### Collagenous Alzheimer amyloid plaque component impacts on the compaction of amyloid-β plaques

Tadafumi Hashimoto, Daisuke Fujii, Yasushi Naka, Mayu Kashiwagi-Hakozaki, Yuko Matsuo, Yusuke Matsuura, Tomoko Wakabayashi and Takeshi Iwatsubo

#### Supplementary method

#### Immunoelectron microscopy

Immunogold labeling for electron microscopic observation of CLAC in double tg mice was performed as described previously (Kowa et al, 2004). Briefly, 50-µm thick, floating sections fixed in 50 mM phosphate buffer containing 4% paraformaldehyde (pH 7.4) for 24 hrs were incubated with an anti-CLAC-P antibody (NC4) overnight. After washing, sections were incubated with anti-rabbit IgG antibody tagged with 1-nm gold particles (Nanoprobe) for 24 hrs. After washing, sections were post-fixed in 3.5% glutaraldehyde (EM Science) for 1 hr, and transferred to 2-[4-[2(hydroxyethyl)-1-piperazinyl] ethanesulfonic acid buffer (pH 5.8). After washing in distilled water, silver intensification was performed using HQ-silver kit (Nanoprobes) according to manufacturer's instructions. After stopping the silver intensification by washing in distilled water, the sections were post-fixed in 2% osmium tetroxide for 1 hr, dehydrated, and embedded in epoxy resin. Ultra-thin sections were cut at 80 nm, double-stained by uranium-acetate and lead-citrate, and viewed in electron microscope (1200EXII, JEOL).

#### **Supplementary Figure legends**

## Supplementary Figure 1. Overexpression of CLAC significantly increased the association of microglial cells with Aβ plaques

(A) Immunohistochemical analyses of the brains of 15-month-old APP tg mice (J20 line, left row) and littermate double tg mice (right row) with an anti-human A $\beta$  antibody (BAN50) or an anti-Iba1 antibody on serial sections. Middle-sized, well-circumscribed A $\beta$  plaques associated with microglial cells are highlighted by red arrows (right row). Scale bar shows 50 µm. (B, C) Quantitative analysis of Iba1-positive area in the hippocampus of 15-month-old APP tg and double tg mice (J20 line, B), or in the neocortex of 18-month-old APP tg and double tg mice (A7 line, C). (B) N= 6 (APP), and 7 (double),

Student's t-test, p=0.37. (C) N=7 (APP), and 7 (double), Student's t-test, p=0.038, \* p<0.05.

# Supplementary Figure 2. CLAC- positive cortical deposits are entirely negative for Aβ in the brains of double tg mice

(A-D) Immunohistochemical analyses of the brains of 12-month-old double tg (J20 x CLAC-P) mice using an anti-human A $\beta$  antibody (82E1) (A and C) and an anti-CLAC-P antibody (anti-NC4) (B and D). High magnification images of the boxed area in A and B are shown in (C) and (D), respectively. A subset of A $\beta$ -positive plaques (arrows in C) were positively labeled with anti-CLAC-P antibodies (arrows in D). In contrast, small plaque-like structures immunolabeled by anti-CLAC-P antibody in the neocortex (arrowheads in D) were entirely negative for A $\beta$  (arrowheads, C and D). Scale bar shows 200 µm. (E) Ultrastructure of the CLAC-positive deposits in the cortex of double tg mice. Bundles of extracellular filamentous structures are labeled with an anti-CLAC-P antibody (NC4), as visualized by 1 nm immunogold/silver intensification. Scale bar = 500 nm.





