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Supplementary Tables

Supplementary Table 1. List of 41 independent diseases and complex traits analyzed. Analogous
to a previous study1, we considered 89 GWAS summary association statistics, including 34 traits from
publicly available sources and 55 traits from the UK Biobank (up to N = 459K); summary association
statistics were computed using BOLT-LMM v2.32,3. We obtained 41 independent traits (average N = 320K)
with genetic correlation less than 0.9 (computed using cross-trait LDSC4). For 6 traits, we analyzed two
different sources (both publicly available and UK Biobank), resulting in total 47 summary statistics analyzed.
For each trait, we report a trait identifier, trait description, reference, sample size, and heritability z-score.

Trait identifier Trait description Reference N h2g z

PASS AgeFirstBirth Age first birth Barban et al., 2016 Nat. Genet.5 222,037 0.062 15.220
PASS NumberChildrenEverBorn Number children ever born Barban et al., 2016 Nat. Genet.5 318,863 0.022 9.250
PASS Anorexia Anorexia Boraska et al., 2014 Mol. Psych.6 32,143 0.241 8.489
PASS Crohns Disease Crohn’s Disease Jostins et al., 2012 Nature7 20,883 0.495 8.327
PASS Ulcerative Colitis Ulcerative Colitis Jostins et al., 2012 Nature7 27,432 0.260 6.411
PASS Height1 Height Lango Allen et al., 2010 Nature8 131,547 0.221 17.680
PASS Type 2 Diabetes Type 2 Diabetes Morris et al., 2012 Nat. Genet.9 60,786 0.090 6.599
PASS Rheumatoid Arthritis Rheumatoid Arthritis Okada et al., 2014 Nature10 37,681 0.181 7.220
PASS DS Depressive symptoms Okbay et al., 2016 Nat. Genet.11 161,460 0.043 8.212
PASS Years of Education2 Years of Education Okbay et al., 2016 Nature11 328,917 0.112 27.975
PASS Autism Autism Spectrum PGC Cross-Disorder Group, 2013 Lancet12 10,263 0.610 6.518
PASS Coronary Artery Disease Coronary Artery Disease Schunkert et al., 2011 Nat. Genet.13 77,210 0.074 6.125
PASS Schizophrenia Schizophrenia SCZ Working Group of the PGC, 2014 Nature14 70,100 0.464 18.726
PASS BMI1 BMI Speliotes et al., 2010 Nat. Genet.15 122,033 0.145 15.538
PASS Ever Smoked Ever Smoked TAG Consortium, 2010 Nat. Genet.16 74,035 0.085 7.870
PASS HDL HDL Teslovich et al., 2010 Nature17 97,749 0.119 10.000
PASS LDL LDL Teslovich et al., 2010 Nature17 93,354 0.101 8.487
UKB 460K.body HEIGHTz Height UK Biobank3 458,303 0.673 26.000
UKB 460K.bmd HEEL TSCOREz Heel T Score UK Biobank3 445,921 0.351 20.283
UKB 460K.blood PLATELET COUNT Platelet Count UK Biobank3 444,382 0.343 21.298
UKB 460K.body BMIz BMI UK Biobank3 457,824 0.280 39.943
UKB 460K.lung FEV1FVCzSMOKE Forced Vital Capacity (FVC) UK Biobank3 371,949 0.274 24.230
UKB 460K.blood RED COUNT Red Blood Cell Count UK Biobank3 445,174 0.260 21.992
UKB 460K.repro MENARCHE AGE Age at Menarche UK Biobank3 242,278 0.255 23.182
UKB 460K.lung FVCzSMOKE FEV1-FVC Ratio UK Biobank3 371,949 0.232 32.662
UKB 460K.bp SYSTOLICadjMEDz Systolic Blood Pressure UK Biobank3 422,771 0.229 27.963
UKB 460K.blood EOSINOPHIL COUNT Eosinophil Count UK Biobank3 439,938 0.223 19.884
UKB 460K.body BALDING1 Balding Type I UK Biobank3 208,336 0.223 14.651
UKB 460K.blood WHITE COUNT White Blood Cell Count UK Biobank3 444,502 0.221 28.282
UKB 460K.blood RBC DISTRIB WIDTH Red Blood Cell Distribution Width UK Biobank3 442,700 0.215 18.034
UKB 460K.body WHRadjBMIz Waist-hip Ratio UK Biobank3 458,417 0.170 24.257
UKB 460K.pigment HAIR Hair Color UK Biobank3 452,720 0.166 7.598
UKB 460K.cov EDU YEARS College Education UK Biobank3 454,813 0.139 34.625
UKB 460K.mental NEUROTICISM Neuroticism UK Biobank3 372,066 0.115 29.462
UKB 460K.repro MENOPAUSE AGE Age at Menopause UK Biobank3 143,025 0.113 11.968
UKB 460K.other MORNINGPERSON Morning Person UK Biobank3 410,520 0.106 25.878
UKB 460K.cov SMOKING STATUS Smoking Status UK Biobank3 457,683 0.102 29.882
UKB 460K.disease ALLERGY ECZEMA DIAGNOSED Eczema UK Biobank3 458,699 0.083 14.596
UKB 460K.pigment TANNING Tanning UK Biobank3 449,984 0.082 6.430
UKB 460K.pigment SKIN Skin Color UK Biobank3 453,609 0.082 6.074
UKB 460K.pigment SUNBURN Sunburn Occasion UK Biobank3 344,229 0.075 9.313
UKB 460K.disease RESPIRATORY ENT Respiratory and Ear-nose-throat Diseases UK Biobank3 459,324 0.056 14.737
UKB 460K.disease HYPOTHYROIDISM SELF REP Hypothyroidism UK Biobank3 459,324 0.054 14.622
UKB 460K.disease HI CHOL SELF REP High Cholesterol UK Biobank3 459,324 0.051 12.949
UKB 460K.disease T2D Type 2 Diabetes UK Biobank3 459,324 0.047 15.533
UKB 460K.disease DERMATOLOGY Dermatologic Diseases UK Biobank3 459,324 0.012 6.316
UKB 460K.disease AID SURE Auto Immune Traits (Sure) UK Biobank3 459,324 0.010 6.125

