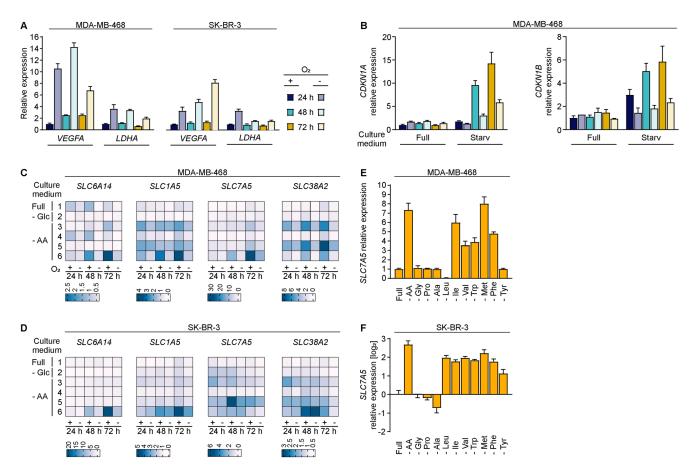
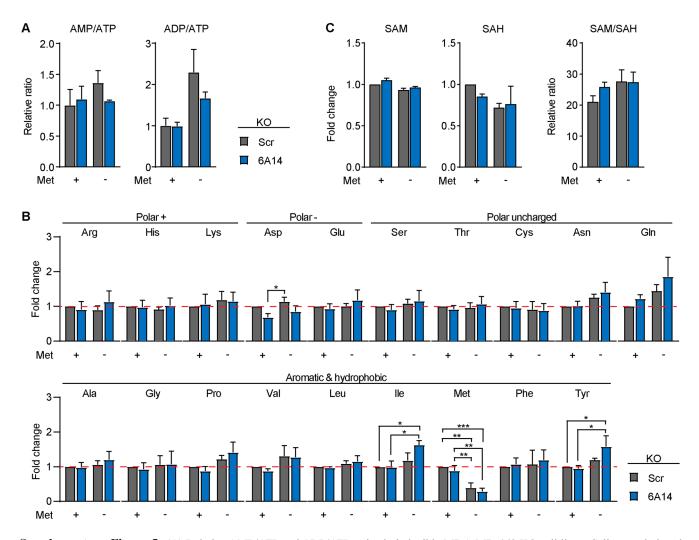

## **Exploiting the metabolic dependencies of the broad amino acid transporter SLC6A14**


## SUPPLEMENTARY MATERIALS



**Supplementary Figure 1:** (A) Expression levels of selected amino acid transporter genes in the BRCA dataset from TCGA, in which the information on the ER status was available (n = 782). Transcript levels are pan-cancer normalized. *P*-values were calculated using a Mann-Whitney *U* test. (B) Spearman correlation relative to the indicated targets in the BRCA gene expression dataset from TCGA (n = 1218).




**Supplementary Figure 2:** (A) (Left) Table showing the gene editing event occurring in each selected SLC6A14 stable KO clone. Two different guide RNAs were used for generating the KO cell lines (g1 and g2). Indel formation was evaluated by Sanger sequencing. (Right) RT-qPCR of SLC6A14 mRNA levels in the corresponding SLC6A14 KO clones. Expression levels are normalized to those of a control scrambled KO clone. Data are representative of 2 independent experiments. Error bars indicate standard deviation of technical triplicates. (B) RT-qPCR of SLC6A14 mRNA levels in MDA-MB-468 inducible KO cell lines. Two different guide RNAs were used for generating the KO cell lines (g1 and g2). Cas9 expression was induced by treating cells stably expressing each gRNA with doxycycline. The KO efficiency was evaluated after 5 days and the expression levels were normalized to the control cell line (Scr KO) treated with EtOH. Data are representative of 3 independent experiments. Error bars indicate standard deviation of technical triplicates. (C) Immunoblot showing the protein levels of SLC1A5 and SLC7A5 in MDA-MB-468 inducible KO cell lines after 5 days of doxycycline treatment. Vinculin served as loading control. Data are representative of 3 independent experiments.



**Supplementary Figure 3:** (A) RT-qPCR of HIF-1 $\alpha$  target genes in the indicated breast cancer cell line cultured in the complete medium upon hypoxia (+ O<sub>2</sub> = 20% oxyger); O<sub>2</sub> = 1% oxygen). Data are representative of 3 independent experiments. Error bars indicate standard deviation of technical triplicates. (B) RT-qPCR of CDKN1A and CDKN1B mRNA levels in MDA-MB-468 cells cultured under the indicated conditions (Full = complete medium; Starv = medium without aromatic and hydrophobic amino acids). Legend is indicated in Supplementary Figure 3A. Data are representative of 3 independent experiments. Error bars indicate standard deviation of technical triplicates. (C–D) Heat-maps summarizing RT-qPCR experiment results of the expression levels of SLC6A14, SLC1A5, SLC7A5 and SLC38A2 in the indicated breast cancer cell lines upon metabolic stress. Data show the average of independent replicates ( $n \ge 2$ ). (E–F) RT-qPCR of SLC7A5 mRNA levels in MDA-MB-468 and SK-BR-3 breast cancer cell lines upon removal of the indicated amino acids for 72 h. Data are representative of 3 independent experiments. Error bars indicate triplicates.



