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Supplementary Note  
 
Detailed derivation of the new model (Eq. 6) 

The dynamics of the enzyme reaction between a single enzyme and single substrate (Eq. 1) can 

be fully captured by the following ordinary differential equations based on mass action kinetics, 

which is referred to as the full model in this study: 

𝑑𝑆
𝑑𝑡 = −𝑘'𝑆𝐸 + 𝑘*𝐶,

𝑑𝐶
𝑑𝑡 = 𝑘'𝑆𝐸 − 𝑘*𝐶 − 𝑉./0𝐶,

𝑑𝑃
𝑑𝑡 = 𝑘2/3𝐶.

 (8) 

As 𝐸5 = 𝐸 + 𝐶	is conserved, 78
73

=−79
73

.	𝐸(0) = 	𝐸5, , 𝑆(0) 	= 	 𝑆5, 𝐶(0) 	= 	0, and	𝑃(0) 	= 	0	 

are used as initial conditions following the typical in vitro enzyme kinetics protocol1. The full 

model can be simplified under the assumption that C rapidly equilibrates to its quasi-steady-

state2: 

𝐶(𝑆) =
𝐸5𝑆

𝑆 + 𝐾A
, 

where 𝐾A = BCDBEFG
BH

	(µM) is the Michaelis constant. By substituting this equation into the full 

model, the simplified MM model (Eq. 2) can be derived. The MM model is shown to be 

accurate only when the enzyme concentration is low (i.e. 𝐸5 ≪ 𝐾A + 𝑆) so that an insignificant 

fraction of substrate is bound to the enzyme and the metabolism rate increases proportionally 

to the enzyme concentration1–3.  

 

Another way to simplify the full model (Eq. 8) is based on the total quasi-steady-state 

approximation, where the quasi-steady-state of C is derived in terms of 𝑆̅ = 𝑆 + 𝐶 rather than 

S1,3–8: 
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𝐶(𝑆̅) =
𝐸5 + 𝐾A + 𝑆̅ − K(𝐸5 + 𝐾A + 𝑆̅)L − 4𝐸5𝑆̅

2 . 

 

(9) 

 

Using this and replacing the notation of 𝑘2/3  with the nomralized 𝑉./0  (pmol·min-1·pmol-1 

CYP), the full model can be simplified as 

𝑑𝑃
𝑑𝑡 = 𝑉./0𝐶(𝑆̅), 

which has been shown to be accurate regardless of enzyme concentration, in contrast to the 

MM model1,3–8. This model can be further simplified when 𝑆5 ≪ 𝐸5 + 𝐾A, leading to the new 

model (Eq. 6): 

𝑑𝑃
𝑑𝑡 = 𝑉./0𝐶(𝑆̅) ≈

𝑉./0𝐸5𝑆̅
𝐾A + 𝐸5

= 𝐶𝐿QR3SQ3TU𝐸5
𝐾A

𝐾A + 𝐸5
𝑆̅, 

where the approximation comes from the Taylor expansion of 𝐶(𝑆̅)	in terms of V8WX̅

(8WDYZDX̅)[
≪

15–7. 

 

Prediction of CLh 

 𝐶𝐿QR3]QS^T
  values estimated from canonical and new approaches were converted to CLh based on 

the following three hepatic distribution models: the well-stirred model, the parallel tube model 

and the dispersion model9:  

1. Well-stirred model: 

𝐶𝐿_ =
𝑄_ ∙ 𝑓cd*]UU7 ∙

𝐶𝐿QR3]QS^T

𝑓cd.Q2

𝑄_ + 𝑓cd*]UU7 ∙
𝐶𝐿QR3]QS^T

𝑓cd.Q2

 

2. Parallel tube model: 

𝐶𝐿_ = 𝑄_ ∙ [1 − 𝑒
	(d

HghCijjk∙lmnoG
inpqr

st∙HghunE
)
] 
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3. Dispersion model: 

𝐶𝐿_ = 𝑄_ ∙ [1 −
V/

(vD/)[∙^[(Fhw) [∙xo]⁄ d(vd/)[∙^[h(F{w) [∙xo]⁄ ],  

where 𝐷R = 0.17,  𝑎 = K1 + 4 ∙ 𝑅R ∙ 𝐷R	and	𝑅R =
'ghCijjk∙9�noG

inpqr

�t∙'ghunE
. 

1,450 ml·min-1 was used for the human hepatic blood flow (Qh)10. See Table 2 for the values 

of blood unbound fraction (fu-blood) and microsomes (fu-mic) for each drug. 

 

Accuracy and precision of predicted CLh  

To calculate the accuracy of predicted CLh, the average-fold-error (AFE) and absolute-average-

-fold-error (AAFE) were used, and for precision, the root-mean-squared-error (RMSE) and 

relative-root-mean-squared-error (R-RMSE) were used11,12:  

 

𝐴𝐹𝐸 = 10
w
�
∑ ]U��rqknEGqk�C�qrpqk , 

𝐴𝐴𝐹𝐸 = 10
w
�
∑�]U��rqknEGqk�C�qrpqk �, 

𝑅𝑀𝑆𝐸 = �v
�
∑(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	 − 	𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑)L, 

𝑅 − 𝑅𝑀𝑆𝐸 = �v
�
∑(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	/𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 	1)L. 
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