

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

The association of food industry ties with findings of studies examining the effect of dairy foods intake on cardiovascular disease and mortality: Systematic review and Meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039036
Article Type:	Original research
Date Submitted by the Author:	01-Apr-2020
Complete List of Authors:	Chartres, Nicholas; The University of Sydney, Charles Perkins Centre Fabbri, Alice; University of Insubria, Centre for Research in Medical Pharmacology McDonald, Sally ; The University of Sydney, ; the University of Sydney Diong, Joanna; The University of Sydney Faculty of Medicine and Health McKenzie, Joanne; Monash University Bero, Lisa; University of Sydney Faculty of Health Sciences, Pharmacy
Keywords:	STATISTICS & RESEARCH METHODS, NUTRITION & DIETETICS, PUBLIC HEALTH

SCHOLARONE [™]	
Manuscripts	

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 dairy foods intake on cardiovascular disease and mortality: Systematic review and Meta-analysis Authors: Nicholas Chartres¹, Alice Fabbri¹, Sally McDonald¹, Joanna Diong², Joanne Mckenzie³, Lisa Bero¹ Mckenzie³, Lisa Bero¹ 1. The University of Sydney, D17, The Hub, 6th floor, Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia 2. The University of Sydney, New South Wales, 2006, Australia 2. The University of Sydney, New South Wales, 2006, Australia 3. Monash University, 553 St Kilda Road, Melbourne, Victoria, 3004, Australia 13. 4. 	2 3 4	1	The association of food industry ties with findings of studies examining the effect of
 Meta-analysis Authors: Nicholas Chartres¹, Alice Fabbri¹, Sally McDonald¹, Joanna Diong², Joanne Mckenzie³, Lisa Bero¹ I. The University of Sydney, D17, The Hub, 6th floor, Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia Monash University, 553 St Kilda Road, Melbourne, Victoria, 3004, Australia Monash University of Sydney, New South Wales, 2006, Australia Corresponding author: Lisa Bero, The University of Sydney, D17, The Hub, 6th floor, Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia, emai lisa.bero@sydney.edu.au; Telephone +612 8627 Word Count: 4530 	5	2	dairy foods intake on cardiovascular disease and mortality: Systematic review and
 Authors: Nicholas Chartres¹, Alice Fabbri¹, Sally McDonald¹, Joanna Diong², Joanne Mckenzie³, Lisa Bero¹ 1. The University of Sydney, D17, The Hub, 6th floor, Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia 2. The University of Sydney, New South Wales, 2006, Australia 3. Monash University, 553 St Kilda Road, Melbourne, Victoria, 3004, Australia Corresponding author: Lisa Bero, The University of Sydney, D17, The Hub, 6th floor, Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia, emai lisa.bero@sydney.edu.au; Telephone +612 8627 Word Count: 4530 	7	3	Meta-analysis
11 5 Authors: Nicholas Chartres ¹ , Alice Fabbri ¹ , Sally McDonald ¹ , Joanna Diong ² , Joanne 13 6 Mckenzie ³ , Lisa Bero ¹ 14 7 7 15 8 1. The University of Sydney, D17, The Hub, 6th floor, Charles Perkins Centre, The 14 9 University of Sydney, New South Wales, 2006, Australia 16 10 2. The University of Sydney, School of Medical Sciences, Faculty of Medicine and 17 11 Health, The University of Sydney, New South Wales, 2006, Australia 18 3. Monash University, 553 St Kilda Road, Melbourne, Victoria, 3004, Australia 19 Corresponding author: Lisa Bero, The University of Sydney, D17, The Hub, 6th floor, 11 Isa.bero@sydney.edu.au; Telephone +612 8627 13 14 14 Word Count: 4530 19 19	9	4	
 Mekenzie³, Lisa Bero¹ I. The University of Sydney, D17, The Hub, 6th floor, Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia 2. The University of Sydney, New South Wales, 2006, Australia 3. Monash University of Sydney, New South Wales, 2006, Australia 3. Monash University, 553 St Kilda Road, Melbourne, Victoria, 3004, Australia Corresponding author: Lisa Bero, The University of Sydney, D17, The Hub, 6th floor, Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia, emailisa.bero@sydney.edu.au; Telephone +612 8627 Word Count: 4530 19 	11	5	Authors: Nicholas Chartres ¹ , Alice Fabbri ¹ , Sally McDonald ¹ , Joanna Diong ² , Joanne
 7 8 1. The University of Sydney, D17, The Hub, 6th floor, Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia 2. The University of Sydney, New South Wales, 2006, Australia 3. Monash University, 553 St Kilda Road, Melbourne, Victoria, 3004, Australia Corresponding author: Lisa Bero, The University of Sydney, D17, The Hub, 6th floor, Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia, emai lisa.bero@sydney.edu.au; Telephone +612 8627 Word Count: 4530 19 	13	6	Mckenzie ³ , Lisa Bero ¹