Supplementary Table 2. Expected heritability enrichments of binary annotations derived from
boosted Mendelian disease-derived missense scores with significantly negative τ∗. We report the
heritability enrichment that is expected based on the boosted annotation’s overlap with the baseline-LD
model and corresponding published annotations, by assuming that the τ of the annotation is zero. In
general, expected enrichments were significantly less than observed enrichments.

Annotations Prop. SNPs Enrich. Enrich. s.e. Enrich. P Expected enrich. Expected enrich. s.e. Expected enrich. P

REVEL boosted 0.26% 4.652 0.745 2.72E-05 8.016 0.813 5.01E-23
PolyPhen-2 boosted 0.17% 6.164 0.648 1.47E-07 9.287 0.722 3.10E-32
SIFT 4G boosted 0.22% 0.570 0.534 3.09E-01 1.733 0.748 3.30E-02
PolyPhen-2-HVAR boosted 0.18% 6.946 0.535 5.93E-11 8.864 0.800 2.10E-46
PROVEAN boosted 0.54% 2.402 0.374 7.42E-03 8.487 0.598 7.58E-64
MetaSVM boosted 1.13% 4.946 0.341 4.70E-19 2.874 0.234 9.18E-53
MetaLR boosted 0.09% 2.235 0.231 1.04E-04 2.348 0.168 4.44E-67
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Supplementary Figures

