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SI Materials and Methods 

Preparation of the rat's cochlea 

The procedures were conducted at the Institut Curie and were approved by the Ethics 

Committee in accordance with the European and French National Regulation for the 

Protection of Vertebrate Animals used for Experimental and other Scientific Purposes 

(Directive 2010/63; French Decree 2013-118). 

Experiments were performed on excised cochleae of Sprague-Dawley rats (Rattus 

norvegicus, Janvier Labs) of both sexes and 7-10 days of age. The dissection and 

isolation of the cochleae followed a published procedure (1,2). After a rat had been 

euthanized and decapitated, the inner ears were extracted from the head. Each cochlear 

bone was carefully opened and the membranous cochlear duct uncoiled from the 

modiolus. After excision of the cochlear partition, the stria vascularis was removed and 

the tectorial membrane gently peeled away. An apical or middle turn of the organ of Corti 

was positioned under nylon fibers in an experimental chamber containing artificial 

perilymph (150 mM Na+, 6 mM K+, 1.5 mM Ca2+, 159 mM Cl-, 10 mM Hepes, 8 mM 

D-glucose, and 2 mM sodium pyruvate; pH 7.4; 315 mOsmol·kg-1). During the 

experiment, we used perfusion to change the hair bundles’ ionic environment to a variant 

(150 mM Na+, 6 mM K+, 3.3 mM Ca2+, 163 mM Cl-, 4 mM HEDTA, 10 mM Hepes, 8 mM 

D-glucose, and 2 mM sodium pyruvate) with a free Ca2+ concentration of 22 µM. 

Preparation of the bullfrog’s sacculus 

The procedures were conducted at The Rockefeller University and at the Institut Curie 

with the approval of the respective Institutional Animal Care and Use Committees. 

Experiments were performed on hair cells from adult bullfrogs (Rana catesbeiana) 

of both sexes. After an animal had been euthanized, the sacculi were carefully removed 

by a standard protocol (3). Each saccular macula was sealed with tissue adhesive 

(Vetbond, 3M) across a 1 mm hole centered on a 10 mm square of aluminum foil. The foil 
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was situated in a two-compartment chamber with the macular side of the sacculus facing 

upward. The lower compartment was filled with oxygenated artificial perilymph (114 mM 

Na+, 2 mM K+, 2 mM Ca2+, 118 mM Cl-, 5 mM Hepes, and 3 mM D-glucose; pH 7.4; 

230 mOsmol·kg-1). The apical surface of the hair cells was exposed for 35 min at room 

temperature to 67 mg·L-1 of protease (type XXIV; Sigma) to loosen the otolithic 

membrane, which was carefully removed with an eyelash. The upper compartment was 

then filled with oxygenated artificial endolymph (2 mM Na+, 118 mM K+, 250 μM Ca2+, 

118 mM Cl-, 5 mM Hepes, and 3 mM D-glucose; pH 7.4; 230 mOsmol·kg-1). 

Measurement of hair-bundle position 

Experiments on both preparations were conducted with similar apparatus. Each 

preparation was placed on an upright microscope (BX51WI, Olympus) and the hair cells 

were visualized with a 60X, water-immersed objective lens of numerical aperture 0.9 and 

differential-interference-contrast optics. Rat hair cells were observed during experiments 

with a charge-coupled-device camera (LCL-902K, Watec). Video observations of the 

bullfrog's sacculus videos were conducted after an additional 4X magnification with a 

CMOS camera (DCC3240M, Thorlabs) or a high-speed video camera 

(ZYLA-5.5-CL10-W, Andor). 

To record a hair bundle’s position, the preparation was illuminated with a 630 nm 

light-emitting diode (UHP-T-SR, Prizmatix) and the resultant shadow was projected onto 

a dual photodiode at a magnification of 1300X. The output of the photodiode was low-

pass filtered at 2 kHz with an eight-pole anti-aliasing filter (Benchmaster 8.13, Kemo). 