 1. The University of Sydney, D17, The Hub, 6th floor, Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia 2. The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia 3. Monash University, 553 St Kilda Road, Melbourne, Victoria, 3004, Australia Corresponding author: Lisa Bero, The University of Sydney, D17, The Hub, 6th floor, Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia, email lisa.bero@sydney.edu.au; Telephone +612 8627 Word Count: 4530 19 	15	7	
 9 University of Sydney, New South Wales, 2006, Australia 2. The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia 3. Monash University, 553 St Kilda Road, Melbourne, Victoria, 3004, Australia 13 14 Corresponding author: Lisa Bero, The University of Sydney, D17, The Hub, 6th floor, 15 Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia, emai 16 lisa.bero@sydney.edu.au; Telephone +612 8627 17 18 Word Count: 4530 19 	17	8	1. The University of Sydney, D17, The Hub, 6th floor, Charles Perkins Centre, The
 2. The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia 3. Monash University, 553 St Kilda Road, Melbourne, Victoria, 3004, Australia 13 14 Corresponding author: Lisa Bero, The University of Sydney, D17, The Hub, 6th floor, 15 Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia, emai 16 lisa.bero@sydney.edu.au; Telephone +612 8627 18 Word Count: 4530 19 		9	University of Sydney, New South Wales, 2006, Australia
 11 Freatili, file University of Sydney, New South Wales, 2006, Australia 3. Monash University, 553 St Kilda Road, Melbourne, Victoria, 3004, Australia 13 14 Corresponding author: Lisa Bero, The University of Sydney, D17, The Hub, 6th floor, 15 Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia, emai 16 lisa.bero@sydney.edu.au; Telephone +612 8627 17 18 Word Count: 4530 19 	21	10	2. The University of Sydney, School of Medical Sciences, Faculty of Medicine and
 3. Monash University, 553 St Kilda Road, Melbourne, Victoria, 3004, Australia Corresponding author: Lisa Bero, The University of Sydney, D17, The Hub, 6th floor, Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia, emai lisa.bero@sydney.edu.au; Telephone +612 8627 Word Count: 4530 Word Count: 4530 		11	Health, The University of Sydney, New South Wales, 2006, Australia
 13 14 Corresponding author: Lisa Bero, The University of Sydney, D17, The Hub, 6th floor, 15 Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia, emai 16 lisa.bero@sydney.edu.au; Telephone +612 8627 17 18 Word Count: 4530 19 40 41 42 43 44 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 	24	12	3. Monash University, 553 St Kilda Road, Melbourne, Victoria, 3004, Australia
 ²⁸ 14 Corresponding author: Lisa Bero, The University of Sydney, D17, The Hub, 6th floor, ³¹ 15 Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia, email ³² 16 lisa.bero@sydney.edu.au; Telephone +612 8627 ³³ 18 Word Count: 4530 ³⁹ 19 ³⁹ 19 ³⁹ 19 ³⁰ 19 ³¹ 19 ³¹ 19 ³² 10 ³³ 10 ³⁴ 17 ³⁵ 18 ³⁵ 18 ³⁶ Word Count: 4530 ³⁷ 18 ³⁸ 19 ³⁹ 19 ³⁹ 19 ³⁹ 19 ³⁹ 19 ³⁹ 19 ³⁹ 19 ³⁰ 19 ³¹ 10 ³¹ 10 ³² 10 ³³ 10 ³⁴ 17 ³⁵ 10 ³⁵ 10 ³⁶ 11 ³⁶ 12 ³⁷ 18 ³⁶ Word Count: 4530 ³⁶ 19 ³⁷ 18 ³⁶ 19 ³⁷ 18 ³⁸ 19 ³⁹ 19 ³¹ 10 ³¹ 10 ³² 10 ³⁴ 10 ³⁵ 10 ³⁵ 10 ³⁵ 10 ³⁶ 10 ³⁶ 10 ³⁷ 10 ³⁸ 10 ³⁹ 10 ³⁹ 10 ³⁹ 10 ³⁹ 10 ³⁰ 10 ³¹ 10 ³¹ 10 ³² 10 ³⁵ 10 ³⁵ 10 ³⁵ 10 ³⁶ 10 ³⁶ 10 ³⁶ 10 ³⁷ 10 ³⁸ 10 ³⁹ 10 ³⁹ 10 ³⁹ 10 ³⁹ 10 ³⁹ 10 ³⁹ 10 ³¹ 10 ³¹ 10 ³² 10 ³⁵ 10 ³⁵ 10 ³⁵ 10 ³⁶ 10 ³⁶ 10 ³⁷ 10 ³⁸ 10 ³⁸ 10 ³⁹ 10 ³⁹ 10 ³⁹ 10 ³⁹	26	13	
30 15 Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia, email 31 16 lisa.bero@sydney.edu.au; Telephone +612 8627 34 17 35 18 36 18 Word Count: 4530 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	28	14	Corresponding author: Lisa Bero, The University of Sydney, D17, The Hub, 6th floor,
32 16 lisa.bero@sydney.edu.au; Telephone +612 8627 33 17 36 18 Word Count: 4530 37 18 19 39 9 9 40 41 42 43 44 45 45 46 46 47 47 48 48 49 50 51 51 52 53 54 54 55 56 57 58 59	30	15	Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia, email
34 17 36 18 Word Count: 4530 37 18 19 38 19 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1	32	16	
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	34	17	
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	36	18	Word Count: 4530
40 41 42 43 43 44 44 50 50 51 51 52 53 54 54 55 56 57 58 59	38	19	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	40		
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	42		
46 47 48 49 50 51 52 53 54 55 56 57 58 59			
 47 48 49 50 51 52 53 54 55 56 57 58 59 			
 49 50 51 52 53 54 55 56 57 58 59 			
50 51 52 53 54 55 56 57 58 59			
51 52 53 54 55 56 57 58 59			
53 54 55 56 57 58 59	51		
54 55 56 57 58 59			
55 56 57 58 59			
57 58 59	55		
58 59			
59			
60	59		
	60		