Supplementary Figure 1. Overview of AnnotBoost framework. We describe the AnnotBoost model
training. AnnotBoost requires only one input, a pathogenicity score to boost, and generates a genome-wide
(probabilistic) boosted pathogenicity score. From the input pathogenicity score (e.g. CADD as shown here),
we built a classification model, each for even and odd chromosome SNPs using 75 baseline-LD annota-
tions18,19 as features. We assessed informativeness of annotations derived from published scores (input) and
boosted scores (output) for common disease using S-LDSC20.
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Supplementary Figure 2. Feature importance of boosted Mendelian disease-derived missense
pathogenicity scores. We applied SHAP21 to assess which features from the baseline-LD drives the
prediction of 11 boosted missense scores by AnnotBoost. We report the signed impact of top 20 features
for each of 11 predictive models: (A) PolyPhen-2, (B) PolyPhen-2-HVAR, (C) MetaLR, (D) MetaSVM, (E)
PROVEAN, (F) SIFT 4G, (G) REVEL, (H) M-CAP, (I) Primate-AI, (J) MPC, and (K) MVP. We obtained
similar results for even/odd chromosome classifiers; we report odd chromosome results here (see full results
online; see URLs).
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Supplementary Figure 3. Excess overlap between gene scores derived from input pathogenicity
scores and 165 reference gene sets of biological importance. We report the excess overlap of
genes linked to published and boosted scores in existing gene sets of biological importance (summarized
in Supplementary Data 8): (A) PolyPhen-222,23 gene quintiles from published and boosted scores, (B)
CADD24,25 gene quintiles from published and boosted scores, and (C) CCR26 gene quintiles from published
and boosted scores. Error bars represent 95% confidence intervals. Numeric results for excess overlap and
correlaton among gene scores are shown in Supplementary Data 9. Numeric results for odds ratios and
p-values from Fisher’s exact test (two-sided) between published gene quintiles and boosted gene quintiles
are reported in Supplementary Data 10.
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Supplementary Figure 4. Feature importance of boosted genome-wide Mendelian disease-
derived pathogenicity scores. We applied SHAP21 to assess which features from the baseline-LD drives
the prediction of 11 boosted missense scores by AnnotBoost. We report the signed impact of top 20 features
for each of 6 genome-wide Mendelian disease-derived pathogenicity scores: (A) CADD, (B) Eigen, (C)
Eigen-PC, (D) ReMM, (E) NCBoost, and (F) ncER. We obtained similar results for even/odd chromosome
classifiers; we report odd chromosome results here (see full results online; see URLs).
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Supplementary Figure 5. Feature importance of boosted scores derived from 18 additional
genome-wide scores and 47 baseline-LD model annotations. We applied SHAP21 to assess which
features from the baseline-LD drives the prediction of 18 boosted additional scores by AnnotBoost. We
report the signed impact of top 20 features for each of 18 additional scores: (A) CDTS, (B) CCR, (C-I)
DeepSEA-CTCF, -DNase, -H3K27ac, -H3K4me1, -H3K4me2, -H3K4me3, -H3K9ac, (J-K) DIS-DNA, -RNA,
(L) pLI, (M) LIMBR, (N-Q) Gene network connectivity-Saha, Greene, InWeb, Sonawane, (R) EDS. We
obtained similar results for even/odd chromosome classifiers; we report odd chromosome results here (see
full results online; see SHAP results of 47 boosted baseline-LD scores online; see URLs).
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Supplementary Figure 6. Classification of fine-mapped disease SNPs using aggregated scores.
We report the true positive rate, false positive rate, precision, and recall along with the classification accuracy
(AUPRCs and AUROCs) of four aggregated scores on classifying 5 different independent SNP sets: (A, F)
7,333 fine-mapped for 21 autoimmune diseases from Farh et al.27, (B, G) 3,768 fine-mapped SNPs for
inflammatory bowel disease from Huang et al.28, (C, H) 1,851 fine-mapped SNPs for 49 traits from UK
Biobank29, (D, I) 1,379 fine-mapped SNPs without functional data for 49 traits from UK Biobank29, and
(E, J) 14,807 GWAS significant SNPs30,31, from 10 LD-, MAF-, and genomic element-matched control SNPs.
We report the average AUPRCs and AUROCs of even/odd-chromosome classifiers. Differences for AUROCs
and AUPRCs attained between (1) baseline-LD and baseline-LD+joint model, (2) baseline-LD and baseline-
LD+marginal model, and (3) baseline-LD+joint and baseline-LD+marginal were largely significant (p-val
< 0.008). Numerical results, including results using the most matched control SNPs (instead of 10), are
reported in Supplementary Data 21.
