] /

β2+3
q 1 0 /

dim(L2+3
q ) 5 1 /

rank(L2+3
q ) 4 1 /

nullity(L2+3
q ) 1 0 /

Spectra(L2+3
q ) {0, 1, 2, 4, 5} 3 /
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Table 17: K2 → K6

q q = 0 q = 1 q = 2

B2+4
q+1

01 12 23 03 24 02 13

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0

0

0

−1

0

1

−1

0

1

0

0

0

−1

0

1

0


012 023 013 123

01
[

1 0 1 0
] /

B2q
0 1 2 3 4

[ 0 0 0 0 0 ]

01

0

1

2

3

4


−1

1

0

0

0


/

L2+4
q


3 −1 −1 −1 0

−1 2 −1 0 0

−1 −1 4 −1 −1

−1 0 −1 2 0

0 0 −1 0 1

 [4] /

β2+4
q 1 0 /

dim(L2+4
q ) 5 1 /

rank(L2+4
q ) 4 1 /

nullity(L2+4
q ) 1 0 /

Spectra(L2+4
q ) {0, 1, 4, 4, 5} 4 /
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Table 18: K3 → K5

q q = 0 q = 1 q = 2

B3+2
q+1

01 12 23 03 24 02

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0

0

0

−1

0

1

−1

0

1

0

0


012 023

01

12

23

03


1

1

0

0

0

0

1

−1

 /

B3q
0 1 2 3 4

[ 0 0 0 0 0 ]

01 12 23 03

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0


/

L3+2
q


3 −1 −1 −1 0

−1 2 −1 0 0

−1 −1 4 −1 −1

−1 0 −1 2 0

0 0 −1 0 1




3 0 0 1

0 3 −1 0

0 −1 3 0

1 0 0 3

 /

β3+2
q 1 0 /

dim(L3+2
q ) 5 4 /

rank(L3+2
q ) 4 4 /

nullity(L3+2
q ) 1 0 /

Spectra(L3+2
q ) {0, 1, 2, 4, 5} {2, 2, 4, 4} /
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Table 19: K3 → K6

q q = 0 q = 1 q = 2

B3+3
q+1

01 12 23 03 24 02 13

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0

0

0

−1

0

1

−1

0

1

0

0

0

−1

0

1

0


012 023 013 123

01

12

23

03


1

1

0

0

0

0

1

−1

1

0

0

−1

0

1

1

0

 /

B3q
0 1 2 3 4

[ 0 0 0 0 0 ]

01 12 23 03

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0


/

L3+3
q


3 −1 −1 −1 0

−1 3 −1 −1 0

−1 −1 4 −1 −1

−1 −1 −1 3 0

0 0 −1 0 1




4 0 0 0

0 4 0 0

0 0 4 0

0 0 0 4

 /

β3+3
q 1 0 /

dim(L3+3
q ) 5 4 /

rank(L3+3
q ) 4 4 /

nullity(L3+3
q ) 1 0 /

Spectra(L3+3
q ) {0, 1, 4, 4, 5} {4, 4, 4, 4} /
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Table 20: K4 → K4

q q = 0 q = 1 q = 2

B4+0
q+1

01 12 23 03 24

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0

0

0

−1

0

1


/ /

B4q
0 1 2 3 4

/
[

0 0 0 0 0
]

01 12 23 03 24

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0

0

0

−1

0

1


/

L4+0
q


2 −1 0 −1 0

−1 2 −1 0 0

0 −1 3 −1 −1

−1 0 −1 2 0

0 0 −1 0 1




2 −1 0 1 0

−1 2 −1 0 −1

0 −1 2 1 1

1 0 1 2 0

0 −1 1 0 2

 /

β4+0
q 1 1 /

dim(L4+0
q ) 5 5 /

rank(L4+0
q ) 4 4 /

nullity(L4+0
q ) 1 1 /

Spectra(L4+0
q ) {0, 0.8299, 2, 2.6889, 4.4812} {0, 0.8299, 2, 2.6889, 4.4812} /
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Table 21: K4 → K5

q q = 0 q = 1 q = 2

B4+1
q+1

01 12 23 03 24 02

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0

0

0

−1

0

1

−1

0

1

0

0



012 023

01

12

23

03

24


1

1

0

0

0

0

0

1

−1

0


/

B4q
0 1 2 3 4

/
[

0 0 0 0 0
]

01 12 23 03 24

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0

0

0

−1

0

1


/

L4+1
q


3 −1 −1 −1 0

−1 2 −1 0 0

−1 −1 4 −1 −1

−1 0 −1 2 0

0 0 −1 0 1




3 0 0 1 0

0 3 −1 0 −1

0 −1 3 0 1

1 0 0 3 0

0 −1 1 0 2

 /

β4+1
q 1 0 /

dim(L4+1
q ) 5 5 /

rank(L4+1
q ) 4 5 /

nullity(L4+1
q ) 1 0 /

Spectra(L4+1
q ) {0, 1, 2, 4, 5} {1.2677, 2, 2, 4, 4.7321} /
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Table 22: K4 → K6

q q = 0 q = 1 q = 2

B4+2
q+1

01 12 23 03 24 02 13

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0

0

0

−1

0

1

−1

0

1

0

0

0

−1

0

1

0



012 023 013 123

01

12

23

03

24


1

1

0

0

0

0

0

1

−1

0

1

0

0

−1

0

0

1

1

0

0


/

B4q
0 1 2 3 4

[ 0 0 0 0 0 ]

01 12 23 03 24

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0

0

0

−1

0

1


/

L4+2
q


3 −1 −1 −1 0

−1 3 −1 −1 0

−1 −1 4 −1 −1

−1 −1 −1 3 0

0 0 −1 0 1




4 0 0 0 0

0 4 0 0 −1

0 0 4 0 1

0 0 0 4 0

0 −1 1 0 2

 /

β4+2
q 1 0 /

dim(L4+2
q ) 5 5 /

rank(L4+2
q ) 4 5 /

nullity(L4+2
q ) 1 0 /

Spectra(L4+2
q ) {0, 1, 4, 4, 5} {1.2679, 4, 4, 4, 4.7321} /
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Table 23: K5 → K6

q q = 0 q = 1 q = 2

B5+1
q+1

01 12 23 03 24 02

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0

0

0

−1

0

1

−1

0

1

0

0



012 023 013 123

01

12

23

03

24

02



1

1

0

0

0

−1

0

0

1

−1

0

1

1

0

0

−1

0

0

0

1

1

0

0

0


/

B5q
0 1 2 3 4

/
[

0 0 0 0 0
]

01 12 23 03 24 02

0

1

2

3

4


−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

−1

0

0

1

0

0

0

−1

0

1

−1

0

1

0

0



012 023

01

12

23

03

24

02



1

1

0

0

0

−1

0

0

1

−1

0

1



L5+1
q


3 −1 −1 −1 0

−1 2 −1 0 0

−1 −1 4 −1 −1

−1 0 −1 2 0

0 0 −1 0 1





4 0 0 0 0 0

0 4 0 0 −1 0

0 0 4 0 1 0

0 0 0 4 0 0

0 −1 1 0 2 −1

0 0 0 0 −1 4


[

3 −1

−1 3

]

β5+1
q 1 0 0

dim(L5+1
q ) 5 6 2

rank(L5+1
q ) 4 6 2

nullity(L5+1
q ) 1 0 0

Spectra(L5+1
q ) {0, 1, 2, 4, 5} {1, 4, 4, 4, 4, 5} {2, 4}
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