BMJ Open

2 3	20	Abstract
4 5	21	Objective: To determine if the effects of dairy foods on cardiovascular disease outcomes
6 7	22	differ between studies with food industry ties versus those without industry ties. To determine
8 9	23	whether studies with or without industry ties differ in their risk of bias.
10	24	Design: Systematic review and meta-analysis of observational studies.
11 12	25	Setting: We searched 8 databases from 2000-2019 and hand searched the reference lists of
13 14	26	included studies.
15 16	27	Participants: We included cohort and case control studies that estimated the effects of dairy
17	28	foods on cardiovascular disease (CVD) outcomes in healthy adults.
18 19	29	Primary and secondary outcome measures: Primary, 1) statistical significance of results
20 21	30	favourable to dairy, 2) effect size of results, and 3) conclusions; and Secondary, 1) the risk of
22 23	31	bias of the included studies, and 2) concordance between study results and conclusions.
24	32	Results: There was no clear evidence of an association between studies with industry ties
25 26	33	(1/14) vs. no industry ties $(8/29)$ and the reporting of favourable results, RR= 0.26 (95% CI
27 28	34	0.04, 1.87; n=43 studies) and studies with industry ties (4/14) vs. no industry ties (11/29) and
29 30	35	favourable conclusions, RR= 0.75 (95% CI 0.29, 1.95; n=43). For most outcomes, we did not
31	36	find a difference in effect sizes between studies with or without industry ties. Studies with
32 33	37	industry sponsorship, (HR =0.78; n= 3 studies) showed a decreased magnitude of risk of
34 35	38	CVD outcomes compared to studies with no industry sponsorship (HR=0.97; n=18) (ratio of
36 37	39	HRs 0.80 (95% CI 0.66, 0.97)) P=0.03.
38	40	Conclusions: There was no clear evidence of an association between studies with food
39 40	41	industry ties and the reporting of favourable results and conclusions compared with studies
41 42	42	without industry ties. The statistically significant difference in the magnitude of effects
43	43	identified in industry sponsored studies compared to non-industry sponsored studies,
44 45	44	however, is important in quantifying industry influence on studies included in dietary
46 47	45	guidelines.
48 49	46	
50 51 52	47	Keywords: Industry Sponsorship, Conflicts of Interest, Bias, Dietary Guidelines
	48	
53 54	49	Strengths and limitations of this study
55 56	50	• This is the first systematic review and meta-analysis to evaluate the association of
57 58 59 60	51	food industry ties (industry sponsorship and / or author conflicts of interest (COI))