The photodiode was calibrated by translating the bundle’s image through a succession of 

10 µm steps with a mirror mounted on a piezoelectric actuator (PA 120/14 SG, 

Piezosystem Jena). Digital data samples were acquired at intervals of 200 µs. 
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Mechanical stimulation with fluid jets 

Because they are complexly shaped and poorly cohesive, hair bundles from outer hair 

cells of the rat’s cochlea are difficult to stimulate with glass fibers. We therefore deflected 

each bundle with a fluid jet driven by a piezoelectric disk, which recruited all the stereocilia 

(1). When viewed under the objective lens of the microscope in the plane of the sensory 

epithelium, the tip of each pipette was positioned along the axis of mirror symmetry of 

each hair bundle at a 8 µm distance on the bundle’s abneural side. Liquid exiting the 

pipette therefore displaced the stereocilia towards their shortest row. 

Mechanical stimulation with flexible fibers 

Owing to the strong attachments among the stereocilia of a hair bundle from the bullfrog’s 

sacculus, force applied to the kinocilium uniformly displaces all the stereocilia (4). We 

accordingly used a flexible glass fiber attached to the kinociliary bulb to mechanically 

stimulate the hair bundle. 

Each flexible fiber was displaced by a piezoelectric actuator (PA 4/12, 

Piezosystem Jena) positioned with a micromanipulator (MP-285, Sutter Instruments) and 

driven by an amplifier (ENV 800, Piezosystem Jena). The fiber was forged from a 

borosilicate capillary (1B120F-3, World Precision Instruments). After the capillary had 

been tapered with an electrode puller (P-2000, Sutter Instruments), its tip was melted with 

a platinum filament and pulled laterally with a 120 V solenoid to form a 90° angle to the 

shaft. The resultant fiber was approximately 100 µm in length and 1 µm in diameter. The 

fiber was sputter-coated with gold-palladium (Hummer 6.2, Anatech) to increase its 

optical contrast. To enhance the coupling of the stimulus fiber to the kinociliary bulb, we 

submerged the fiber’s tip in a droplet of 200 mg·L-1 concanavalin A for 15 min before an 

experiment. 

Each fiber’s stiffness and drag coefficient were estimated by measuring the 

Brownian motion of its tip in water. We then obtained parameter values by fitting the power 
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spectrum of the displacement to a Lorentzian relation (5). The fibers in this study had 

stiffnesses of 160-380 µN·m-1 and drag coefficients of 150-290 nN·s·m-1; they behaved 

as first-order, low-pass filters with cut-off frequencies near 200 Hz. 

Displacement clamping 

We used negative feedback to control the position of a hair bundle according to a 

computer-generated external command (1,6,7). By doing so, we were able to monitor the 

force required to hold a hair bundle stationary or to deflect it to a desired position. The 

computer's sampling interval of 200 µs set an upper limit on the potential frequency 

response of the system, but a eight-pole, low-pass Bessel filter (Benchmaster 8.07, 

Kemo) imposed a cutoff at 2 kHz between the computer's output and the stimulator's input 

to ensure stability. 

Use of the displacement-clamp system and sinusoidal stimulation allowed us to 

measure the decrease and subsequent recovery of hair-bundle stiffness with good 

temporal resolution. However, this approach confronted an inevitable problem: because 

the response time of the clamp system is finite, responses of progressively higher 

frequency become progressively less well clamped. The clamp's settling time constant 

was generally about 2 ms, which corresponded to a corner frequency near 80 Hz. By 

selecting a stimulus frequency of 40-50 Hz, we accepted some non-ideality in clamping 

in the interest of improved frequency resolution in stiffness measurements. 

The force FSF exerted by the stimulus fiber against a hair bundle was estimated 

from the positions of the fiber measured at its base and at its tip (8): 

 𝐹"# ≃ 0.97Κ"#(𝑌 − 𝑋) − 0.94𝜆"#�̇� − 0.57𝜆"#�̇� , (1) 

in which KSF and 𝜆"#	represent respectively the stiffness and hydrodynamic friction 

coefficient of the stimulus fiber, Y the displacement of its base, and X the displacement 

of its tip. �̇� and �̇� are the time derivatives of the corresponding variables. Because the 

stimulus frequencies were well below the cut-off frequency of the fiber, this low-frequency 
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approximation of the periodic force applied by the fiber is expected to be accurate (8). 

