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Appendix A Stochastic model details

In the main manuscript, we present our model as a nonlinear system of ordinary differen-
tial equations (ODEs) for ease of discourse. Due the variability in daily reported cases,
however, it is important to take into account stochasticity in our analysis.

A.1 Model formulation

We implement our model as a stochastic compartmental epidemiological model consisting
of the compartments, S (susceptible), I (undocumented infected), A (confirmed active),
R (confirmed recovered), D (confirmed death), and Ru (undocumented recovered). Tran-
sition events between compartments are

E1 : S → I, E2 : I → A, E3 : A→ R, E4 : A→ D, and E5 : I → Ru.

Let Xt = [St, It, At, Rt, Dt, R
u
t ]T be the state vector of sub-population counts at time

t > 0, and assume a well-mixed population of size P . Conditional on the state Xt, the
waiting time to the next occurrence of event Ej is assumed to be exponentially distributed
with rate parameter hj(Xt), where hj(Xt) is the hazard function for Ej. The hazard
functions can be interpreted as the instantaneous rate of events conditional on the current
state.

The hazard functions of our model are:

h1(Xt) =

(
α0 +

α

1 + U(At, Rt, Dt)n

)
StIt
P

, h2(Xt) = γIt,

h3(Xt) = βAt, h4(Xt) = δAt, and h5(Xt) = ηβIt,

where U(A,R,D) = wAAt + wRRt + wDDt is the reporting function of observables with
weights wA > 0 wR > 0 and wD > 0. Model parameters related to the event rates are
the transmission rates α0 > 0, α > 0, the response slope n ≥ 0, identification rate γ > 0,
case recovery rate β > 0, case fatality rate δ > 0, and the latent recovery rate scale factor
η > 0.

Should event j occur, the state vector is updated by adding the state change vector νj.
For our model we have, ν1 = [−1, 1, 0, 0, 0, 0]T, ν2 = [0,−1, 1, 0, 0, 0]T, ν3 = [0, 0,−1, 1, 0, 0]T,
ν4 = [0, 0,−1, 0, 1, 0]T, and ν5 = [0,−1, 0, 0, 0, 1]T. The resulting stochastic process,
{Xt}t≥0, is a discrete-state, continuous-time Markov process that can be described by
the Kurtz random time-change representation [6],

Xt = X0 +
5∑
j=1

Yj

(∫ t

0

hj(Xs)ds

)
νj,

where X0 is the initial state vector, νj is the state change that occurs under event j, and
Yj (·) is a inhomogeneous Poisson process for event j.

A.2 Approximate stochastic simulation

While exact realisations of this process can be generated using event-based simulation [3,
4], this is prohibitive within an approximate Bayesian computational setting with large

2



population sizes and event numbers. Therefore, we apply a first order approximation to
the integral over the interval [t, t+ τ) to obtain the tau-leaping approximation [5],

Xt+τ = Xt +
5∑
j=1

Yjνj +O(τ),

where Yj ∼ Poisson (hj(Xt)τ) counts the number of times event j occurs in the interval
[t, t + τ). Simulations proceed as per Algorithm 1. For our simulations we use τ =
1 (days), and initial condition X0 = [P − κA0 − (A0 + R0 + D0), κA0, A0, R0, D0, 0]T,
where A0, R0 and D0 come from the Johns Hopkins University COVID-19 data, and κ is
the relative number of unobserved cases at t = 0.

Algorithm 1 Tau-leaping approximate stochastic simulation method

1: Initialise t← 0; X0 ← [P − κA0 − (A0 +R0 +D0), κA0, A0, R0, D0, 0]T;
2: while t+ τ < T do
3: for j ∈ {1, 2, . . . , 5} do
4: Yj ∼ Poisson(hj(Xt)τ);
5: end for
6: for j ∈ {1, 2, . . . , 5} do
7: Xt+τ ← Xt + Yjνj
8: end for
9: t← t+ τ ;
10: end while
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Appendix B Bayesian analysis

We apply Bayesian inference to quantify uncertainty in the model parameters associated
with event rates and community response, θ = [α0, α, β, γ, δ, η, n, κ, wA, wR, wD], for
country i using Johns Hopkins University data Di = [{Ct,i, Rt,i, Dt,i}T≥t≥0]. The task is
to sample the posterior distribution with probability density given by Bayes’ Theorem,

p(θ | Di) =
p(Di | θ)p(θ)

p(Di)
,

where p(θ) is the prior, p(Di | θ) is the likelihood and p(Di) is the evidence. For the
remainder of this section, we omit the country index i for notational convenience.

