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Supplementary Information Text 

MATERIAL AND METHODS 

Data Sources 
Paralogs Ensembl 

To define gene families, we retrieved information regarding protein sequence similarity 
and family membership from Ensembl. Ensembl’s family classification often contains 
outliers that have a much lower sequence similarity compared with the other proteins of 
the same family. As a larger variation in amino acid sequence implies greater variation of 
biochemical function, and because in our study we aimed to focus on differences in codon 
usage , we sought to remove these outliers. We therefore applied another, more stringent 
filter; for each family we computed the similarity distribution of all members to a consensus 
member. We then removed all family members that had a lower similarity than the mean 
similarity minus one standard deviation. We only considered families with at least three 
members. With this approach, we retrieved 71 gene families that had high amino acid 
sequence similarity and contained at least three family members. Eight of these gene 
families contained at least one cancer gene (see below) and 63 families contained no 
cancer genes (cancer and non-cancer gene families). 
 

TCGA 

Mutation data was obtained from The Cancer Genome Atlas (TCGA). We retrieved 
somatic mutations in coding regions for 20 types of cancer: Bladder Urothelial Carcinoma 
(BLCA), Breast invasive carcinoma (BRCA), Cervical squamous cell carcinoma and 
endocervical adenocarcinoma (CESC), Colon adenocarcinoma (COAD), Glioblastoma 
multiforme (GBM), Head and Neck squamous cell carcinoma (HNSC), Kidney renal clear 
cell carcinoma, Kidney renal papillary cell carcinoma (KIRP), Acute Myeloid Leukemia 
(LAML), Brain Lower Grade Glioma (LGG), Liver hepatocellular carcinoma (LIHC), Lung 
adenocarcinoma (LUAD), Lung squamous cell carcinoma (LUSC), Pancreatic 
adenocarcinoma (PAAD), Pheochromocytoma and Paraganglioma (PCPG), Prostate 
adenocarcinoma (PRAD), Skin Cutaneous Melanoma (SKCM), Stomach adenocarcinoma 
(STAD), Thyroid carcinoma (THCA), and Uterine Corpus Endometrial Carcinoma (UCEC). 
Together this comprised a set of 5,960 samples. 
 

Cancer gene catalogue 

We considered cancer driver genes to be those genes that had a significant (q<0.01) 
number of non-silent mutations in at least 1 out of 21 cancer types in 4,742 patients as 
defined by Lawrence et al. (1).  
 

Coding sequences 

The coding sequences of H. sapiens were downloaded from the Consensus CDS (CCDS) 
project (ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/), release 2016/09/08. In the case of non-



cancer genes, one unique canonical coding sequence was arbitrarily chosen for each 
protein based on Uniprot mapping to the CCDS. For those genes belonging to the selected 
cancer gene families, the canonical coding sequence was chosen according to the 
corresponding canonical protein as defined in Uniprot. 
 

GO gene sets 

Gene ontology was downloaded as a MySQL dump of the amiGO database, release 
2017/01, and human gene annotations were downloaded from the amiGO database, 
release 2018/01/04. We defined GO gene sets as follows: i) for each GO term, we 
retrieved all descendant GO terms (with any kind of relationship type) and assigned all 
associated genes; ii) we selected all GO terms that had a minimal distance to the root 
“biological process” term shorter than or equal to 3, and at least 30 associated genes, 
resulting in a total of 708 gene sets. Note that there is a lot of overlap between these GO 
gene sets, with a protein appearing on average in 44 sets. 

Computational analysis 
Codon usage PCA 

We applied principal component analysis (PCA) to the relative synonymous codon 
frequencies (2) of all individual human coding sequences. Note that, contrary to other 
studies such as Gingold et al. (3), we defined our PCA projection based on the codon 
usage distribution of individual genes, and not of gene sets. By doing so, our projection is 
independent from the gene ontology annotations. In addition, PCA based on the average 
codon usage of gene sets may suffer a bias due to the fact that GO gene sets are highly 
overlapping. Thus, the codon usage of a specific gene may contribute to data points of 
several gene sets, which may in turn distort the real variation in codon usage. When 
computing the PCA of individual genes, we first excluded single codon families (AUG and 
UGG). For coding sequences that lacked codons of a specific family (6.7% of total), we 
imputed values with the average codon frequency across all genes. We applied the PCA 
projection to the GO gene sets by computing the mean relative codon frequencies of all 
genes in the set.  
All the source code and data for this analysis is freely available at the Github repository: 
https://github.com/webermarcolivier/codon_usage_oncogenes. 
 

