Supplemental Data

 Table \$1: Summary of patient cohort

	Patients n=41
Female	
Mean age (range years)	67 (38-84)
Diagnosis	
TNBC	6
luminal B	26
luminal A	6
HER2 overexpression	3
T status	
T1	9
T2	28
T3	3
T4	1
N status	
N0	21
N1	18
Nx	2
M status	
MO	40
M1	1
Therapy	
Radio	20
Endo	35
	8
Chemo	
Antibody	1
not indicated	4

Table S2: FACS antibodies used for sorting and analysis

antibody	fluorochr ome	panel	catalog no	company	RRID	
CD1c	PE/Dazzl e 594	myeloid	331531	BioLegend	AB_2565292	
CD4	PE- CF594	lymph	562316	BD	AB_1115439 4	
CD8	BV786	lymph	563823	BD	AB_2687487	
CD14	PerCP- Cy5.5	myeloid	561116	BD	AB_2033939	
CD14	APC-H7	lymph	560180	BD	RRID:AB_16 45464	
CD15	FITC	myeloid/ lymph	560997	BD	AB_1056320 6	
CD16	BV650	myeloid/ lymph	563692	BD	AB_2744298	
CD19	APC-H7	myeloid/ lymph	560252	BD	AB_1645468	
CD25	BV421	lymph	562442	BD	AB_1115457 8	
CD33	BV510	myeloid/ lymph	563257	BD	RRID:AB_27 38102	
CD45	AF700	myeloid/ lymph	368514	BioLegend	AB_2566374	
CD45	AF700	myeloid/ lymph	560566	BD	AB_1645452	
CD45RA	BV605	lymph	562886	BD	AB_2737865	
CD45RO	PE	lymph	304205	BioLegend	AB_314421	
CD56	PerCP- Cy5.5	lymph	362505	BioLegend	AB_2563914	
CD64	BV605	myeloid	740406	BD	AB_2740136	
CD80	BV711	myeloid	740801	BD	AB_2740464	
CD86	BV711	myeloid	563158	BD	AB_2738036	
CD107a	BV421	lymph	562623	BD	AB_2737685	
CD124	PE	myeloid	355004	BioLegend	AB_1121938 5	
CD127	BV711	lymph	563165	BD	AB_2738041	
CD127	BV711	lymph	351327	BioLegend	AB_1121919 1	
CD141	BV785	myeloid	344115	BioLegend	AB_2572194	
CD154	BV421	lymph	310823	BioLegend	AB_1093325 1	
CD163	APC	myeloid	333610	BioLegend	AB_2074533	

CD206	PE/Cy7	myeloid	321124	BioLegend	AB_1093324 8
CD278	PE/Cy7	lymph	313519	BioLegend	AB_1064183 9
CD279	APC	lymph	329907	BioLegend	AB_940473
CD326	FITC	myeloid/ lymph	324203	BioLegend	AB_756077
HLA-DR	APC/Fire 750	myeloid/ lymph	307658	BioLegend	AB_2572101
LAG3	PerCP- eFuor710	lymph	46-2239-41	eBioscience	AB_2573731
LOX-1	PE	myeloid	358603	BioLegend	AB_2562180
MerTK	BV421	myeloid	367603	BioLegend	AB_2566396
ΤΟΚαβ	FITC	myeloid/ lymph	561673	BD	AB_1089281 1
ΤСRγδ	APC	lymph	561049	BD	AB_1056407 2

