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Governing equations and numerical methods

Here, we explain governing equations and numerical methods. Details can be also found in our published paper (1).

Boundary integral equation with slender body theory. Consider a ciliate immersed in an infinite Newtonian liquid of density ρ
and viscosity µ; the ciliate is propelled via individual ciliary motion. The inertial effect of fluid flow is negligible; the Reynolds
numbers scaled by ciliary motion and swimming are markedly lower than 1 (Re ≪ 1). Thus, fluid flow around the ciliate is
governed by the Stokes equation. The cell body is modelled as a rigid spheroid from which cilia emerge. As cilia are slender,
slender-body theory is applicable when analysing ciliary motion. We parameterise the ciliary centreline using archlength
s ∈ [0, L], where L is the ciliary length. The flow field at point x is located on the i-th cilium, x ∈ si, is given by (1, 2):

v(x) = − 1
8πµ

∫
cell

J(x,y) · q(y)dA(y) − 1
8πµΛ(x) · f(x) [1]

− 1
8πµ

∫
cilia

[J(x,y) · f(y) + K(x,y) · f(x)] dsi(y)

− 1
8πµ

N∑
j ̸=i

∫
cilia

[J(x,y) + W (x,y)] · f(y)dsj(y),

where q is the viscous traction on the cell body, f is the force density per unit length, and N is the total number of cilia. The
first integral on the right operates over the entire spheroidal cell surface, and the second and third integrals operate along the
central ciliary lines. J is Green’s function, as given by:

Jij(x,y) = δij

r
+ rirj

r3 , [2]

where r = |r|, r = x − y. Λ and K are the local operators of the slender body theory, which are given by:

Λij(x) = c [δij + ti(x)tj(x)] + 2 [δij − ti(x)tj(x)] , [3]

and
Kij(x,y) = −δij + ti(x)tj(x)

|s(x) − s(y)| , [4]

where c = − ln(ε2e), t is the unit tangential vector to the centreline of each cilium and ε = acilia/L, and acilia is the ciliary
radius. In terms of the practical ciliary radius and length ratio, the slenderness value ε is set to ε = 0.01. The slender body
kernel W is defined by:

Wij(x,y) = (εL)2

2

(
δij

r3 − 3rirj

r5

)
. [5]

When the observation point x is not on a cilium, x /∈ s, the velocity is given by

v(x) = − 1
8πµ

∫
cell

J(x,y) · q(y)dA(y) [6]

− 1
8πµ

N∑
j=1

∫
cilia

[J(x,y) + W (x,y)] · f(y)dsj(y).

Though the asymptotic accuracy of kernels Λ and K is O(ε2 ln ε), kernel W is accurate only to the limit O(ε). The equations
[1] and [6] are therefore accurate to the limit O(ε).
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Table 1. Fourier coefficients for ciliary beating, which are taken from Fulford and Blake (3).

[A1
mn] n 0 1 2 3 [A2

mn] 0 1 2 3

1 -0.654 0.393 -0.097 0.079 1.895 -0.018 0.158 0.010

m 2 0.787 -1.516 0.032 -0.302 -0.552 -0.126 -0.341 0.035

3 0.202 0.716 -0.118 0.142 0.096 0.263 0.186 -0.067
[B1

mn] n 1 2 3 [B2
mn] 1 2 3

1 0.284 0.006 -0.059 0.192 -0.050 0.012

m 2 1.045 0.317 0.226 -0.499 0.423 0.138

3 -1.017 -0.276 -0.196 0.339 -0.327 -0.114

Ciliary motions. We first define an orthonormal frame for the cell body ei with origin xc, where xc is the body mass centre; e1
then reflects swimming orientation. To efficiently model ciliary motion on the cell surface, local vectors with an orthonormal
basis gi are defined as follows. A material point xb, located at the base of a cilium on the cell surface, serves as the origin
of the orthonormal body frame gi. The basis vectors g1 and g2 are defined as: g1(xb) = b(xb) ∧ n(xb)/|b(xb) ∧ n(xb)| and
g2(xb) = n(xb), where b = e1 ∧ n and n is the outward unit normal vector, respectively. The time-dependent profile of each
ciliary motion is derived using the following mathematical formula of Fulford and Blake (3):

xcilia(xb, s, t) = ξ1(s, t)g1(xb) + ξ2(s, t)g2(xb), [7]

where

ξi(s, t) = 1
2α

i
0(s) +

N0∑
n=1

αi
n(s) cosnωt+ βi

n(s) sinnωt, [8]

ω is the angular beat frequency. The Fourier coefficients αi
n and βi

n are given by

αi
n(s) =

M0∑
m=1

Ai
mns

m, βi
n(s) =

M0∑
m=1

Bi
mns

m. [9]

The coefficients Ai
mn and Bi

mn are summarized in table 1. In this study, the wave numbers N0 and M0 are set to 3. The
parameters for ciliary beating are shown in table 1.