with the results, conclusions and risk of bias of primary nutrition studies examining the effect of dairy foods on cardiovascular disease outcomes and mortality. We conducted a comprehensive search and followed explicit and well-defined • inclusion and exclusion criteria for the included studies. For studies missing a funding or author COI disclosure, we did not contact the • authors; thus we may be underestimating the number of studies with industry ties. The tool that we used to assess the risk of bias is still under modification, however it • is unlikely any future changes to the tool will affect the risk of bias ratings.

We did not analyse studies of low and full fat dairy separately. Industry ties may have different effects on studies of low or full fat dairy foods.

BMJ Open

INTRODUCTION

The effect of dairy foods on cardiovascular disease (CVD) is unclear. Recent systematic reviews and meta-analyses of observational studies have reported conflicting results between the association of total dairy consumption and risk of CVD, with some showing decreased risk and some showing no clear evidence.^{1–4} The beneficial effects of decreasing blood pressure, however, appear more consistent.^{4, 5} Further, dairy intake recommendations made in dietary guidelines around the world vary. Although the Australian Dietary Guidelines concluded that there is a probable association between dairy food consumption and a reduced risk of cardiovascular events,⁶ recent amendments to the Eatwell guidelines by Public Health England recommend a significant reduction in the daily intake of dairy foods.⁷

Food industry sponsors and authors with a conflict of interest (COI) with the food industry may gain financially from finding that dairy foods have health benefits, since such a finding can be used to market dairy products. Such a driver may lead industry sponsors to magnify (or bias) the health benefits of dairy foods by influencing the research agenda, design and conduct of the study, or reporting of the results.⁸⁻¹¹ Prior examinations of pharmaceutical and tobacco research have identified that even when controlling for methodological biases, studies sponsored by industry were more likely to have results that favoured the sponsor than studies with other sources of sponsorship.¹²⁻¹⁴

The effects of food industry sponsorship or author COI with the food industry on study results needs further examination.¹⁵ A systematic review assessing the effects of wholegrain foods on CVD and mortality found that studies with food industry ties more often have favourable results and conclusions compared to those with no industry ties, but the association was uncertain.¹⁶ One study has demonstrated an association of food industry sponsorship with the magnitude of effect estimates.¹⁷ In this examination, studies of soft drink consumption sponsored by the food industry reported significantly smaller harm effect estimates than those with no food industry sponsorship. A recent dairy industry funded meta-analysis of observational studies found that studies without food industry sponsorship showed that dairy consumption was associated with a statistically significant decreased risk of developing CVD and Type 2 diabetes, while studies with food industry sponsorship did not.¹⁸