B.1 Approximate Bayesian computation

For our model, the likelihood function can be written in terms of the solution to the
forwards Kolmogorov equation, however, this requires large matrix exponentials to eval-
uate. Furthermore, since the full model state vector is only partially observable, the data
model is no longer Markovian and is therefore computationally intractable. To deal with
this likelihood intractability, we apply approximate Bayesian computation (ABC) [8–10],
that samples from an approximation to the posterior for each country,

p(θ | D) ≈ p(θ | ρ(D,Ds) ≤ ε) ∝ P(ρ(D,Ds) ≤ ε | θ)p(θ)

= p(θ)

∫
1(0,ε] (ρ(D,Ds)) s(Ds | θ) dDs,

where D is the COVID-19 data for the country of interest, Ds ∼ s(· | θ) is simulated data,
ρ(D,Ds) is a discrepancy metric, ε is the discrepancy threshold and 1(0,ε] (ρ(D,Ds)) = 1
if ρ(D,Ds) ≤ ε, and 1(0,ε] (ρ(D,Ds)) = 0 otherwise. For our implementation, we apply
the discrepancy metric,

ρ(D,Ds) =

(
Td∑
t=1

(At − At,s)2 + (Rt −Rt,s)
2 + (Dt −Dt,s)

2

)1/2

where D = [{At, Rt, Dt}t≥0] is the data and Ds = [{At,s, Rt,s, Dt,s}t≥0] is simulated data.

B.2 Sequential Monte Carlo sampling

We apply a sequential Monte Carlo (SMC) scheme [1,7] to move an initial set of Np sam-
ples from the prior through a sequence of ABC approximations defined by a decreasing
sequence of T discrepancy thresholds, ε1 > ε2 > · · · > εT = ε. Our particular implemen-
tation (Algorithm 2), based on the work of Drovandi and Pettit [2], adaptively selects
the acceptance thresholds and utilises MCMC steps using tuned Gaussian random walk
proposals. For all model calibrations we apply adaptive SMC with Np = 2000 parti-
cles, tuning parameters c = 0.01 and terminate sampling when the MCMC acceptance
probably pacc drops below pmin = 0.001.

4



Algorithm 2 Adaptive SMC sampler for approxmate Bayesian computation

1: Initialise Na = aNp, N` = Np −Na

2: for j ∈ [1, 2, . . . , Np] do
3: Sample prior, θ∗ ∼ p(·) and simulate model, Ds ∼ s(· | θ∗);
4: Set ρj ← ρ(D,Ds);
5: end for
6: repeat
7: Sort particles {(θj, ρj)}Np

j=1, such that ρj ≤ ρj+1 for all j ∈ [1, 2, . . . , Np − 1];

8: Remove particles {(θj, ρj)}Np

j=N`+1 an set ε← ρN`
;

9: Resample particles {θj}Np

j=N`+1 from {(θj)}N`
j=1 with replacement;

10: Estimate sample covariance, Σ̂, of particles {θj}Np

j=1.

11: Adapt proposal kernel q(u | v) = φ

(
u; v,

2.38

dim(θ)
Σ̂

)
, where φ(·;µ,Σ) is a multi-

variate Gaussian density function and dim(θ) is the number of parameters;
12: Set pacc ← 0;
13: for j ∈ [N` + 1, N` + 2, . . . , Np] do
14: for k ∈ [1, 2, . . . , Rtrial] do
15: Generate proposal, θ∗ ∼ q(· | θj) and sample u ∼ U(0, 1);

16: if u ≤ min

(
1,
p(θ∗)q(θj | θ∗)
p(θj)q(θ∗ | θj)

)
then

17: Simulate model Ds ∼ s(· | θ∗);
18: if ρ(Di,Ds) ≤ ε then
19: Set θj ← θ∗, ρj ← ρ(Di,Ds), and pacc ← pacc + (RtrialNa)

−1;
20: end if
21: end if
22: end for
23: end for
24: Set R← log c/ log(1− pacc);
25: for j ∈ [N` + 1, N` + 2, . . . , Np] do
26: for k ∈ [1, 2, . . . , R−Rtrial] do
27: Generate proposal, θ∗ ∼ q(· | θj) and sample u ∼ U(0, 1);