Boundary element method. In order to simulate free-swimming of the ciliate model, force-free and torque-free conditions are
taken into account: ∫

cell

q dA+
N∑

i=1

∫
cilia

fdsi = 0, [10]

and ∫
cell

q ∧ r̂dA+
N∑

i=1

∫
cilia

f ∧ r̂dsi = 0, [11]

where r̂ = x − xc, and xc is the mass center of the cell body.
Assume that the cell body shows a rigid motion, velocity on the spheroidal cell body surface and on the cilia can be

expressed by:

v(x) = U + Ω ∧ r̂(x), x ∈ cell body
v(x) = U + Ω ∧ r̂(x) + vcilia(x), x ∈ cilia [12]

where U is the translational and Ω the angular velocity. vcilia is the ciliary velocity with respect to the body frame ei (i.e.
vcilia = ∂xcilia/∂t). We then solve the resistance problem with respect to the unknown U , Ω, and derive the viscous tractions
q and f . We note that the angular velocity Ω is almost zero in the present study due to the axisymmetry of the problem.

The cell body is modelled as a rigid spheroid, and the body surface discretised into 5,120 triangular mesh elements with
2,562 nodal points. Each cilium is discretised into 16 nodes that are interpolated using the centripetal Catmull-Rom spline
method. All physical quantities are computed at each discretised point. The boundary integrals of [1] and [6] are computed
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with the aid of numerical Gaussian integration. When an observation point x is located on the cell body, the following linear
algebraic equation can be derived from [6]: [

vb
]

=
[
J bb
]

[q] +
[
J bc
]

[f ] . [13]

When x is on the cilia, on the other hand, we have the following equation from [1]:

[vc] =
[
J cb
]

[q] + [J cc] [f ] . [14]

The vector size of
[
vb
]

and [q] are 3Nb, while [vc] and [f ] have the size of 3Nc, where Nb is the number of nodes on the cell
body, and Nc is the total number of nodes on the cilia. The matrix size of

[
J bb
]

and
[
J bc
]

are 3Nb × 3Nb and 3Nb × 3Nc,
whereas

[
J cb
]

and [J cc] are 3Nc × 3Nb and 3Nc × 3Nc, respectively. In the similar manner, discretized forms of force-torque
conditions, Eqs.[10] and [11], can be written as:[

Fb
]

[q] + [Fc] [f ] = [0] , [15]

and [
T b
]

[q] + [T c] [f ] = [0] . [16]

Considering the boundary condition of [22], the system can be expanded to J bb J bc Ub Ab

J cb J cc Uc Ac

Fb Fc 0 0
T b T c 0 0


 q

f
U
Ω

 =

 0
vcilia

0
0

 . [17]

The matrix components Ub and Ab are of sizes 3Nb × 3, whereas Uc and Ac are both 3Nc × 3. The dense matrix [17] is solved
using the lower-upper (LU) factorisation technique. Given the translational and angular velocities, all material points are
updated using the second-order Runge-Kutta method.

Parameter setting. In a Stokes flow regime, the fluid viscosity is simply a multiplier of both force and traction. The viscosity µ
can be assumed to be unity, without loss of generality. We further assumed that all cilia exhibited identical beat frequencies,
and beat periodically during computation. To express phase differences among ciliary beats on the cell surface (i.e. metachronal
waves), the initial ciliary beat phase ψ0(θ) was defined as:

ψ0/2π = sin(kθ/2), [18]

where k is the wave number in the θ direction. θ = [0, π] is the angle between the orientation vector e1 and r̂b; and
θ = cos−1(e1 · r̂b), where r̂b = (xb − xc)/|xb − xc|. If k is positive, an antiplectic metachronal wave is in play; a symplectic
metachronal wave is triggered by a negative k. When k is set to zero, all cilia beat in phase. For the antipletic wave, we set
k = 1, whereas k = −1 for the symplectic wave. For all computations, the time interval ∆t was set to ∆t/T = 0.01, where T
is the ciliary beat period.