Table S3: GSEA report for CD206+ macrophages – GO terms

NAME	ES	NES	NOM	FDR	FWER
			p-val	q-val	p-val
GO_BODY_MORPHOGENESIS	-0,53	-2,24	0,00	0,02	0,03
GO_FACE_MORPHOGENESIS	-0,61	-2,23	0,00	0,01	0,03
GO_HEAD_MORPHOGENESIS	-0,55	-2,19	0,00	0,02	0,05
GO_KINESIN_COMPLEX	-0,51	-2,17	0,00	0,01	0,05
GO_REGULATION_OF_POSTSYNAP	-0,52	-2,05	0,00	0,06	0,18
TIC_MEMBRANE_POTENTIAL					
GO_CARGO_RECEPTOR_ACTIVITY	-0,45	-2,01	0,00	0,08	0,25
GO_CHEMICAL_SYNAPTIC_TRANS	-0,52	-1,99	0,00	0,08	0,27
MISSION_POSTSYNAPTIC					
GO_ANOIKIS	-0,48	-1,99	0,00	0,07	0,27
GO_REGULATION_OF_NEUROLOGI	-0,45	-1,94	0,00	0,11	0,37
CAL_SYSTEM_PROCESS					
GO_ACID_THIOL_LIGASE_ACTIVITY	-0,51	-1,92	0,00	0,13	0,42
GO_ACETYLGLUCOSAMINYLTRAN	-0,44	-1,91	0,00	0,13	0,44
SFERASE_ACTIVITY					
GO_CILIARY_PLASM	-0,42	-1,85	0,01	0,22	0,56
GO_SCAVENGER_RECEPTOR_ACT	-0,47	-1,82	0,01	0,25	0,60
IVITY					

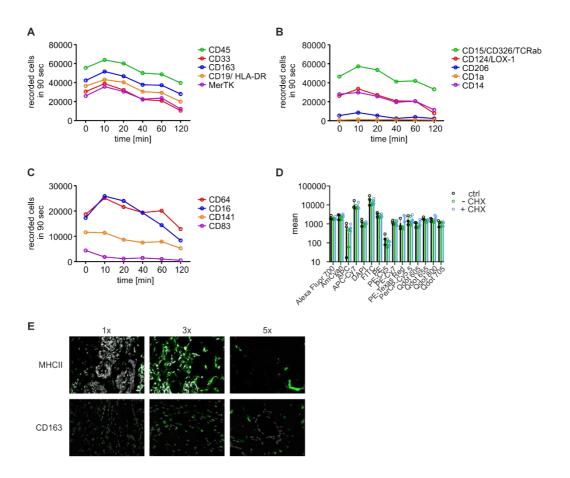
Table S4: GSEA report for CD206+ macrophages – GEO dataset accession

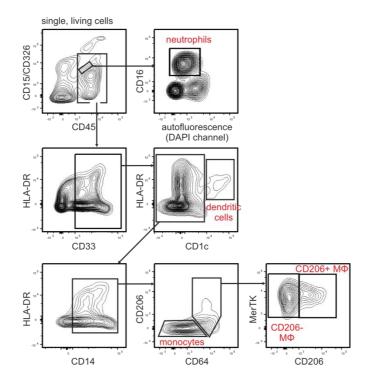
NAME	ES	NES	NOM	FDR	FWER
			p-val	q-val	p-val
GSE2935_UV_INACTIVATED_VS_	-0,29	-1,53	0,01	0,69	0,69
LIVE_SENDAI_VIRUS_INF_MACR					
OPHAGE_UP					
GSE5589_IL6_KO_VS_IL10_KO_L	-0,27	-1,51	0,02	0,73	0,71
PS_AND_IL10_STIM_MACROPHA					
GE_45MIN_UP					
GSE25088_CTRL_VS_IL4_STIM_	-0,27	-1,49	0,03	0,73	0,73
MACROPHAGE_UP					
GSE25123_WT_VS_PPARG_KO_	-0,27	-1,48	0,03	0,76	0,74
MACROPHAGE_ROSIGLITAZONE					
_STIM_UP					
GSE8515_CTRL_VS_IL1_4H_STIM	-0,24	-1,36	0,03	1,00	0,84
_MAC_UP				_	_
GSE25123_CTRL_VS_IL4_STIM_P	-0,27	-1,47	0,04	0,77	0,75
PARG_KO_MACROPHAGE_DN					
GSE19941_UNSTIM_VS_LPS_STI	-0,29	-1,57	0,04	0,65	0,65
M_IL10_KO_NFKBP50_KO_MACR					
OPHAGE_UP				_	_
GSE24492_LYVE_NEG_VS_POS_	-0,28	-1,47	0,04	0,75	0,75
MACROPHAGE_UP					
GSE25088_WT_VS_STAT6_KO_M	-0,34	-1,56	0,06	0,62	0,65
ACROPHAGE_IL4_STIM_DN					
GSE5099_MONOCYTE_VS_ALTE	-0,25	-1,32	0,06	1,00	0,86
RNATIVE_M2_MACROPHAGE_UP					
GSE28783_ANTI_MIR33_VS_CTR	-0,26	-1,36	0,06	1,00	0,84
L_ATHEROSCLEROSIS_MACROP					
HAGE_DN					
GSE5589_LPS_VS_LPS_AND_IL6	-0,24	-1,34	0,07	1,00	0,85
_STIM_IL6_KO_MACROPHAGE_4					
5MIN_UP					
GSE360_T_GONDII_VS_M_TUBE	-0,26	-1,33	0,07	1,00	0,85
RCULOSIS_MAC_UP					
GSE26343_WT_VS_NFAT5_KO_M	-0,24	-1,30	0,08	0,99	0,87
ACROPHAGE_UP					
GSE26343_WT_VS_NFAT5_KO_M	-0,26	-1,35	0,09	1,00	0,84
ACROPHAGE_LPS_STIM_UP					