Positive movements and forces were those directed toward a hair bundle's tall edge.  

The stiffness KHB of each hair bundle was estimated by measuring the average 

force FSF and displacement XHB for 21 successive periods of sinusoidal stimulation. The 

stiffness was then computed for each sinusoidal train as 

 𝐾56 = F"#/X56 . (2) 

Voltage-clamp recording 

We recorded mechanoelectrical-transduction currents of outer hair cells of the rat cochlea 

with whole-cell, tight-seal electrodes. Each micropipette was pulled (P-97, Sutter 

Instruments) from a thick-walled capillary (1B150F-4, WPI) and fire-polished to obtain a 

tip 2-3 µm in diameter. The electrode was filled with intracellular solution (142 mM Cs+, 

11 mM Na+, 3.5 mM Mg2+, 149 mM Cl-,1 mM EGTA, 5 mM ATP, 0.5 mM GTP, and 10 mM 

Hepes; pH 7.3; 295 mOsmol·kg-1) and contained a chlorinated silver electrode. When 

immersed in standard saline, the micropipette had a resistance of 1.5-4 MW. The voltage 

across each hair cell's membrane was controlled and currents were recorded with an 

amplifier (Axopatch 200B, Axon Instruments). The cell was held at a potential of -80 mV. 

The voltage offset was corrected before forming a gigaohm seal with a cell and the 

pipette's capacitance was compensated to achieve a cut-off frequency of 1-9 kHz. 

Current signals were low-pass filtered at 1.25-12.5 kHz and sampled at intervals of 

40-400 µs. 

Iontophoresis 

We used iontophoretic pulses to deliver Ca2+ chelators in the vicinity of the hair bundles. 

Microelectrodes were fabricated from borosilicate glass capillaries (TW 120-F, World 

Precision Instruments) with an electrode puller (P-80/PC, Sutter Instruments) and filled 

with 500 mM EDTA in 1 M NaOH. We used a current amplifier (Axoclamp 2B, Axon 

Instruments) to control the release of EDTA. A holding current of 10 nA kept EDTA from 
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diffusing into the endolymphatic solution, and pulses of -100 nA released the chelator. 

The electrodes' tips were directed at and situated about 2 µm from tops of the hair 

bundles. 
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SI Notes 

Note S1. Negative hair-bundle movement during exposure to Ca2+ chelators 

The sequence of hair-bundle forces associated with the breaking and regeneration of tip 

links reveals unexpected complexity in recordings from bullfrog hair cells. In six of the 

seven cells, there was a sustained positive offset of 20.1 ± 7.0 pN (mean ± SEM) at the 

end of the stimulation protocol with respect to the value before EDTA exposure (Fig. 3A; 

SI Appendix, Fig. S4). This force offset was absent when tip links were not broken. 

In principle, this tensioning of the hair bundle would be compatible with increased 

activity of the adaptation machinery (7,9). A decrease in the cytoplasmic Ca2+ 

concentration after tip-link rupture would cause the adaptation motors to ascend in the 

stereocilia and thus generate a negative offset in the position of the hair bundle after tip-

link recovery. Nevertheless, this effect was probably masked by the presence of another, 

more intriguing phenomenon: a negative movement of the hair bundle that occurred 

seconds after tip-link breakage. 

Upon exposure to Ca2+ chelator there was a sudden increase in the force that 

reflected a rise in tip-link tension, followed by the abrupt decrease that resulted from tip-

link rupture. Although these observations accorded with previous studies (8,10,14,15), 

the traces also revealed a subsequent rebound in the force (Fig. 3A). The force exerted 

by the fiber indicated that the displacement clamp acted to counter a negative movement 

of the hair bundle (SI Appendix, Fig. S4). 