Low and high proliferation cancer 

Low and high proliferating tumors were defined by computing the average Ki67 expression 
per cancer type. We then divided the log10 (Ki67 expression) space in equally sized 
ranges ([2.23,2.99] and [3.00,3.76]). Cancer types with low proliferation included PRAD, 
PCPG, THCA, KIRP, KIRC, and LIHC. Cancer types with high proliferation included 
PAAD, SKCM, LUAD, BRCA, UCEC, BLCA, LUSC, HNSC, CESC, COAD, and STAD. 
To test for a link between RAS mutation status and Ki67 expression on a sample level, we 
selected those tumors in which multiple patients had mutations in at least two RAS 
isoforms (SKCM, UCEC, STAD, LUAD, COAD, and THCA). Samples were stratified by 
the non-silent mutation status of the different RAS isoforms. The binomial test was 
performed asking how likely it is to see eight times (total number of inter-group 
comparisons within the same cancer type). 



 

Quantification of tRNA expression 

tRNAseq mapping was performed using a specific pipeline for tRNAs (4). The basic 
pipeline was adapted to paired-end sequencing data. Moreover, given that hydro-tRNA-
seq yields short sequences, all reads over 10 nt were included after BBDuk adapter 
trimming from the BBMap toolkit [v38.22] (https://sourceforge.net/projects/bbmap): k-
mer=10 (allowing 8 at the end of the read), Hamming distance=1, length=10–50 bp and 
Phred>25. Isoacceptors were quantified as reads per million (RPM), summing up all reads 
mapping to isodecoders that share the same anticodon. Ambiguous reads mapping to 
genes of different isoacceptors were discarded. In the human reference genome GRCh38 
(Genome Reference Consortium Human Reference 38, GCA_000001405.15), a total of 
856 nuclear tRNAs and 21 mitochondrial tRNAs were annotated with tRNAscan-SE [v2.0] 
(5). Trimmed FASTQ files were then mapped using a specific pipeline for tRNAs (4). In 
short, an artificial genome was first generated by masking all annotated tRNA genes and 
adding pre-tRNAs (i.e. tRNA genes with 3' and 5' genomic flanking regions) as extra 
chromosomes. Upon mapping to the artificial genome with Segemehl [v0.3.1] (6), reads 
that mapped to the tRNA-masked chromosomes and to the tRNA flanking regions were 
filtered out to remove non-tRNA reads and unmature-tRNA reads, respectively. After this 
first mapping step, a second library was generated by adding 3' CCA tails and removing 
introns from tRNA genes. All 100% identical sequences of this so-called mature tRNAs 
were clustered to avoid redundancy. Next, the subset of filtered reads from the first 
mapping was aligned against the clustered mature tRNAs using Segemehl [v0.3.1] (6). 
Mapped reads were then realigned with GATK IndelRealigner [v3.8] (7) to reduce the 
number of mismatching bases across all reads. For quantification, isoacceptors were 
quantified as RPM. To increase the coverage of anticodon-level quantification, we 
considered all reads that map unambiguously to a certain isoacceptor even though they 
ambiguously map to different isodecoders (i.e. tRNA genes that differ in their sequence 
but share the same anticodon). Ambiguous reads mapping to genes of different 
isoacceptors were discarded. The code can be found in the GitHub repository: 
https://github.com/hexavier/tRNA_mapping. 
 

Relative codon usage 

We correlated the relative codon usage of KRASWT and KRASHRAS, which was calculated by 
dividing each codon value by the sum of the codon values of a given amino acid. For the 
purposes of calculating the fold change, we added a pseudo count to all values (+1). For 
the families, we calculated this fold change in codon usage by comparing the usage of the 
most mutated gene to the usage of the least mutated gene from the same family (Dataset 
S5). We performed a sequence alignment using TranslatorX (8) to compare only those 
codons that align between the two sequences. Finally, we calculated relative codon usage 
and fold change in the same way as we did for the comparison between KRASWT and 
KRASHRAS. 
 