Table S5: Summary of TMA patient cohorts

Relapsed ER+ breast cancer (patients n=54)	HER2+ breast cancer (patients n=38)	TNBC (patients n=26)
62 (32-82)	58 (26-82)	50 (29-86)
ED.	LIEDO	TNDO
ER+	HER2+	TNBC
40	40	4
		4
		22
		-
7	2	-
5	0	18
31	10	5
16	26	2
2	2	1
54	38	26
-	-	-
0	0	18
29	9	5
		3
0	0	0
		0
		26
	breast cancer (patients n=54) 62 (32-82) ER+ 10 30 7 7 7 5 31 16 2 54 - 0 29 25	breast cancer (patients n=54) cancer (patients n=38) 62 (32-82) 58 (26-82) ER+ HER2+ 10 18 30 15 7 3 7 2 5 0 31 10 16 26 2 2 54 38 - - 0 0 29 9 25 29 0 0 12 5

^{*} All variables determined at diagnosis




Figure S 1: Validation of epitope stability for FACS and immunofluorescence . (A-C)
To study the stability of indicated markers a mixture of PBMCs, macrophages and
MCF-7 cells were subjected to the tissue dissociation protocol indicated under
Methods for up to 120 min at 37°C. Afterwards samples (n=3) were FACS analyzed.

(D) Supplement of CHX into storage medium was tested for added epitope stability.