**Supplementary Figure 4:** (A) RT-qPCR showing mRNA levels of the indicated targets in stable MDA-MB-468 KO clones. Legend is indicated in Supplementary Figure 4C. Data are representative of 3 independent experiments. Error bars indicate standard deviation of technical triplicates. (B) Immunoblot showing time-dependent changes in the levels of phospho-eIF2 $\alpha$  in MDA-MB-468 cells upon methionine starvation. Thapsigargin-treated cells (2  $\mu$ M) were used as a positive control. Vinculin served as loading control. (C) Immunoblot of stable MDA-MB-468 KO clones. Cells were cultured for 72 h in the indicated media (Full = complete medium; Starv = medium without aromatic and hydrophobic amino acids; Met = medium without methionine).  $\beta$ -actin served as loading control. Immunoblot quantification of 3 independent experiments is shown below. Data represent mean + standard deviation. (D) Immunoblot showing AMPK activation in the MDA-MB-468 cell line cultured under the indicated conditions (+  $O_2 = 20\%$  oxygen;  $O_2 = 1\%$  oxygen). Vinculin served as loading control. The normalized p-AMPK $\alpha$ / AMPK $\alpha$  TOT ratio is shown below each band. Data are representative of 2 independent experiments.



**Supplementary Figure 5:** (A) Relative AMP/ATP and ADP/ATP ratios in inducible MDA-MB-468 KO cell lines. Cells were induced with doxycycline for 4 days, plated and cultured for 24 h in the presence or absence of methionine before metabolite extractions. Values are normalized to Scr KO + Met condition. Data represent mean + standard error mean of 3 independent replicates. (B) Fold changes relative to Scr KO + Met condition of the indicated amino acid in inducible MDA-MB-468 KO cell lines treated as indicated in Supplementary Figure 5A. Error bars indicate standard deviation of 3 independent replicates. *P*-values are calculated using an ANOVA test followed by Tukey pairwise comparisons (\*\*\* $p \le 0.001$ ; \* $p \le 0.05$ ). (C) (Left) Fold changes relative to Scr KO + Met condition of S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) in inducible MDA-MB-468 KO cell lines. Error bars indicate standard error mean of 3 independent replicates. (Right) Relative SAM/SAH ratio. Data represent mean + standard error mean of 3 independent replicates. Cells were treated as indicated in Supplementary Figure 5A.

| Metabolite name                      | Concentration (µM) | Order number (Sigma, unless specified) |
|--------------------------------------|--------------------|----------------------------------------|
| L-Amino acids                        |                    |                                        |
| Alanine                              | 430                | A7627                                  |
| Arginine                             | 1149               | A8094                                  |
| Asparagine                           | 378                | A0884                                  |
| Glycine                              | 133                | G7126                                  |
| Proline                              | 174                | P0380                                  |
| Serine                               | 286                | S4500                                  |
| Aspartate                            | 150                | A9256                                  |
| Cystine                              | 208                | C8755                                  |
| Glutamate                            | 136                | G1251                                  |
| Tyrosine                             | 111                | T3754                                  |
| Histidine                            | 97                 | H5659                                  |
| Isoleucine                           | 382                | 12752                                  |
| Leucine                              | 382                | L8000                                  |
| Lysine                               | 219                | L5626                                  |
| Methionine                           | 101                | M9625                                  |
| Phenylalanine                        | 91                 | P2126                                  |
| Threonine                            | 168                | T8625                                  |
| Tryptophan                           | 25                 | T0254                                  |
| Valine                               | 171                | V0500                                  |
| Glutamine                            | 2000               | 10500                                  |
| Vitamins                             | 2000               |                                        |
| Biotin                               | 0,819              |                                        |
| Choline                              | 21,4               |                                        |
| Folate                               | 2,3                |                                        |
| myo-Inositol                         | 194,4              |                                        |
| Niacinamide                          | 8,2                |                                        |
| p-Aminobenzoate                      | 7,2                | R7256                                  |
| Pantothenate                         | 0,524              |                                        |
| Pyridoxine                           | 4,9                |                                        |
| Riboflavin                           | 0,532              |                                        |
| Thiamine                             | 2,9                |                                        |
| Vitamin B-12                         | 0,00369            |                                        |
| Inorganic Salts                      | 0,00207            |                                        |
| MgSO <sub>4</sub> .7H <sub>2</sub> O | 407                | AppliChem A1037                        |
| KCl                                  | 5333               | AppliChem A3582                        |
| NaCl                                 | 103448             | S7653                                  |
| NaHCO <sub>3</sub>                   | 23809              | S5761                                  |
| Na <sub>2</sub> HPO <sub>4</sub>     | 5634               | S9390                                  |
| $\operatorname{Ca(NO_3)_2.4H_2O}$    | 424                | C2786                                  |
| Other components                     | 727                | 62700                                  |
| D-Glucose                            | 25000              | G7021                                  |
| Glutathione (reduced)                | 3,2                | G4251                                  |
| HEPES                                | 10000              |                                        |
| Phenol Red                           | 13                 | Gibco 15630-080<br>P5530               |
|                                      |                    |                                        |
| Sodium Pyruvate                      | 1000               | S8636                                  |