Differential tRNA anticodon abundance 

We excluded anticodons for which there are no corresponding tRNA genes (ArgGCG, GlyACC, 
HisATG, LeuGAG, PheAAA, ThrGGT and ValGAC) based on the tRNA gene prediction of the H. sapiens 



genome GRCh38/hg38 using tRNAscan-SE63. Next, we calculated the relative anticodon 
abundance by dividing the RPM value of each anticodon by the sum of all anticodon RPM 
values for a given amino acid. Differential relative expression analysis was performed 
using t-tests, where p-values were FDR-corrected and a cutoff of q<0.05 was used. 
 

Differential codon adaptation 

We calculated the codon weights (Dataset S4) used in SI Appendix, Fig. S9, S10 and S11 
based on wobble base pair interaction rules (9). Similar to tRNA abundances analysis in 
the section above, we calculated the relative codon adaptation weights by dividing the 
weight value of each codon by the sum of all codons for a given amino acid. Differential 
relative codon weight analysis was performed using t-tests, where p-values were FDR-
corrected and a cutoff of q<0.05 was used. 
 

Statistical analyses 

For hypothesis testing, we performed two-sided Student t-tests, two-sided Wilcoxon-
Mann-Whitney tests and one-sided binomial tests. In the differential expression analyses, 
an FDR correction was used to account for multiple testing.  

Sample preparation and experimental procedures 
Cell lines 

In this study we used the HeLa, HEK293 and fibroblast BJ/hTERT (used in Gingold et 
al.(3), kindly provided by Disa Tehler) cell lines. Cells were maintained in a humidified 
atmosphere at 37°C and 5% CO2. Cells were grown in DMEM 4.5 g/L Glucose with 
UltraGlutamine media supplemented with 10% Tet-free FBS (Clontech) and 1% 
penicillin/streptomycin. 
 

Expression vector design 

KRASHRAS was obtained from the pBABE-Puro-KRas* vector (Addgene#46745). As the 
amino acid sequence of KRASHRAS is 100% identical to KRAS, this vector expresses the 
human KRAS protein from a chimeric cDNA sequence derived primarily from HRAS 
codons (93% of HRAS synonymous codons) but with a KRAS 3' tail (where the main 
differences between RAS proteins lie). Details of the nucleotide and amino acid 
sequences can be found in SI Appendix, Fig. S14 and Dataset S6. For conditional-gene 
overexpression experiments, KRASWT and KRASHRAS were cloned into a modified version of 
the XLone-GFP vector (10) (Addgene#96930). The modification consisted of replacing the 
promoter of XLone-GFP with a bidirectional TRE3G promoter (Clontech), which allows the 
simultaneous expression of both KRAS genes. We used a FLAG tag on KRASWT and a 
3xHA tag on KRASHRAS to distinguish them by size. We also use two additional expression 
constructs as controls. One construct had the two tags swapped (i.e. FLAG-KRASHRAS and 
3xHA-KRASWT), and the other construct had the position of the genes with respect to the 
promoter swapped. Each vector was co-transfected with the pCYL43 (11) plasmid 
containing the PiggyBac transposase in different cell lines. Cells were selected with 
blasticidin (HeLa: 5 µg/mL, HEK293: 15 µg/mL, BJ/hTERT: 5 µg/mL). Gene expression 



was induced with doxycycline (HeLa: 100 ng/mL, HEK293: 12 ng/mL, BJ/hTERT: 500 
ng/mL). We used the same approach to simultaneously express RAC1WT and RAC1RAC3. The 
codon usage of RAC1RAC3 exactly corresponds to the codons used by RAC3 except for 
those codons corresponding to different amino acids (see SI Appendix, Fig. S15 and 
Dataset S6). The cDNA chimeric sequence for RAC1RAC3 was synthesized by Integrated 
DNA Technologies. 
 

Serum starvation assay 

BJ/hTERT, HEK293 and HeLa cells were grown in starvation media (1% Tet-free FBS) or 
non-starvation media (10% Tet-free FBS) for 48 hours. The expression of both KRASWT 
and KRASHRAS was measured after inducing with doxycycline overnight. 
 