The primary objective of this systematic review and meta-analysis is to determine whether: Studies of observational design examining the effects of dairy foods on CVD with food industry ties (industry sponsorship and / or authors with a COI) with the food industry are more likely to have results and / or conclusions that are favourable to industry than those with no industry ties. The secondary objectives of this review are to determine whether observational studies with food industry ties compared with no industry ties: I. differ in their risk of bias; II. have a higher level of discordance between study results and conclusions, with the conclusions more likely to be favourable compared to the results. **METHODS** We conducted a systematic review of observational studies examining the effect of dairy consumption on CVD. Our study is registered with Prospero ID CRD42019129659 (see Supplementary file 1).¹⁹ No. **Search Strategy** The search included terms to locate observational studies and randomised control trials, the latter of which are for a separate systematic review. The search used was based on the Process Manual used to develop the 2013 Australian Dietary Guidelines and the guidance of an information specialist.²⁰ The search dates used were to ensure that we identified the studies used to inform the recommendations in these guidelines. We therefore searched the following databases from January 2000-February 2019: MEDLINE; CINAHL; PubMed; PreMEDLINE; Cochrane Library; PsycINFO; Science Direct; and ERIC. The search strategy used for Ovid MEDLINE on February 1, 2019 is shown in Supplementary file 2. We adapted this strategy for the other databases. We hand searched references lists of the identified studies and reviews.

1 2		
- 3 4	125	Eligibility Criteria
5	126	We included studies of cohort or case control designs that estimated the effects of dairy
6 7	127	consumption on CVD outcomes in healthy adults. We focused on these study designs as they
8 9	128	are often used to assess the association of diet with long term health outcomes.
10	129	
11 12	130	We included studies with no restriction on the authors' definition of dairy. For example, some
13 14	131	authors' defined dairy as milk, yogurt and cheese, while others defined dairy as 'whole fat'
15 16	132	milk, yogurt and cheese. We included studies that compared dairy foods to other foods or
17	133	compared various levels of dairy consumption.
18 19	134	
20 21	135	We included studies that measured any clinical outcome of CVD, defined as either mortality
22 23	136	related to specific CVD events, and / or CVD events, (e.g., first myocardial infarction, total
24	137	stroke etc.) or incidence of elevated blood pressure / hypertension.
25 26	138	
27 28	139	We excluded conferences presentations, opinion pieces and letters to the editor. We had no
29 30	140	language restrictions.
31	141	
32 33	142	Types of Outcome Measures
34 35	143	Primary Outcomes
36	144	We hypothesized that studies with food industry sponsorship and / or authors with a COI with
37 38	145	the food industry would be more likely to have favourable findings than those with no
39 40	146	industry ties. We assessed three primary outcomes:
41 42	147	1. Statistical significance of results favourable to dairy
43	148	Favourable results were defined as those that were in the direction of showing a health
44 45	149	benefit of dairy product(s), and were statistically significant at the 0.05 level (two tailed),
46 47	150	such as a statistically significant decreased risk of CVD compared to the comparator (i.e.
48 49	151	another food or lower dairy consumption). Otherwise, results were classified as unfavourable.
50	152	In the circumstance where a study reported multiple results (e.g. first myocardial infarction
51 52	153	and total stroke), only one result needed to be 'favourable' for the study as a whole to be
53 54	154	classified as 'favourable'.
55 56	155	
57	156	2. Effect size of results
58 59	157	Effect size was defined as the risk ratio (RR), hazard ratio (HR) or odds ratio (OR) between
60	158	dairy foods tested versus comparator on the CVD outcome.

2		
3 4	159	
5 6	160	3. Conclusions
7	161	Conclusions that suggested that the dairy consumption was beneficial to health by decreasing
8 9	162	CVD were considered favourable. Otherwise, the conclusions were considered unfavourable.
10 11	163	In the circumstance where a study reported multiple results (e.g. first myocardial infarction
12	164	and total stroke), only one conclusion needed to be 'favourable' for the study as a whole to be
13 14	165	classified as 'favourable'.
15 16	166	
17	167	Secondary Outcomes
18 19 20	168	We assessed two secondary outcomes:
21 22	169	1. The risk of bias of the included studies
23 24	170	To evaluate the risk of bias of included observational studies, we used an adapted version of
25	171	the Cochrane Collaboration's 'Risk of Bias in Non-Randomized Studies-of Interventions'
26 27	172	(ROBINS-I) tool, ²¹ the ROBINS-E ²² . Bias is assessed across seven domains ('Bias due to
28 29	173	confounding', 'Bias in selection of participants', 'Bias in classification of exposures', Bias
30	174	due to deviations from exposures', 'Bias due to missing data', 'Bias in measurement of
31 32	175	outcomes', 'Bias in selection of reported results'), with each domain classified low,
33 34	176	moderate, serious, critical risk of bias, or no information. An overall risk of bias rating for the
35 36	177	study is given based on the domain with the highest risk of bias rating. For example, if a
37	178	study is rated as being at a 'critical' risk of bias in one domain, the overall risk of bias rating
38 39	179	is 'critical.' In the circumstance where a study reported multiple results (e.g. stroke and
40 41	180	myocardial infarction), the risk of bias was only assessed for one randomly selected outcome.
42	404	
43 44	181	
45 46	182	2. Concordance between study results and conclusions
47	183	Results unfavourable to the sponsor with conclusions favourable to the sponsor, were
48 49	184	considered discordant. Otherwise, the results and conclusions were considered concordant.
50 51 52	185	
	186	Selection of studies
53 54	187	Three investigators (NC, SMc & AF), working independently in pairs, screened the titles and
55 56	188	abstracts of all records for obvious exclusions. If both investigators agreed on excluding the
57	189	study, the full text was not retrieved. Three investigators (NC, SMc & AF) working
58 59 60	190	independently in pairs, assessed the full text of potentially eligible studies against the