## Supplementary Table 1: Formulation of RPMI medium used in this study

Supplementary Table 2: Oligonucleotides used for RT-qPCR

| Target  | Forward sequence (5'-3')  | Reverse sequence (5'-3') |
|---------|---------------------------|--------------------------|
| 36B4    | CCCATTCTATCATCAACGGGTACAA | CAGCAAGTGGGAAGGTGTAATCC  |
| SLC6A14 | TGGCTTGGCTCATAGTTGGA      | TTGAAGCACCCTCCAGAGTT     |
| SLC1A5  | TCTCCTTGATCCTGGCTGTG      | CCAGAGCGTCACCTTCTACA     |
| SLC7A5  | GTCCCTGTTCACATCCTCCA      | TAGAGCAGCGTCATCACACA     |
| SLC7A11 | TCCGATCTTTGTTGCCCTCT      | GTGCTTGCGGACATGAATCA     |
| SLC38A2 | CCGTCTGGCTGTGTTAATGG      | ACTATGACGCCACCAACTGA     |
| VEGFA   | CCCACTGAGGAGTCCAACAT      | TTTCTTGCGCTTTCGTTTTT     |
| LDHA    | TGGCAGCCTTTTCCTTAGAA      | ACCAGCTTGGAGTTTGCAGT     |
| CDKN1A  | GGAAGACCATGTGGACCTGT      | GGCGTTTGGAGTGGTAGAAA     |
| CDKN1B  | TAAGGAAGCGACCTGCAACC      | TTGACGTCTTCTGAGGCCAG     |

Supplementary Table 3: Antibodies used for immunoblot (all obtained from Cell Signaling)

| Target                  | Order number |
|-------------------------|--------------|
| β-Actin                 | 3700         |
| Vinculin                | 4650         |
| Cleaved-PARP (Asp214)   | 5625         |
| Caspase 3               | 9662         |
| LAT1 (SLC7A5)           | 5347         |
| ASCT2 (SLC1A5)          | 8057         |
| eIF2a                   | 9722         |
| Phospho-eIF2a (Ser51)   | 3398         |
| АМРКα                   | 2532         |
| Phospho-AMPKα (Thr172)  | 2535         |
| 4E-BP1                  | 9452         |
| Phospho-4E-BP1 (Ser65)  | 9451         |
| P70S6K                  | 2708         |
| Phospho-p70S6K (Thr389) | 9234         |

Supplementary Table 4A: gRNAs cloned into pLenti-Guide-Puro vector (including BsmBI cloning site, in bold) and used for KO cell line generation

| Target       | Forward sequence (5'-3')   | Reverse sequence (5'-3')  |
|--------------|----------------------------|---------------------------|
| Scrambled    | CACCGACGGAGGCTAAGCGTCGCAA  | AAACTTGCGACGCTTAGCCTCCGTC |
| SLC6A14 (#1) | CACCGATCTATGATTGGATACGCAG  | AAACCTGCGTATCCAATCATAGATC |
| SLC6A14 (#2) | CACCGATTGGATACGCAGTGGGATT  | AAACAATCCCACTGCGTATCCAATC |
| SLC1A5       | CACCGCAGGCGGCTACTGCGGTTCC  | AAACGGAACCGCAGTAGCCGCCTGC |
| SLC7A5       | CACCGCGTGGGGGACCATTATCGGCT | AAACAGCCGATAATGGTCCCCACGC |

## Supplementary Table 4B: sgRNAs used for transfection

| Target    | Forward sequence (5'-3') |  |
|-----------|--------------------------|--|
| Scrambled | GACGTCTAGCTGGCTAGCAT     |  |
| PRKAA1    | GCGTGTCACCCAGAATGTAG     |  |
| PRKAA2    | GAAGATCGGACACTACGTGC     |  |