28: if u ≤ min

(
1,
p(θ∗)q(θj | θ∗)
p(θj)q(θ∗ | θj)

)
then

29: Simulate model Ds ∼ s(· | θ∗);
30: if ρ(Di,Ds) ≤ ε then
31: Set θj ← θ∗, ρj ← ρ(Di,Ds), and pacc ← pacc + (RNa)

−1;
32: end if
33: end if
34: end for
35: end for
36: until pacc < pmin
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B.3 Point estimate computation

Given a set of particles, {θj}Np

j=1, from the ABC posterior generated from the SMC sam-
pler, we require a point estimate for each parameter to compare overall trends between
countries. We found the posterior means often did not result is a posterior predictive
distribution that was representative of the data for most countries.

Instead we take the ABC posterior particle that has the smallest average discrepancy
with the data. That is, for country i, the point estimate as

θ̂i = argmin
θ∈{θj}

Np
j=1

∫
ρ(Di,Ds)s(Ds | θ) dDs.

We evaluate this through direct Monte Carlo (Algorithm 3) using M = 100 simulations
per particle.

Algorithm 3 Monte Carlo method for computing point estimates

1: Give data Di and ABC posterior samples {θj}Np

j=1 generated by SMC (Algorithm 2);
2: Set ρ̄min ←∞;
3: for j ∈ {1, 2, . . . , Np} do
4: Generate simulations D(1)

s ,D(2)
s , . . . ,D(M)

s ∼ s(Ds | θj);
5: Set ρ̄← 1

M

∑M
k=1 ρ(Di,D(k)

s );
6: if ρ̄ < ρ̄min then
7: Set ρ̄min ← ρ̄ and θ̂i ← θj
8: end if
9: end for
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Appendix C Marginal posterior comparisons

This section includes box-plots for comparison of marginal posterior distributions across
countries for the model parameters θ = [α0, α, β, γ, η, n, κ, wA]. Results for the first
analysis period (22 January–30 March) are given the Fig. 1–3, results for the second
analysis period (22 January–13 April) are given the Fig. 4–6, and results for the third
analysis period (22 January–9 June) are given the Fig. 7–9. For reference, Table 1 provides
the ISO-3166 alpha3 codes for each country.

Table 1: Lookup table of Country names by ISO-3166 alpha3 codes

Country Code Country Name Country Code Country Name
AFG Afghanistan JPN Japan
ALB Albania KAZ Kazakhstan
AND Andorra KHM Cambodia
ARE United Arab Emirates KOR South Korea
ARG Argentina KWT Kuwait
ARM Armenia LBN Lebanon
AUS Australia LKA Sri Lanka
AUT Austria LTU Lithuania
AZE Azerbaijan LUX Luxembourg
BEL Belgium LVA Latvia
BFA Burkina Faso MAR Morocco
BGR Bangladesh MDA Moldova
BHR Bahrain MEX Mexico
BIH Bosnia and Herzegovina MKD North Macedonia
BRA Brazil MLT Malta
BRN Brunei MUS Mauritius
CAN Canada MYS Malaysia
CHE Switzerland NGA Nigeria
CHL Chile NLD Netherlands
CHN China NOR Norway
CIV Cote d’Ivoire NZL New Zealand
CMR Camaroon OMN Oman
COL Columbia PAK Pakistan
CRI Costa Rica PAN Panama
CUB Cuba PER Peru
CYP Cyprus PHL Philippines
CZE Czechia POL Poland
DEU Germany PRT Portugal
DNK Denmark PSE Palestine
DOM Dominican Republic QAT Qatar
DZA Algeria ROU Romania
ECU Ecuador RUS Russia
EGY Egypt SAU Saudi Arabia
ESP Spain SEN Senegal
EST Estonia SGP Singapore
FIN Finland SMR San Marino
FRA France SRB Serbia
GBR United Kingdom SVK Slovakia
GHA Ghana SVN Slovenia
GRC Greece SWE Sweden
HND Honduras THA Thailand
HRV Croatia TUN Tunisia
HUN Hungary TUR Turkey
IDN Indonesia TWN Taiwan
IND India UKR Ukraine
IRL Republic of Ireland URY Uruguay
IRN Iran USA United States
IRQ Iraq UZB Uzbekistan
ISL Iceland VEN Venezuela
ISR Israel VNM Vietnam
ITA Italy ZAF South Africa
JOR Jordan
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Figure 1: Box plots comparing marginal posterior distributions by country over the period 22 January–30 March 2020 for parameters α0