Flow cytometry 

BJ/hTERT, HEK293 and HeLa cells were seeded in 6-well plates and maintained in 
starvation media (1% Tet-free FBS) or non-starvation media (10% Tet-free FBS) for 48 
hours. To measure the cell cycle state of the cells, culture medium was supplemented with 
1 µg/mL Hoechst 33342 (H3570, ThermoFisher Scientific) and cells were incubated for 
1hour at 37ºC. Next, cells were trypsinized and resuspended with 350 µL of media 
containing Hoechst 33342. At least 10,000 cells were analyzed by flow cytometry (BD LSR 
II). FlowJo software was used for gating and analysis. 
 

Cell lines assay 

Established HeLa, HEK293 and BJ/hTERT cells were induced with doxycycline and the 
expression was measured after incubating overnight. 
 

Cell growth 

The cells were seeded at a density of 25,000 cells per well in a 12-well plate and the 
counts were performed with Countess cell counting chamber slides and the Countess 
automated cell counter (ThermoFisher). Counts were carried out every 24 hours. 
 

mRNA quantification 

RNA isolation was performed with the RNeasy kit (Qiagen). KRASWT and KRASHRAS transcript 
abundances were quantified by RT-qPCR (Power SYBR Green RNA-to-CT 1-Step Kit, 
ThermoFisher). Primers for FLAG-KRASWT amplification: forward 5’-
CAAGGACGACGATGACAAG-3’ and reverse 5’-GAGAATATCCAAGAGACAGGTT-3’. 
Primers for 3xHA-KRASHRAS amplification: forward 5’-CCTGACTATGCGGGCTATC-3’ and 
reverse 5’-GGGTCGTATTCGTCCACAA-3’. For the expression of the constructs in which 
the tags were swapped, we used the following primers: FLAG-KRASHRAS forward 5’-
CAAGGACGACGATGACAAG-3’ and reverse 5’-GGGTCGTATTCGTCCACAA-3’, and 
3xHA-KRASWT forward 5’-CCTGACTATGCGGGCTATC-3’ and reverse 5’-
GAGAATATCCAAGAGACAGGTT-3’. As both genes were in the same expression 



cassette, for each sample, the Ct values for KRASWT were normalized to KRASHRAS, ΔCt = 
(CtKRASWT -CtKRASHRAS) and represented as 2 -ΔCt. Primers for FLAG-RAC1WT amplification: 
forward 5’-CAAGGACGACGATGACAAG-3’ and reverse 5’- 
GTCCAGCTGTATCCCATAAGC -3’. Primers for 3xHA-RAC1RAC3 amplification: forward 5’-
CCTGACTATGCGGGCTATC-3’ and reverse 5’- GATGTACTCTCCGGGGAAG -3’. As 
both genes were in the same expression cassette, for each sample, the Ct values for 
KRASWT were normalized to the KRASHRAS, ΔCt = (CtRAC1WT -CtRAC1RAC3) and represented as 
2 -ΔCt. 
 

Quantitative protein blots 

Cells were lysed using the M-PER buffer (ThermoFisher) supplemented with anti-
proteases. Protein concentration was measured using the BCA Protein Assay Kit (Pierce). 
Equal amounts of each sample were mixed with 1x Laemmli buffer and boiled for 5 min. 
Samples were separated using 12% polyacrylamide gels (BioRad). Transfer was 
performed using the iBlot system (Invitrogen). Membranes were treated with Li-COR 
Odyssey blocking buffer for 1 hour at room temperature, then incubated with primary 
antibody (1:1,000) in 0.2% Tween-20/Li-COR odyssey blocking buffer overnight at 4℃. 
Following three 5 min washes in TBS-T, the membrane was incubated with secondary 
antibody (1:10,000) in 0.2% Tween-20/Li-COR Odyssey blocking buffer for 45 min at room 
temperature. Following three 5 min washes in TBS-T, the membrane was scanned using 
the Li-COR Odyssey Imaging System. We used the following primary antibodies: anti-pan-
RAS (Abcam, ab52939), anti-FLAG (Sigma, F3165), anti-HA (Sigma, 11583816001), and 
anti--actin (Sigma, A2228). These were respectively detected using goat anti-rabbit 
(Abcam, ab216773), goat anti-mouse (ab216772) or goat anti-mouse (Abcam, ab216776) 
IgG antibody conjugated to an IRdye at 800CW and 680CW. Visualization and 
quantification were performed using ImageJ and Image Studio Lite (LI-COR). 
 