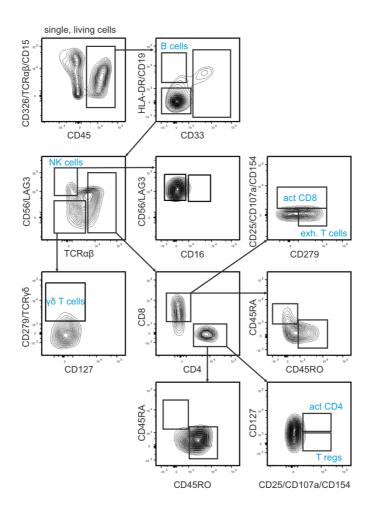
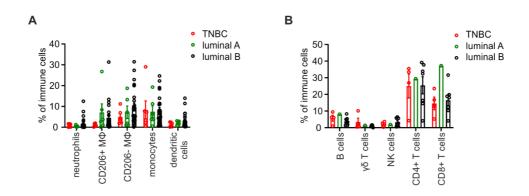
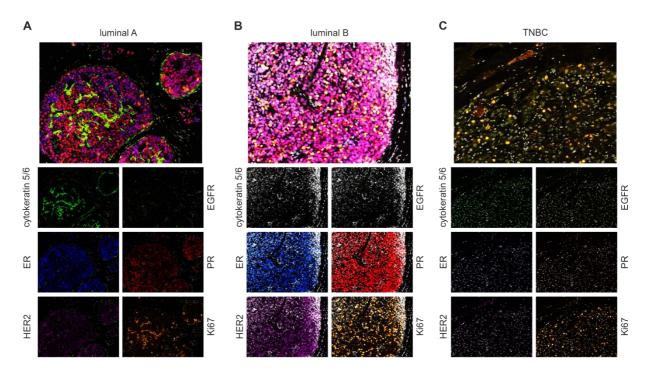
Samples were either FACS analyzed directly (ctrl, black, n=3) or incubated for 4 h at
37°C with (+, blue, n=3) or without (-, green, n=3) CHX addition and then FACS
analyzed. (E) Representative immunofluorescence staining of breast cancer tissue
with MHCII or CD163. For the validation of epitope stability and sufficient antigen
retrieval in immunofluorescence stainings, FFPE samples were subjected once, three
times or five times to heat-induced epitope retrieval and afterwards stained with the

indicated markers MHCII or CH163 (both green). Nuclei were counterstained with DAPI (white).

Figure S2

Figure S2: Gating strategy of myeloid cells in primary human breast cancer. After identification of single, living cells, immune cells were gated as CD45+ cells. CD16 was used to identify neutrophils within CD15^{hi} cells. CD45+ cells were further gated for myeloid CD33+ cells. These cells were used to identify dendritic cells (HLA-DR+, CD1c+, MerTK-), monocytes (HLA-DR+, CD14+, CD64lo, MerTKlo), and macrophages (MΦ; MHCII^{hi}, MerTK+), which were further separated by CD206 expression.

Figure S3

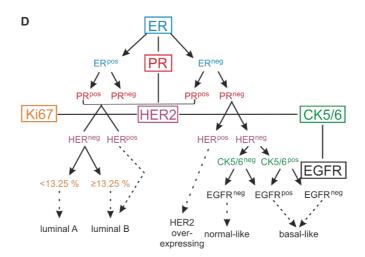

Figure S3: Gating strategy of lymphoid cells in primary human breast cancer. After identification of single, living cells, immune cells were gated as CD45+ cells. CD33-lymphocytes were separated into B cells (CD33-, CD19+). Remaining CD33- cells were separated into CD56+ cells (NK cells) and TCRαβ+ cells. The TCRαβ- population was gated for TCRγδ to find γδ T cells. The TCRαβ+ population was further separated into CD8+ and CD4+ T cells, which were both analyzed for memory (CD45RO) and naïve (CD45RA) populations. Activated CD8+ T cells were CD107a+ and exhausted (exh.) T cells were CD279+. Activated CD4+ T cells were CD127+ and regulatory T cells (T regs) were CD127^{low} and CD25+.

Figure S 4: FACS based analysis of myeloid (**A**) and lymphoid (**B**) immune cell composition clustered by molecular breast cancer subtype (luminal A (n=6), luminal B (n=26) and TNBC (n=6))

Figure S5

Figure S5: Molecular profiling of analyzed breast tumors. (**A-C**) Representative immunofluorescence staining of breast cancer subtype luminal A (**A**), luminal B (**B**) and TNBC (**C**). Tumor sections were stained with cytokeratin 5/6 (green), EGFR (yellow), the hormone receptors ER (blue), PR (red), and HER2 (magenta). The proliferation marker Ki67 is depicted in orange and nuclei were counterstained with

DAPI (white). (**D**) Overview of molecular profiling scheme connecting all stained markers in A-C.