(top), α, and β (bottom).
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Figure 2: Box plots comparing marginal posterior distributions by country over the period 22 January–30 March 2020 for parameters γ
(top), δ, and η (bottom).
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Figure 3: Box plots comparing marginal posterior distributions by country over the period 22 January–30 March 2020 for parameters n
(top), κ, and − log10wA (bottom).
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Figure 4: Box plots comparing marginal posterior distributions by country over the period 22 January–13 April 2020 for parameters α0

(top), α, and β (bottom).
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Figure 5: Box plots comparing marginal posterior distributions by country over the period 22 January–13 April 2020 for parameters γ
(top), δ, and η (bottom).
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Figure 6: Box plots comparing marginal posterior distributions by country over the period 22 January–13 April 2020 for parameters n
(top), κ, and − log10wA (bottom).
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Figure 7: Box plots comparing marginal posterior distributions by country over the period 22 January–9 June 2020 for parameters α0

(top), α, and β (bottom).
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Figure 8: Box plots comparing marginal posterior distributions by country over the period 22 January–9 June 2020 for parameters γ
(top), δ, and η (bottom).
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Figure 9: Box plots comparing marginal posterior distributions by country over the period 22 January–9 June 2020 for parameters n
(top), κ, and − log10wA (bottom).
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Appendix D Example posterior predictive distribu-