BMJ Open

3 4	191	inclusion criteria. If agreement could not be reached, a fourth investigator (LB) resolved the
5	192	conflict.
6 7	193	
8 9	194	Selection of results for meta-analysis
10 11	195	If total dairy consumption had been assessed in the study, we included this as our only
12	196	exposure. If total dairy consumption had not been assessed, we included any type of dairy
13 14	197	consumption (e.g. milk, yogurt, and cheese; or low fat, high fat) other than fermented milk as
15 16	198	our exposure. We included the results comparing the highest level of dairy consumption to
17 18	199	the lowest level of dairy consumption (e.g., 'yes' to dairy consumption vs. 'no' to dairy
19	200	consumption, tertile 3 vs. tertile 1, quartile 4 vs. quartile 1, quintile 5 vs. quintile 1). For the
20 21	201	meta-analyses if our pre-specified rules for selecting results did not allow us to uniquely
22 23	202	identify one exposure for inclusion, we randomly selected one result.
24	203	
25 26	204	If 'cardiovascular disease mortality/death/s' (verbatim) had been assessed, we included this
27 28	205	as our only outcome. If not, we included any type of CVD mortality (e.g., coronary heart
29 30	206	disease mortality, stroke mortality etc.) as our outcome. If there were no mortality outcomes
31	207	assessed in the study, we included any CVD event or incidence of elevated blood pressure /
32 33	208	hypertension as our outcome. If a study used a composite outcome, which was a combination
34 35	209	of multiple outcomes, the result pertaining to the composite outcome was selected. For the
36 37	210	meta-analyses if our pre-specified rules for selecting results did not allow us to uniquely
38	211	identify one outcome for inclusion, we randomly selected one result.
39 40	212	
41 42	213	Data Collection
43 44	214	Data Collection From each study we extracted: • Year of publication
45	215	Year of publication
46 47	216	• Study design (cohort or case control)
48 49	217	• Sample size of study
50 51	218	• Age of participants (combined or if reported, separately)
52	219	Exposure duration or observation period
53 54	220	• How the study defined dairy (verbatim)
55 56	221	• Disclosure of funding source (no disclosure, yes and there is a sponsor, the authors
57 58	222	state they received no funding for their work)
59	223	• Name of the funders of the study (verbatim)
60		