Although never observed in outer hair cells from the rat's cochlea, this unexpected 

effect was present to a certain degree in most recordings from the two-compartment 

preparation of the bullfrog's sacculus. Because this preparation recreated the 

environment in which hair cells normally operate, it differed from the homogeneous ionic 

environment of previous investigations of tip-link breakage (1,6,10,11). To determine 

whether the unreported negative movement was consistently associated with tip-link 



9 

rupture in this preparation, we measured the position of the top stereociliary row and 

kinocilium in unrestrained, oscillating hair bundles and applied iontophoretic pulses of 

Ca2+ chelator of various durations. Although some hair bundles responded to Ca2+ 

sequestration with canonical dynamics—a rapid negative twitch followed by a large 

positive displacement to a stable level—others showed a negative rebound in position (SI 

Appendix, Fig. S4). Nine of 18 spontaneously oscillating bundles displayed some degree 

of negative movement, ranging from -5 nm to -485 nm and averaging -166 ± 70 nm 

(mean ± SEM). For an additional 15 of 31 quiescent bundles that displayed negative 

movements, the magnitude averaged -183 ± 36 nm (mean ± SEM). This effect was most 

prominent when the duration of the iontophoretic pulse exceeded a few seconds, during 

which the negative displacement reached a plateau that variously lay either positive or 

negative to the bundle's initial position. After reaching a stable plateau, the hair bundle 

never returned to its initial position. Moreover, because the bundle displayed a reduced 

stiffness and never responded to another epoch of chelator iontophoresis, the 

phenomenon did not result from recovery and tensioning of the tip links. 

The negative hair-bundle movement often observed after tip-link disruption by Ca2+ 

chelation—or the corresponding positive force measured under displacement-clamp 

conditions—remains to be explained. One possibility is that the cuticular plate deforms in 

such a way as to alter the forces within the stereociliary cluster. For hair cells of the 

bullfrog's sacculus, the cuticular plate is concave upward, a configuration that pushes the 

stereociliary tips together (12,13). If the curvature of the cuticular plate were to increase 

after tip-link breakage, the stereocilia of the longest rank would be expected to undergo 

a negative displacement. 

Note S2. Lack of contribution of the kinocilium to negative movements 

Aside from those associated with tip links, what other forces might act on a hair bundle? 

Each bundle possesses a single kinocilium that bears an axoneme with dynein motors 
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(14). Because the kinocilium can be motile (15,16), it might exert a force that affects the 

hair bundle's position. To test that possibility, we separated the kinocilium from an 

oscillating hair bundle and usually held its tip several micrometers away from the 

stereociliary cluster with a glass microelectrode (17). Because the optical contrast of a 

bundle with a detached kinocilium was too low to allow the use of a photodiode, we used 

video microscopy to record the position of the hair bundle and a tracking algorithm (18) 

to trace independently the positions of the tallest stereociliary row and of the kinocilium 

(SI Appendix, Fig. S5A). We were then able to measure both displacements before, 

during, and after breaking the tip links with EDTA. Even with the kinocilium separated 

from and moving independently of the stereociliary cluster, four of the five hair bundles 

tested displayed a negative movement following EDTA exposure (SI Appendix, Fig. 5B). 

In some instances, the negative motion proceeded in rapid steps of irregular size, a 

phenomenon that occurred even when the dissociated kinocilium was immobilized 

against the epithelial surface by a microelectrode (SI Appendix, Fig. 5C). The negative 

hair-bundle movements thus stem from a source other than the kinocilium. 
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SI Figures and Legends 

 

Fig. S1. Step protocol for facilitating tip-link recovery in bullfrog saccular hair cells. 

(A) The displacement-clamp protocol imposed a step displacement of the bundle (first 

trace) following the iontophoretic pulse (third trace). The force necessary to clamp the 

bundle (second trace) diminished after iontophoresis but recovered almost completely by 

the experiment's end. At three times a 500 ms epoch of ±25 nm, 50 Hz sinusoidal 

stimulation was superimposed on the displacement-command signal. To display the 

meaningful parts of the data at an appropriate scale, the transient upstrokes and 

downstrokes at the onset and offset of the force step have been reduced. (B) Enlarged 

records of hair-bundle displacements (top traces) and clamp forces (bottom traces) during 

sinusoidal stimulation highlight the phenomenon of diminished and recovered hair-bundle 

stiffness. 
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Fig. S2. Forces measured on seven cells from the bullfrog's sacculus during 

displacement-clamp measurements. In each instance, the bundle was driven sinusoidally 

through a distance of ±30 nm before, immediately following, and at least 6 s after the 

iontophoretic pulse. The force provided by the clamp is shown for bundles held in their 