Hydro-tRNA sequencing 

Total RNA from HEK293, BJ/hTERT and HeLa cells were extracted using the miRNeasy 
Mini kit (Qiagen). For each sample, 20 µg of total RNA was treated following the hydro-
tRNAseq protocol (12). Briefly, total RNA was resolved on a 15% Novex TBE-urea gel 
(ThermoFisher) and fragments from 60–100 nt were size-selected and subjected to 
alkaline hydrolysis (10 mM sodium carbonate and 10 mM sodium bicarbonate) for 10 min 
at 60ºC. This was followed by dephosphorylation and rephosphorylation. Similarly to 
conventional small RNA-seq library preparation, samples were adaptor-ligated, reverse-
transcribed, and PCR-amplified for 14 cycles. Sequencing of the resulting cDNA was 
performed using an Illumina HiSeq 2500 platform in 50 bp paired-end format. Raw data 
for HEK293 and HeLa have been deposited in the ArrayExpress database (13) at EMBL-
EBI (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-8144. BJ/hTERT 
sequencing data have been generated by the same group using the same protocol and 
have been previously published (14). 
 
 
 
 
 
 



  





Fig. S1. Association between codon usage and mutation frequency in genes from eight 
different families. a Average codon and amino acid identity of gene families. b Distribution of 
covariance of non-synonymous mutation count normalized within family and PC1. Covariance is 
significantly more negative for cancer gene families than for the background non-cancer related 
gene families (**p<0.008, W.M.W. test). In particular, the covariance is negative for seven (RAS, 
RAF, RHO, RAC, FGFR, AKT and COL) out of eight cancer gene families. c Distribution of 
covariance of synonymous mutation count normalized within family and PC1. There is no significant 
difference in covariance between cancer gene families and the background non-cancer related 
gene families (ns, not significant; p<0.76, W.M.W. test). d Distribution of covariance of non-
synonymous mutation count normalized within family and PC1 for the eight cancer gene families. 
Families are ordered from lowest to highest covariance. Pink corresponds to genes related to 
oncogenes and cyan corresponds to tumor suppressors (p<0.007, binomial test). The distinction 
between these two classes of genes was performed using OncodriveROLE (15). The family COL, 
which has no classification in OncodriveROLE, is not highlighted with any color. E Covariance of 
non-synonymous mutation count normalized within family and PC1 for the two background families 
LINGO and CSNK1G. The covariance of these families is similar to the covariance of the cancer 
gene families RAS, RAF and RAC, denoting the possible role of LINGO2 and CSNK1G3 in cancer. 

 
 
  





Fig. S2. Covariance of cancer gene families. Distribution of covariance of non-synonymous 
mutation count normalized within family and PC1 for 14 cancer gene families composed of two 
members. Families are ordered from lowest to highest covariance. Pink corresponds to genes 
related to oncogenes and cyan corresponds to tumor suppressors (p<0.019, binomial test). The 
distinction between these gene classes was performed using OncodriveROLE (15). The families 
with no classification in OncodriveROLE are not highlighted with any color. 

 
 
  



 



Fig. S3. Controls of the bidirectional expression vector in which the tags are swapped, the 
position of the genes in relation to the promoter are switched, and the plasmid is non-
productive. a The protein and mRNA levels of KRASWT and KRASHRAS with the tags swapped 
in BJ/hTERT, HEK293 and HeLa cells. Quantification of the proteins in BJ/hTERT cells is not 
possible due to low fluorescence signal (not detected, n.d.), possibly due to minimal integration of 
the expression cassette; therefore, we report transcript levels. In starved and non-starved 
BJ/hTERT cells, the KRASWT/ KRASHRAS transcript ratio has the same fold change irrespective 
of the tag’s position (see main Fig. 2c). The KRASWT/KRASHRAS transcript and protein ratios 
vary in the different cell lines but, similarly, is not affected by the position of the tag (see main Fig. 
3a and b). b The protein and mRNA levels of KRASWT and KRASHRAS with the position of the 
genes in relation to the promoter switched. Expression in HEK293 and HeLa cells is compared. 
The KRASWT/KRASHRAS mRNA and protein ratios vary in the different cell lines irrespective of 
gene position. Error bars represent SEM of three independent experiments (n.s., not significant; 
*p<0.05; **p<0.01; ***p<0.001; unpaired t test). c Comparison of the expression between the 
productive and non-productive (without a translation initiation site and ATG) expression cassette. 
No KRASWT or KRASHRAS expression is observed when translation is suppressed. 
 