tions

Here we present examples posterior predictive distributions. In general, our model tends
to smooth over sudden spikes in daily reported cases, recoveries and fatalities.
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Figure 10: Full posterior predictive distributions for Australia over the periods (A)–(C)
22 January–30 March, (G)–(I) 22 January–13 April, and (M)–(O) 22 January–9 June,
are compared with model fit using the parameter point estimate for periods (D)–(F)
22 January–30 March, (J)–(L) 22 January–13 April, and (P)–(R) 22 January–9 June.
Vertical bars indicate daily reported cases (yellow), recoveries (green) and deaths (red).
The 50% (dark shaded region) and 95% credible intervals (light shaded region) of the
posterior predictive distributions are plotted against the observational data.
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Figure 11: Full posterior predictive distributions for Brazil over the periods (A)–(C)
22 January–30 March, (G)–(I) 22 January–13 April, and (M)–(O) 22 January–9 June,
are compared with model fit using the parameter point estimate for periods (D)–(F)
22 January–30 March, (J)–(L) 22 January–13 April, and (P)–(R) 22 January–9 June.
Vertical bars indicate daily reported cases (yellow), recoveries (green) and deaths (red).
The 50% (dark shaded region) and 95% credible intervals (light shaded region) of the
posterior predictive distributions are plotted against the observational data.
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Figure 12: Full posterior predictive distributions for China over the periods (A)–(C)
22 January–30 March, (G)–(I) 22 January–13 April, and (M)–(O) 22 January–9 June,
are compared with model fit using the parameter point estimate for periods (D)–(F)
22 January–30 March, (J)–(L) 22 January–13 April, and (P)–(R) 22 January–9 June.
Vertical bars indicate daily reported cases (yellow), recoveries (green) and deaths (red).
The 50% (dark shaded region) and 95% credible intervals (light shaded region) of the
posterior predictive distributions are plotted against the observational data.
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Figure 13: Full posterior predictive distributions for Germany over the periods (A)–(C)
22 January–30 March, (G)–(I) 22 January–13 April, and (M)–(O) 22 January–9 June,
are compared with model fit using the parameter point estimate for periods (D)–(F)
22 January–30 March, (J)–(L) 22 January–13 April, and (P)–(R) 22 January–9 June.
Vertical bars indicate daily reported cases (yellow), recoveries (green) and deaths (red).
The 50% (dark shaded region) and 95% credible intervals (light shaded region) of the
posterior predictive distributions are plotted against the observational data.
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Figure 14: Full posterior predictive distributions for India over the periods (A)–(C)
22 January–30 March, (G)–(I) 22 January–13 April, and (M)–(O) 22 January–9 June,
are compared with model fit using the parameter point estimate for periods (D)–(F)
22 January–30 March, (J)–(L) 22 January–13 April, and (P)–(R) 22 January–9 June.
Vertical bars indicate daily reported cases (yellow), recoveries (green) and deaths (red).
The 50% (dark shaded region) and 95% credible intervals (light shaded region) of the
posterior predictive distributions are plotted against the observational data.
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Figure 15: Full posterior predictive distributions for Iran over the periods (A)–(C) 22
January–30 March, (G)–(I) 22 January–13 April, and (M)–(O) 22 January–9 June, are
compared with model fit using the parameter point estimate for periods (D)–(F) 22
January–30 March, (J)–(L) 22 January–13 April, and (P)–(R) 22 January–9 June. Ver-
tical bars indicate daily reported cases (yellow), recoveries (green) and deaths (red). The
50% (dark shaded region) and 95% credible intervals (light shaded region) of the posterior
predictive distributions are plotted against the observational data.
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Figure 16: Full posterior predictive distributions for Italy over the periods (A)–(C) 22
January–30 March, (G)–(I) 22 January–13 April, and (M)–(O) 22 January–9 June, are
compared with model fit using the parameter point estimate for periods (D)–(F) 22
January–30 March, (J)–(L) 22 January–13 April, and (P)–(R) 22 January–9 June. Ver-
tical bars indicate daily reported cases (yellow), recoveries (green) and deaths (red). The
50% (dark shaded region) and 95% credible intervals (light shaded region) of the posterior
predictive distributions are plotted against the observational data.
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Figure 17: Full posterior predictive distributions for New Zealand over the periods (A)–
(C) 22 January–30 March, (G)–(I) 22 January–13 April, and (M)–(O) 22 January–9
June, are compared with model fit using the parameter point estimate for periods (D)–
(F) 22 January–30 March, (J)–(L) 22 January–13 April, and (P)–(R) 22 January–9 June.
Vertical bars indicate daily reported cases (yellow), recoveries (green) and deaths (red).
The 50% (dark shaded region) and 95% credible intervals (light shaded region) of the
posterior predictive distributions are plotted against the observational data.
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Figure 18: Full posterior predictive distributions for Russia over the periods (A)–(C)
22 January–30 March, (G)–(I) 22 January–13 April, and (M)–(O) 22 January–9 June,
are compared with model fit using the parameter point estimate for periods (D)–(F)
22 January–30 March, (J)–(L) 22 January–13 April, and (P)–(R) 22 January–9 June.
Vertical bars indicate daily reported cases (yellow), recoveries (green) and deaths (red).
The 50% (dark shaded region) and 95% credible intervals (light shaded region) of the
posterior predictive distributions are plotted against the observational data.
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Figure 19: Full posterior predictive distributions for the United States over the periods
(A)–(C) 22 January–30 March, (G)–(I) 22 January–13 April, and (M)–(O) 22 January–9
June, are compared with model fit using the parameter point estimate for periods (D)–
(F) 22 January–30 March, (J)–(L) 22 January–13 April, and (P)–(R) 22 January–9 June.
Vertical bars indicate daily reported cases (yellow), recoveries (green) and deaths (red).
The 50% (dark shaded region) and 95% credible intervals (light shaded region) of the
posterior predictive distributions are plotted against the observational data.
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Appendix E Sensitivity analysis

We performed a sensitivity analysis of our approach using the full response function
U(At, Rt, Dt) = wAAt + wRRt + wDDt compared with our reduced model used in the
analysis by setting wR = wD = 0. Overall, the resulting distribution of point estimates
and correlation coefficients did not change substantially (Compare Fig. 20 with Fig. 21).
We conclude that a community response that is based on active case numbers is a sufficient
first order approximation for broad global comparison.

Figure 20: (top) Distributions of model parameter point using reduced model (that is
wR = wD = 0) estimates along with observered cumulative confirmed cases CT , recoveries
RT and deaths DT at T = 9 June. (bottom) Spearman correlation coefficients between
each point estimate and observed case numbers with the sign and strength of the corre-
lation indicated by the colour-map (positive correlations in red and negative correlations
in blue).
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Figure 21: (top) Distributions of model parameter point using full model estimates along
with observered cumulative confirmed cases CT , recoveries RT and deaths DT at T =
9 June. (bottom) Spearman correlation coefficients between each point estimate and
observed case numbers with the sign and strength of the correlation indicated by the
colour-map (positive correlations in red and negative correlations in blue).
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