Mechanical power. Once all unknowns U , Ω, q, and f are given, we can calculate the mechanical power under free swimming
condition. The mechanical power is given by

P =
∫

q · (U + Ω ∧ r̂)dA+
N∑
i

∫
f · (U + Ω ∧ r̂ + vcilia)dsi. [19]

Drag force. Drag force of the ciliate can be calculated by the translation of the same shaped object. The boundary conditions
are vcilia = 0 and v(x) = U for all x ∈ S, where U is the translational velocity, and S is the ciliate’ surface including cilia.
Then, we solve the following equation with respect to q and f :[

J bb J bc

J cb J cc

][
q
f

]
=
[

U
U

]
. [20]

The drag force is then computed by

F =
∫

qdA+
N∑
i

∫
fdsi. [21]
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Fig.S 1. Bacterial model; geometrical data is obtained from Giacche et al. (4).

Bacteral model. We developed a bacterial model with the same manner as Giacche et al. (4). The bacterium body is expressed
by a prolate spheroid with the aspect ratio α = a/b = 4, where a and b are major and minor radii of the prolate body,
respectively. The flagellum is assumed to be a cylindrical filament of cross-sectional radius af that executes helical waves.
The flagellar waveform is prescribed, and the flagellum is assumed to rotate rigidly with constant angular velocity ω relative
to the cell body:

v(x) = U + Ω ∧ r̂(x), x ∈ cell body
v(x) = U + (Ω − ω) ∧ r̂(x), x ∈ flagellum [22]

where U is the translational velocity, and Ω is the angular velocity. We seek unknowns U and Ω under prescribed ω.
We define an orthonormal body frame ei with its origin at the body-flagellum joint and the e1 axis coincides with the

geometrical axis of the bacterium as depicted in Fig. S1. Then, flagellar shape xfla(= ξiei) is determined by

xfla(ξ) =

(
ξ1 = ξ,

ξ2 = A[1 − exp(−k2
eξ

2)] cos(kξ/L),
ξ3 = A[1 − exp(−k2

eξ
2)] sin(kξ/L),

)
[23]

with 0 ≤ ξ ≤ L. L is the length of the helix, A = 0.025L is the amplitude, ke = 3.0/L is the helix growing factor, and k = 10π
is the wave number. The flagellar radius af is set as af/L = 2.5 × 10−3.

Sperm model. A sperm model was developed with the same methodology of Omori and Ishikawa (5). The geometry of human
and bull sperm is likened to an asymmetric ellipsoid (cf. Fig. S2). To mimic the elliptical sperm head, the following mapping
function is used:

Xsp
1 = X1, X

sp
2 = aX2

a+ b−X1/ℓ
, Xsp

3 = X3

c+X1/ℓ
, [24]

where Xsp is the surface area of the sperm head, X is the material point of a sphere with radius ℓ, and a, b, and c are
non-dimensional shape parameters. The parameters are set as, ℓ/L = 4.17 × 10−2, a = 3.0, b = 2.0, and c = 4.0, to ensure
that the morphology is similar to that of human sperm cells.

The flagella beat for a human and bull sperm show a left-handed helicoid. To express the time-dependent flagellum, the
following formula can be used

ξ2 = A cos(kξ/L− 2πt/T ), [25]
ξ3 = −αA sin(kξ/L− 2πt/T ),

where L is the flagellum length, T is the period, k is wave number, A is the amplitude parameter, and α = 0.2 is helix
parameter. The wave number and amplitude parameter are set as k/π = 2.0, and A = 0.1087ξ1. To coincide with a
human sperm flagellum, the flagellar radius af/L = 2.35 × 10−3 is used. Prescribed velocity of the flagellum is given by
vfla = ∂ξ2/∂t e2 + ∂ξ3/∂t e3, and is substituted to Eq.[17]. We then solve the system with respect unknowns U , Ω, q and f .
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Fig.S 2. Sperm model; geometrical data is obtained from Omori and Ishikawa (5).

Supplemental data

Flow field around a spherical ciliate with in-phase beating. Flow filed around a spherical ciliate, a/L = 10, and N = 636 is
shown in Fig. S3(a), where a is the radius, L is the cilium length, and N is the number of cilia. The swimming velocity U
and mechanical power P with N = 162, 636, and 2520 are also shown in the Figures S3(b) and (c), respectively.

Flow field around an ellipsoidal ciliate. Flow filed around a prolate ciliate with the aspect ratio α(= a/b) = 2 is shown in
Figs. S4, S5, and S6, where a is the major axis, and b is the minor axis of the ellipsoid. The body shape is controlled to
hold the volume constant regardless of the aspect ratio. Results of three types of metachronal wave are shown in the Figures;
antiplectic is shown in Fig. S4, symplectic is S5, and in-phase beating is shown in Fig. S6. The swimming velocity U and
mechanical power P with N = 162, 636, and 2520 are also shown in the Figures.