  



 



Fig. S4. Comparison of state-specific changes in the KRASWT/KRASHRAS ratio between 
BJ/hTERT, HEK293 and HeLa cells. a Western blot analysis of the levels of KRASWT and 
KRASHRAS in starved and non-starved BJ/hTERT, HEK293 and HeLa cells. The KRASWT/KRASHRAS 
protein ratio increases significantly from the quiescent to the proliferative state in BJ/hTERT and 
HEK293 cells, but not in HeLa cells. b The same observation applies to the transcript levels. c Cell 
cycle measurements by flow cytometry with starved and non-starved cells. BJ/hTERT and HEK293, 
but not in HeLa cells display a significant increase in the number of cells arrested when starved. 
This suggests that starvation in HeLa cells does not impede cell proliferation and as such, we do 
not observe protein and transcript level changes between starved and non-starved conditions. 
Quantifications in a and b are normalized to the starved condition of each cell line. Error bars 
represent SEM of three independent experiments (ns, not significant; *p<0.05; **p<0.01; 
***p<0.001; unpaired Student t test). 
 
  



 
Fig. S5. Growth curves of the three cell lines and codon usage-related expression of RAC1. 
a We measured cell proliferation of HEK293, HeLa and BJ/hTERT cells by counting the cells every 
24 hours over 96 hours. b Representation of the expression cassette that expresses RAC1WT and 
RAC1RAC3. The RAC1WT/RAC1RAC3 protein and mRNA ratios change similarly as for the 
KRASWT/KRASHRAS ratios in both HEK293 and HeLa cells. Error bars represent SEM of three 
independent experiments (*p<0.05; unpaired Student t test). 
 
  



 
Fig. S6. Differential expression of tRNA in HEK293, HeLa and BJ/hTERT. a Volcano plot 
showing the log2 fold change of the relative tRNA differential expression between HEK293 and 
HeLa cells. b Volcano plot showing the log2 fold change of the relative tRNA differential expression 
between HEK293 and BJ/hTERT. Differential relative expression analysis for a and b was 
performed using the t-test, where p-values were FDR-corrected, with p<0.05 as a cutoff. c 
Immunoblot data taken from Lampson et al. (16) were quantified where KRAS codons were 
progressively converted. 
 
  



 



Fig. S7. Relative codon usage between the most frequently and the least frequently mutated 
gene. a Fold change of the relative codon abundance (pseudocount +1) between the most 
frequently and the least frequently mutated gene for the three families displaying the highest 
negative covariance (RAS, RAF, RAC). Codons corresponding to tRNAs differentially expressed 
between HEK293 and HeLa cells are highlighted. b Scatter plot representing relative codon usage 
change versus log2 fold change of tRNA expression. Generally, the tRNAs enriched in HEK293 
cells match the codons enriched in KRAS, BRAF and RAC1, whereas the tRNAs enriched in HeLa 
cells match the codons enriched in HRAS, ARAF and RAC3 (p<0.0039, binomial test). 
 
 
  



 



Fig. S8. Relative codon usage between the most frequently and the least frequently mutated 
gene. a Fold change of the relative codon abundance (pseudocount +1) between the most 
frequently and the least frequently mutated gene for the three families displaying the highest 
negative covariance (RAS, RAF, RAC). Codons corresponding to tRNAs differentially expressed 
between HEK293 and BJ/hTERT cells are highlighted. b Scatter plot representing the relative 
codon usage change versus log2 fold change of tRNA expression. Generally, the tRNAs enriched 
in HEK293 cells match the codons enriched in KRAS, BRAF and RAC1, whereas the tRNAs 
enriched in BJ/hTERT cells match the codons enriched in HRAS, ARAF and RAC3 (p<0.022, 
binomial test). 
 