Figure S6

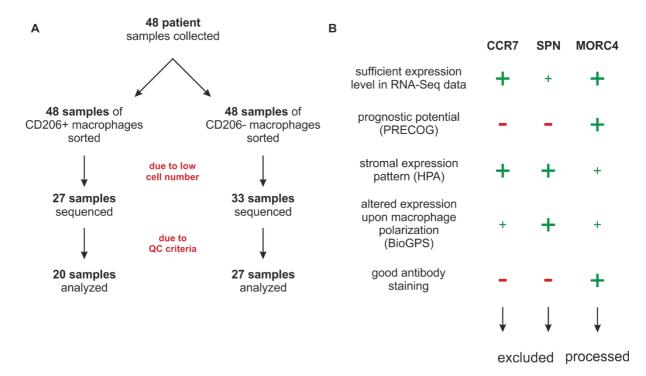


Figure S6: (A) Overview of sample selection and validation. CD206+ and CD206-macrophages were simultaneously sorted from 48 patient samples. 27 CD206+macrophage samples and 33 CD206-macrophage samples were sufficient for library preparation. After sequencing 7 CD206+ and 6 CD206+ macrophage samples were excluded due to low sample quality. (B) Example of target selection. DEGs between CD206+ and CD206-macrophages were checked for sufficient expression, prognostic potential, stromal expression, altered expression after polarization and availability of antibody. Green plus (+) indicates fulfilled criteria, red minus (–) shows criteria, which are not met.

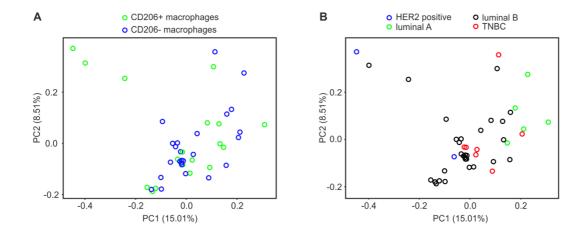
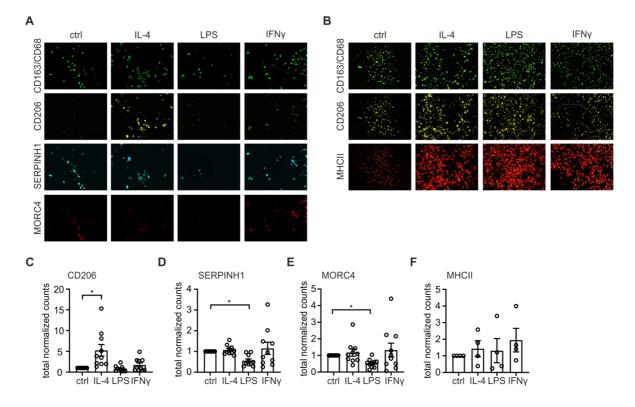
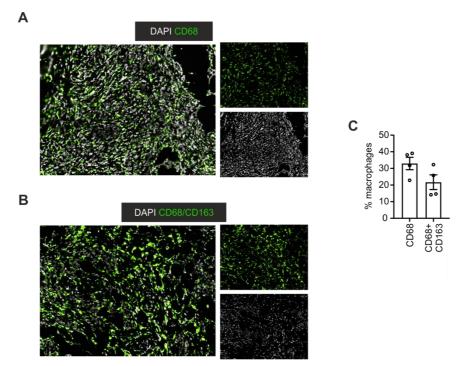




Figure S7: PCA analysis of macrophages clustered by subpopulation and cancer subtype. (A, B) PCA analysis of macrophages sorted from primary breast cancer after quality control. (A) Macrophage samples were clustered by CD206 expression. CD206+ macrophages are shown in green and CD206- macrophages are depicted in blue. (B) Macrophage samples were clustered by the hormone receptor status of tumor sample. Macrophages were sorted from HER2 positive breast tumors (blue), the subtypes luminal A (green), luminal B (black), and TNBC (red). Only samples with an available subtype were included in these plots.