Swimming velocity as a function of number of cilia. Time-averaged swimming velocity with various body size and aspect ratio
is shown in Fig. S7. In all cases, the swimming speed U can be scaled as U ∝ N .

Mechanical power as a function of number of cilia. Time-averaged power with various body size and aspect ratio is shown in
Fig. S8. In all cases, the mechanical P can be scaled as P ∝ N .

Swimming efficiency as a function of number of cilia. Swimming efficiency with various body size, number of cilia, and
metachronal waves are shown in Fig. S9.

Effects of ciliary placement. We compared two different distribution of cilia; (a) homogeneous distribution, and (b) arranged
in the spherical coordinate, as shown Fig. S10. In the spherical coordinate, we define the number of cilia both in the longitude
and latitude directions,Nθ, and Nϕ, and the result is shown in Fig. S11. The radius a is set as a/L = 5, and we set symplectic
mode. We see that the efficiency can be changed by the ciliary distribution even when the number of cilia is constant. The
maximum efficiency is given by N = 216 (Nθ = 12 and Nϕ = 18), and cilia are distributed almost homogeneous. In this case,
the optimal interval among surface cilia can be ∆ropt/L = 1.2, which corresponds to the result of homogeneously distributed
cilia (cf. Fig.4c in the main text). We then investigated the effect of body size and optimal number of cilia (cf. Fig. S12). We
confirmed the maximum efficiency is given when cilia are distributed homogeneously, and the resultant maximum efficiency
is similar to that of homogeneously distributed cilia. In Fig. S12(b), we can see the optimal number of cilia is proportional
to (a/L)2 both in the spherical coordinate and homogeneous cases. From these results, we conclude the optimal efficiency is
given when cilia are distributed homogeneously.
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3. Fulford GR, Blake JR (1986) Muco-ciliary transport in the lung. J. Theor. Biol. 121:381–402.
4. Giacche D, Ishikawa T, Yamaguchi T (2010) Hydrodynamic entrapment of bacteria swimming near a solid surface. Phys. Rev. E 82:056309.
5. Omori T, Ishikawa T (2016) Upward swimming of a sperm cell in shear flow. Phys. Rev. E 93:032402.
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Fig.S 3. Ciliate with in-phase beating. (a) Flow field around the ciliate, Red indicates flow magnitude (b) Time change of swimming velocity and (c) power generated by the
ciliate. µ is the viscosity, T is the period, L is the length of cilium, and N is the number of cilia.
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Fig.S 4. Prolate ciliate with antiplectic beating. The aspect ratio α = 2.0. (a) Flow field around the ciliate, Red indicates flow magnitude (b) Time change of swimming velocity
and (c) power generated by the ciliate.
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Fig.S 5. Prolate ciliate with symplectic beating. The aspect ratio α = 2.0. (a) Flow field around the ciliate, Red indicates flow magnitude (b) Time change of swimming velocity
and (c) power generated by the ciliate.
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Fig.S 6. Prolate ciliate with in-phase beating. The aspect ratio α = 2.0. (a) Flow field around the ciliate, Red indicates flow magnitude (b) Time change of swimming velocity
and (c) power generated by the ciliate.
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Fig.S 7. Time averaged swimming velocity as a function of number of cilia with three types of metachronal waves (in-phase; triangle, symplectic; circle; and antiplectic;
square); (a-c) the results of α = 1.0 and (d-f) α = 2.0.
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Fig.S 8. Time averaged mechanical power as a function of number of cilia with three types of metachronal waves (in-phase; triangle, symplectic; circle; and antiplectic;
square); (a-c) the results of α = 1.0 and (d-f) α = 2.0.
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Fig.S 9. Swimming efficiency with various body radius a, aspect ratio α, and metachronal waves; (a) in-phase and spherical ciliate, (b) in-phase, prolate ciliate, (d) symplectic,
prolate ciliate, and (e) antiplectic, prolate. Filled symbols indicate the maximum efficiency in each case.
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Fig.S 10. Placement of cilia (a) homogeneous distribution and (b) arranged in the spherical coordinate.

Fig.S 11. Swimming efficiency with various ciliary distributions (the body radius a/L = 5 and symplectic mode). L is the cilium length, θ and ϕ indicate the longitude and
latitude directions, respectively.
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Fig.S 12. Optimal efficiency and number of cilia with different ciliary distribution
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