resting positions (Initial), following the application of EDTA (Exposure), and at the 

experiment's end (Recovered). The data show a significant decrease (P < 0.01 by a 

single-sided paired t-test) in the force necessary to move the bundle after chelation, 

followed by a significant recovery (P < 0.05 by the same test) towards the initial value. 
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Fig. S3. Control experiments without tip-link recovery in hair bundles of the bullfrog's 

sacculus. (A) In a displacement-clamp protocol with a biphasic, predominantly positive 

displacement ramp (top trace) following the EDTA pulse (bottom trace), the force (middle 

trace) necessary to clamp the hair bundle to the desired position at the outset (Initial) 

decreased after iontophoresis (Exposed), but displayed no recovery after the ramp 

(Final). (B) Enlarged records of hair-bundle position (top traces) and force (bottom traces) 

confirm the decrease in hair-bundle stiffness and the failure of recovery after a positive 

ramp. (C) A hair bundle's position (top trace) and force (bottom trace) during sinusoidal 

stimulation (Initial) revealed no decrease in the stiffness in the absence of iontophoresis 

(Control) or after the ramp (Final). (D) Enlarged records of hair-bundle position (top 

traces) and force (bottom traces) reveal no change in hair-bundle stiffness in the absence 

of an iontophoretic pulse. 
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Fig. S4. Negative hair-bundle movements after Ca2+ chelation in the bullfrog's sacculus. 

(A) Two unrestrained, oscillating hair bundles displayed distinct responses to Ca2+ 

chelation. After a brief negative transient, one bundle (top trace) remained stationary at a 

large positive offset. The second hair bundle (bottom trace) initially followed a similar 

trajectory, but then underwent a sustained movement back in the negative direction. (B) In 

a similar experiment with a longer exposure to Ca2+ chelator, a bundle displayed a large 

negative movement after the initial positive movement and reached a plateau while 

iontophoresis was still in progress. 
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Fig. S5. Effect of dissecting kinocilia from bullfrog saccular hair bundles. (A) A 

panel from a video record (left panel) shows the top of a hair bundle whose kinocilium 

had been dissected free of the stereociliary cluster. The purple circle marks the area in 

which stereociliary motion was tracked for 10 s at 500 frames per second and the red 

circle the corresponding area for the kinociliary bulb. The trajectories of the respective 

centroids are shown under the yellow dots at the centers of the circles. Enlarged 

trajectories (right panels) demonstrate that the stereocilia (purple) continued to oscillate 

along the bundle's axis of mirror symmetry, whereas the kinocilium (red) underwent 

random motion. The scale bar at the right applies to both panels. (B) A record of 19 s of 

tracking at 30 frames per second (top trace) reveals the trajectories of a stereociliary 

cluster after kinociliary dissection. The rupture of tip links by iontophoresis of EDTA 

(bottom trace) elicited a conventional bipartite response followed by a negative 

movement. (C) In a similar experiment, the kinocilium was not only separated from the 

stereociliary cluster, but also held against the epithelial surface with a microelectrode. In 

this instance the negative motion occurred in several discrete steps, a phenomenon 

observed only after kinociliary dissection. 
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Fig. S6. Estimation of resting tip-link tension and negative movement in hair bundles from 

the bullfrog's sacculus. In a representative trace of an unrestrained, oscillating hair 

bundle, the bundle's movement upon exposure to Ca2+ chelator (XSP) was measured from 

the midpoint (X0) between the maxima and minima of the spontaneous oscillations to the 

maximal excursion (XM) during the iontophoretic step. The final position (XF) represented 

the average position of the hair bundle over the last second of the experiment. 
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SI Video Caption 

Video S1. Recovery of oscillations after iontophoresis of a Ca2+ chelator. Viewed from 

above, a hair bundle from the bullfrog's sacculus displays low-frequency spontaneous 

oscillations. When EDTA is expelled from the pipette at the upper left, the bundle jumps 

in the positive direction, to the right, and ceases to move. After the metal-coated stimulus 

fiber at the upper right applies force in the negative direction and is then withdrawn, the 

bundle resumes oscillations indicative of an intact transduction process. 
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