2 3	224	• Role of the funders (role of the sponsor not mentioned, sponsor not involved in study
4 5	225	design and analyses, sponsor involved, N/A)
6 7	226	 Disclosure of author COI (no disclosure, yes (if at least 1 author had a COI), the authors
8	227	state they had no conflicts of interest to declare)
9 10	228	 Authors COI statement (verbatim)
11 12	229	 Outcomes assessed in the study (any CVD death and/or event or blood
13 14	230	pressure/hypertension)
15	230	 The numerical results of the study (e.g., OR, HR, RR)
16 17	231	• The numerical results of the study (e.g., OK, TIK, KK)
18 19	232	All extracted data from the included studies was stored in REDcap, a secure web-based
20 21		application for the collection and management of data. ²³ Five investigators (NC, SMc, AF,
22	234	
23 24	235	AL & JD) working independently in pairs extracted data from the included studies.
25 26	236	Discrepancies in data extraction were resolved by consensus. If agreement could not be
27	237	reached, a sixth investigator (LB) resolved the discrepancy.
28 29	238	Classification of industry anoneous in and outhor conflicts of interest
30 31	239	Classification of industry sponsorship and author conflicts of interest
32 33	240	Sponsorship was categorized as 1) industry or 2) non-industry. Industry sponsored studies
34	241	were defined as those that declared any sponsorship from the food industry, including 'Big
35 36	242	Food' (i.e. Danone, Kraft, Unilever etc), trade associations (i.e. dairy associations and
37 38	243	organisations) and dairy industry (i.e. primary producers). Studies with food industry
39	244	sponsorship plus any other sponsorship were classified as industry. Any study that did not
40 41	245	contain a funding disclosure statement was classified as 'non-industry'.
42 43	246	Stadio with at least one with a with our disclosed for a sight in the fact in the two serves
44 45	247	Studies with at least one author with any disclosed financial tie with the food industry were
46	248	classified as having a conflict of interest (COI). Author COI were categorised as 1) COI or 2)
47 48	249	no COI. Studies with no authors with disclosed financial ties with the food industry were
49 50	250	classified as 'no conflict of interest'.
51	251	
52 53	252	Since the number of studies with industry sponsorship or author COI was small, we also
54 55	253	categorized studies as having "industry ties" for analysis. Studies classified as having an
56 57	254	industry tie were industry sponsored and / or had an author COI. Otherwise, they were
58	255	classified as having no industry ties.
59 60	256	

Page 11 of 84

BMJ Open

1		
2 3	257	Analysis
4 5	258	We report the frequencies and percentages of the study characteristics across all studies, and
6 7	259	separately, by sponsorship, COI and industry ties. We visually present the risk of bias rating
8 9	260	for each domain and overall across each study.
10	261	
11 12	262	To quantify the association between industry ties, food industry sponsorship, or authors with
13 14	263	a conflict of interest with the food industry and (i) favourable results, (ii) favourable
15 16	264	conclusions, (iii) overall risk of bias across each study, and (iv) level of concordance, we
17	265	calculated RR (and 95% confidence intervals). To analyse the risk of bias rating for each
18 19	266	study, we dichotomised the overall risk of bias ratings as low (low or moderate) or high
20 21	267	(serious or critical).
22 23	268	
24	269	To examine whether studies with food industry ties, food industry sponsorship, or authors
25 26	270	with a conflict of interest with the food industry modified the magnitude of effect of dairy on
27 28	271	CVD outcomes we used meta-analysis. For each outcome, we combined effect estimates
29	272	using a random effects meta-analysis model using the inverse variance method. DerSimonian
30 31	273	and Laird's method of moments estimator was used to estimate between study heterogeneity.
32 33	274	We fitted separate meta-analyses for studies that had measured the association using HRs and
34 35	275	those that had used either RRs or ORs. It is not recommended to combine HRs with RRs and
36	276	ORs in a meta-analysis, as HRs represent instantaneous risk over the study time period,
37 38	277	whereas RRs and ORs estimate risk/odds at a fixed time point. ²⁴ We considered that the ORs
39 40	278	approximated RRs given CVD events were rare.
41 42	279	
43	280	We undertook a fixed-effects test for subgroup differences (defined by industry sponsorship /
44 45	281	authors conflict of interest) using the Chi2 test and calculated the ratio of RRs (ORs) or HRs
46 47	282	along with 95% confidence intervals. Analyses were undertaken in Review Manager 5.3.25
48	283	
49 50	284	We planned to use sensitivity analysis to assess the influence of risk of bias by restricting the
51 52	285	analysis to studies at 'low risk of bias' overall (i.e. an overall risk of bias rating of low or
53 54	286	moderate). However, as the overall risk of bias was high across all studies, this was not
55	287	undertaken.
56 57	288	
58 59	289	
60		