  



 
Fig. S9. Association of differentially weighted codons and relative codon usage of KRASWT 
and KRASHRAS. a Log2 fold change of the relative codon usage (pseudocount +1) between 
KRASWT and KRASHRAS. Codons corresponding to codons that are differentially weighted between 
HEK293 and HeLa cells are highlighted. The right panel represents the log2 fold change of relative 
codon weights between HEK293 and HeLa cells. Log2 fold change of the relative codon usage 
(pseudocount +1) between KRASWT and KRASHRAS. Codons corresponding to codons that are 
differentially weighted between HEK293 and BJ/hTERT cells are highlighted. The right panel 
represents the log2 fold change of relative codon weights between HEK293 and BJ/hTERT cells. 
Error bars represent SEM of three independent experiments. Binomial tests (one-sided, p-values 
shown below plots) were performed in a and b by calculating the probability of the correct number 
of associations between relative codon weight and codon usage. 
 
  



 



Fig. S10. Relative codon usage between the most frequently and the least frequently 
mutated gene. a Fold change of the relative codon abundance (pseudocount +1) between the 
most frequently and the least frequently mutated gene for the three families displaying the highest 
negative covariance (RAS, RAF, RAC). Codons corresponding to differentially weighted codons 
between HEK293 and HeLa cells are highlighted. b Scatter plot representing the relative codon 
usage change versus log2 fold change of codon weights. Generally, the codons enriched in 
HEK293 cells match the codons enriched in KRAS, BRAF and RAC1, whereas the codons enriched 
in HeLa cells match the codons enriched in HRAS, ARAF and RAC3 (p<0.0018, binomial test). 
 
  



 



Fig. S11. Relative codon usage between the most frequently and the least frequently 
mutated gene. a Fold change of the relative codon abundance (pseudocount +1) between the 
most frequently and the least frequently mutated gene for the three families displaying the highest 
negative covariance (RAS, RAF, RAC). Codons corresponding to differentially weighted codons 
between HEK293 and BJ/hTERT cells are highlighted. b Scatter plot representing the relative 
codon usage change versus log2 fold change of codon weights. Generally, the codons enriched in 
HEK293 cells match the codons enriched in KRAS, BRAF and RAC1, whereas the codons enriched 
in BJ/hTERT cells match the codons enriched in HRAS, ARAF and RAC3 (p<0.0035, binomial test). 
 
  



 
Fig. S12. Proliferation-related versus differentiation-related codons. Codons are ordered 
according to their first component coefficient (PC1). Note that the scale of the values is arbitrary, 
as only the relative values are important (direction of the vector in the multidimensional space). 
Negative values indicate a negative PC1 towards the proliferation pole, whereas positive values 
move towards the differentiation pole. Cognate codons corresponding to tRNAs differentially 
expressed between HEK293 and HeLa cells (upper) or between HEK293 and BJ/hTERT cells 
(lower) are highlighted. We test if the codons from the proliferation pole are preferentially 
associated to the tRNAs upregulated in HEK293 in comparison the HeLa and BJ/hTERT, and 
correspondingly, if the codons from the differentiation pole are preferentially associated to the 
downregulated tRNAs. Binomial tests (one-side, p-values are shown below plots) were performed 
by calculating the probability of the correct number of associations occurring between relative tRNA 
expression and expected PC1. 
 
  



 
 
Fig. S13. RAS genes display different mutation frequencies in low and high proliferating 
cancer types. a Distribution of average Ki67 expression values across cancer types (left) enables 
splitting cancer types into low and high proliferation types (vertical red line, splits the Ki67 
expression interval into equally sized halves). b The relative proportion of mutations in KRAS, 
HRAS and NRAS differs in low and high proliferation (p<2.2e-16, Chi-Squared test). c KRAS-
mutated tumors have a higher median Ki67 expression compared to NRAS- or HRAS-mutated 
tumors (p=0.008, binomial test). Only boxes with more than one sample are shown. 
 
  



 



Fig. S14. Nucleotide and amino acid alignment of KRAS, HRAS and KRASHRAS. 