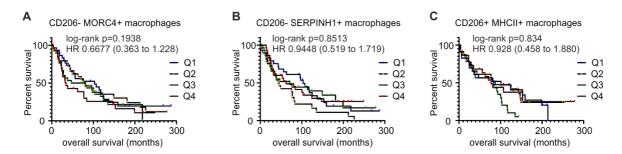


Figure S8: (**A-B**) Immunofluorescence staining of in-vitro stimulated MΦ. Untreated MΦ (ctrl) as well as IL-4, LPS and IFNγ stimulated MΦ were stained for CD163/68 (green), CD206 (yellow), SERPINH1 (cyan), and (**A**) MORC4 (red) or (**B**) MHCII (red). (**C-F**) Quantitative analysis of in-vitro stimulated MΦ shown in A and B for the expression of CD206 (n=10) (**C**), SERPINH1 (n=10) (**D**), MORC4 (n=10) (**E**) and MHCII (n=4) (**F**) after IL-4, LPS or IFNγ stimulation compared to untreated MΦ (ctrl). Expression data is normalized to untreated MΦ (ctrl=1). Data are \pm SEM.

Figure S9

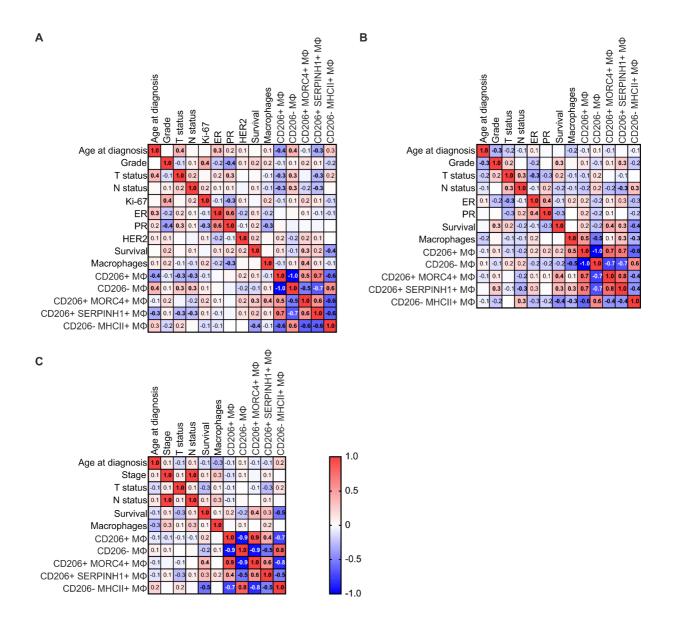


Figure S9: Histology of macrophage markers. (**A, B**) Representative immunofluorescence staining of one primary breast tumor. Tissue was stained with only CD68 (**A**, green) or with an antibody mix of CD163 and CD68 (**B**, green). (**C**) Quantitative analysis of macrophages stained with either CD68 (n=4) alone or CD68 with CD163 (n=4) in one tumor specimen with 4 independent regions each. Data are \pm SEM.

Figure S10: Macrophage subpopulations and patient survival. Analysis of TMA staining for CD206 in combination with MORC4 (n=154) **(A)**, SERPINH1 (n=154) **(B)** and MHCII (n=94) (C) in invasive breast cancer. Kaplan-Meier estimates analyze the association of indicated cell populations with patient survival. Q1 marks the lowest quartile of indicated cell subtype abundance in the tissues and Q4 the highest quartile (n = 38 in each quartile for D-G, I and K; n = 24 for L). Hazard ratios were calculated between Q1 and Q4.

Figure S11

Figure S11: Analysis of TMA staining for CD206 in combination with MORC4, SERPINH1, and MHCII in (A) relapsed ER+ breast cancer (n=54), (B) HER2+ breast cancer (n=38), and (C) TNBC (n=26). Correlation matrices different macrophages populations and clinical parameters available are shown. Positive correlation is indicated in red, negative correlation in blue. Numbers indicate Pearson r-value; bold script indicates statistical significance, $p \le 0.05$.