Supplementary Information

Accurate assembly of the olive baboon (*Papio anubis*) genome using long-read and Hi-C data

Sanjit Singh Batra¹, Michal Levy-Sakin², Jacqueline Robinson³, Joseph Guillory⁴, Steffen Durinck^{4,5}, Tauras P. Vilgalys⁶, Pui-Yan Kwok^{2,3}, Laura A. Cox^{7,8}, Somasekar Seshagiri⁴, Yun S. Song^{1,9,10} and Jeffrey D. Wall^{3,*}

¹Computer Science Division, University of California, Berkeley, CA 94720; ²Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143; ³Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143: ⁴Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080: ⁵Bioinformatics and Computational Biology Department, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080; ⁶Department of Evolutionary Anthropology, Duke University, Durham, NC 27705 ⁷Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101 ⁸Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245 ⁹Department of Statistics, University of California, Berkeley, CA 94720; ¹⁰Chan Zuckerberg Biohub, San Francisco, CA 94158

*Corresponding Author: Jeff.Wall@ucsf.edu

This document contains Supplementary Figures S1-S6.

Figure S1: Linkage disequilibrium based evidence for misassemblies in Panu_3.0. Estimates of the population recombination rate ρ near the potential synteny breaks of the misassemblies identified in chromosomes a) NC_018166.2 b) NC_018160.2 and c) NC_018152.2. Red represents the beginning of a misassembly event and blue represents the end of a misassembly event.

2

Figure S2: Recombination based evidence for misassemblies in Panu_3.0.

Shown on the x-axis are positions along chromosomes in Panu_3.0 where each row represents one of the 9 offsprings of sire 10173. Switches between red and blue within a row represent a recombination event. The vertical black lines represent locations where three or more recombinations occur at the same locus indicating a potential misassembly; except in (d) where recombination occurs at ~167Mb but is not shown by a vertical black line.

3

a) Inversion on chromosome NC_018164.2 demonstrated by bionano optical map alignment. b) Alignment to bionano optical map shows inverted coordinates due to an inversion on chromosome NC_018156.2.

c) Bionano optical map alignment shows an inversion on chromosome NC_018166.2.

Figure S4: Evidence for translocations in Panu_3.0 based on bionano alignment.

a) Breaks in bionano alignment on chromosome NC_018166.2 indicate a misassembly.

b) Bionano optical map alignment demonstrate a misassembly on chromosome NC_018160.2.

c) Bionano optical map alignment shows a translocation between chromosomes NC_018163.2 and NC_018164.2.

Figure S5: Evidence for translocations in Panu_3.0 based on bionano alignment.

- a) Breaks in bionano alignment on chromosome NC_018164.2 indicate a misassembly.
- b) Bionano optical map alignment demonstrate a misassembly on chromosome NC_018165.2.
- c) Bionano optical map alignment shows a translocation on chromosome NC_018152.2.

Figure S6: RepeatMasker output analysis for Panubis1.0 and Panu_3.0.

Total length, represented in Giga bases (Gb), of different repeat types in Panubis1.0 and Panu_3.0 obtained by analyzing the genomes with RepeatMasker.