  



 



Fig. S15. Nucleotide and amino acid alignment of RAC1, RAC3 and RAC1RAC3 
  



 
Fig. S16. The carcinogenesis model for RAS-induced tumors proposed by Ferbeyre G in Nat 
Cell Biol, 2007. Adapted figure from “Barriers to RAS transformation”, (17). Oncogenic mutations 
lead to a constitutive activation of the oncogene that promotes cell proliferation. Low levels of 
oncogene are not transforming. An increase in oncogene translation efficiency increases oncogene 
levels. High oncogene levels and activity can transform cells if the cells evade senescence. 
 
  



CCDS gene 
mutation 

count 
TCGA 

mutation 
count 

normalised 
within family 

protein 
sequence 
identity to 

representative 
% 

similarity 
cutoff PC1 covariance 

                
CCDS877.1 NRAS 175 0.36 85.19 

74.74 
-4.03 -3.16 

CCDS7698.1 HRAS 86 0.18 100 6.47 -3.16 
CCDS8702.1 KRAS 491 1 84.66 -9.76 -3.16 
                
CCDS5863.1 BRAF 527 1 100 

48.69 
-5.72 -2.1 

CCDS35232.1 ARAF 42 0.08 56.98 4.56 -2.1 
CCDS2612.1 RAF1 53 0.1 56.79 -2.38 -2.1 
                
CCDS13945.1 RAC2 15 0.38 92.19 

89.08 
7.77 -2.41 

CCDS11798.1 RAC3 9 0.23 92.71 7.73 -2.41 
CCDS5348.1 RAC1 40 1 100 -2.6 -2.41 
                
CCDS2795.1 RHOA 46 1 100 

79.25 
-1.62 -1.26 

CCDS1699.1 RHOB 18 0.39 83.16 9.72 -1.26 
CCDS854.1 RHOC 12 0.26 91.71 4.82 -1.26 
                
CCDS9994.1 AKT1 36 1 100 

76.94 
7.68 -0.6 

CCDS31076.1 AKT3 44 0.27 82.88 -7.77 -0.6 
CCDS12552.1 AKT2 42 0.55 81.29 6.54 -0.6 
                
CCDS31298.1 FGFR2 122 1 100 

60.93 
-0.35 -0.83 

CCDS6107.1 FGFR1 63 0.52 67.06 3.91 -0.83 
CCDS3353.1 FGFR3 75 0.61 64.36 8.27 -0.83 
                
CCDS13147.1 FOXA2 31 0.58 57.02 

46.54 
10.46 0.01 

CCDS12677.1 FOXA3 28 0.53 50.86 6.17 0.01 
CCDS9665.1 FOXA1 53 1 100 8.84 0.01 
                
CCDS6982.1 COL5A1 203 0.64 100 

65.88 
2.73 -1.48 

CCDS43452.1 COL11A2 121 0.38 71.27 0.49 -1.48 
CCDS53348.1 COL11A1 317 1 75.08 -8.34 -1.48 

Table S1. Relevant data for all genes belonging to the eight different gene families studied. 

  



 
Dataset S1 (separate file): Relevant data pertaining to the background and cancer gene 
families. 
 
Dataset S2 (separate file): Processed tRNA expression (RPM) data. 
 
Dataset S3 (separate file): Differential tRNA abundance. The relative anticodon abundance 
is calculated by dividing the RPM value of each anticodon by the sum of all anticodon RPM 
values for a given amino acid. Differential relative expression analysis between HEK293 and 
HeLa cells as well as between HEK293 and BJ/hTERT cells were performed using the t-test, 
where p-values were FDR-corrected and q<0.05 as a cut-off. 
 
Dataset S4 (separate file): Codon weights. The weights of every codon based on the wobble 
base pairs codon-anticodon interaction rules as described by dos Reis et al. (9). 
 
Dataset S5 (separate file): Fold change of the relative codon usage between KRAS/HRAS, 
BRAF/ARAF, RHOA/RHOC, RAC1/RAC3, COL11A1/COL11A2 and KRASWT/KRASHRAS. 
 
Dataset S6 (separate file): Proliferation- and differentiation-related codon usage for 
KRASWT, KRASHRAS, RAC1WT and RAC1RAC3. Codon distribution is based on findings 
from Gingold et al. 2014 (3). 
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