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Supplementary Figure 7. Feature importance of baseline-LD+joint model in predicting fine-
mapped or GWAS significant SNPs. We applied SHAP21 to assess which features from the baseline-
LD+joint drive the prediction of fine-mapped or GWAS significant SNPs from 10 matched control SNPs for
each positive SNP. We report the signed impact of top 20 feature for each of 4 fine-mapped SNPs and GWAS
significant SNPs: (A) Farh et al., (B) Huang et al., (C) Weissbrod et al., (D) Weissbrod et al. (fine-mapped
without functional data), (E) GWAS significant SNPs. We obtained similar results for even/odd chromosome
classifiers; we report odd chromosome results here (see full results online; see URLs).
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Supplementary Figure 8. Feature importance of baseline-LD+marginal model in predicting
fine-mapped or GWAS significant SNPs. We applied SHAP21 to assess which features from the
baseline-LD+marginal drive the prediction of fine-mapped or GWAS significant SNPs from 10 matched
control SNPs for each positive SNP. We report the signed impact of top 20 feature for each of 4 fine-mapped
SNPs and GWAS significant SNPs: (A) Farh et al., (B) Huang et al., (C) Weissbrod et al., (D) Weissbrod
et al. (fine-mapped without functional data), (E) GWAS significant SNPs. We obtained similar results for
even/odd chromosome classifiers; we report odd chromosome results here (see full results online; see URLs).
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Supplementary Figure 9. Classification of fine-mapped disease SNPs in single-score analysis
using published and boosted scores. We report the classification accuracy (AUROC and AUPRC) of
each of the 82 boosted scores compared to the corresponding published score. We report AUROC (resp.
AUPRC) on (A, F) 7,333 fine-mapped for 21 autoimmune diseases from Farh et al.27, (B, G) 3,768 fine-
mapped SNPs for inflammatory bowel disease from Huang et al.28, (C, H) 1,851 fine-mapped SNPs for
49 traits from UK Biobank29, (D, I) 1,379 fine-mapped SNPs without functional data for 49 traits from
UK Biobank29, and (E, J) 14,807 GWAS significant SNPs30,31 from 10 LD-, MAF-, and genomic element-
matched control SNPs. Numerical results, including results using the most matched control SNPs (instead
of 10), are reported in Supplementary Data 23.
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Supplementary Figure 10. Informativeness of the baseline-LD model before and after adding
11 jointly significant binary annotations. We report meta-analyzed τ∗ of the baseline-LD model
annotations, across 41 independent traits, from two different S-LDSC analyses: (1) the baseline-LD model
+ 8 Roadmap annotations and (2) the baseline-LD model + 8 Roadmap annotations + 11 jointly significant
annotations. Error bars represent 95% confidence intervals. Numerical results are reported in Supplementary
Data 25.
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Supplementary Figure 11. Informativeness for common disease of binary annotations derived
from boosted CDTS scores with or without MAF features. We applied AnnotBoost to CDTS
annotation using all baseline-Ld features and all features excluding MAF bins. Then, we applied S-LDSC,
conditioning on published binary CDTS annotations (five thresholds from 90th percentile to 99.9th percentile)
and baseline-LD model annotations; and meta-analyzed results across 41 independent traits. We report
meta-analyzed enrichments and τ∗. Error bars represent 95% confidence intervals.
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Supplementary Figure 12. Informativeness for common disease of binary annotations derived
from boosted CDTS scores using imbalanced data. We applied AnnotBoost to CDTS annotation of
varying training data. Then, we applied S-LDSC, conditioning on published binary CDTS annotations (five
thresholds from 90th percentile to 99.9th percentile) and baseline-LD model annotations; and meta-analyzed
results across 41 independent traits. We report meta-analyzed enrichments and τ∗. Error bars represent
95% confidence intervals.
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Supplementary Figure 13. Informativeness for common disease of binary and probabilistic
annotations derived from published CDTS scores. We constructed binary and probabilistic anno-
tations for published CDTS32. We applied S-LDSC, conditional on baseline-LD model annotations and
meta-analyzed results across 41 independent traits. We report meta-analyzed enrichments and τ∗. To con-
struct probabilistic annotations of varying proportion of SNPs, we performed the following transformation
to upweight the upper percentile and downweight the lower percentile SNPs: eα∗annot

eα with α varied from 3
to 2000. Error bars represent 95% confidence intervals.
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