2 3		
4	290	RESULTS
5 6	291	As shown in Figure 1, there were 1, 858 studies screened for inclusion and 43 studies were
7 8	292	included (3 case controls, 40 cohorts). See Supplementary file 3 for 'List of excluded studies
9	293	and reasons for exclusion'.
10 11	294	
12 13	295	Characteristics of included Studies
14	296	All studies were published between 2001 and 2019. All but one contained a funding
15 16	297	disclosure. Eight studies disclosed food industry sponsorship, but only two of these studies
17 18	298	described the role of the sponsor. Six studies did not contain an author COI disclosure
19	299	statement. Ten studies contained an author with a COI with the food industry. Fourteen
20 21	300	studies were classified as having industry ties, disclosing food industry sponsorship and / or
22 23	301	an author with a COI.
24	302	
25 26	303	As shown in Table 1, most characteristics were similarly distributed across studies with
27 28	304	industry ties or no industry ties. Studies with industry ties (64%) were more likely to have
29	305	sample sizes <5000 than non-industry sponsored studies (34%). A greater proportion of
30 31	306	industry sponsored studies (100%) than non-industry sponsored studies (83%) focused on
32 33	307	total dairy intake rather than a specific food. Details of the individual studies are in
34 35	308	Supplementary file 4.
35 36	309	
37 38	310	
39 40 41	311	
42 43 44	312	
45 46	313	
47 48 49	314	
50 51	315	
52 53	316	
54 55 56	317	
57 58 59 60	318	

319 Table 1. Characteristics of the included studies by sponsorship, author conflict of

320 interest and industry ties

Funding So	ource, n	$(\%^{a})$
------------	----------	------------

			Spor	nsorship	COI		Industry Ties	
Characteristic	Category	Total	Industr	Non-	COI	No	Industry	Non-
		N =	у	Industry	N =10	COI	/COI	Industr
		43	N= 8	N=35		N=33	N = 14	No CO
								N = 29
Sex	Male	5 (12)	0 (0)	5 (14)	0 (0)	5 (15)	0 (0)	5 (17)
	Female	2 (5)	0 (0)	2 (6)	0 (0)	2 (6)	0 (0)	2 (7)
	Both	36	8 (100)	28 (80)	10	26 (79)	14	22 (76)
		(84)			(100)		(100)	
Sample Size	<5000	19	6 (75)	13 (37)	7 (70)	12	9 (64)	10 (34)
		(44)				(36)		
	5000-50,000	18	0 (0)	18 (51)	2 (20)	16 (48)	2 (14)	16 (55)
		(42)						
	>50,000	6 (14)	2 (25)	4 (11)	1 (10)	5 (15)	3 (21)	3 (10)
Length of	N/A*	3 (7)	2 (25)	1 (3)	1 (10)	2 (6)	2 (14)	1 (3)
Follow up								
	<10 years	11	3 (38)	8 (23)	2 (20)	9 (27)	3 (21)	8 (28)
		(26)						
	10-15 years	21	2 (25)	19 (54)**	6 (60)	15	7 (50)	14 (48)
		(49)				(45)**		
	>15 years	8 (19)	1 (13)	7 (20)	1 (10)	7 (21)	2 (14)	6 (21)
Type of	Total Dairy	37	8 (100)	29 (83)	9 (90)	28 (85)	13 (93)	24 (83)
Dairy	Intake***	(86)						
	Individual Dairy	6 (14)	0 (0)	6 (17)	1 (10)	5 (15)	1 (7)	5 (17)
	Foods****							

a Percentages may not add to 100 due to rounding

* Follow up is not applicable for case control studies

324 ** Follow up for Johansson, I 2018 described the follow up as '8-12 years', we took the median of 10 years

325 *** This includes studies that looked at nutrients e.g calcium, fat & protein by measuring total dairy intake

326 ****Individual foods included milk, cheese & yogurt

Risk of bias in included studies Every study was classified as having an overall high risk of bias, with 10 assessed as having a serious risk of bias and 33 as having a critical risk of bias (Figure 2). Most studies were assessed as having a critical risk of bias rating for the domain 'Bias due to confounding'. For example, a confounder was fruit and vegetable intake. If these confounders were not controlled for appropriately when measuring the effect of dairy intake on a CVD outcome, the study was classified as having a risk of bias for the confounding domain. Studies without industry ties or without an author with a COI were more likely to have a serious or critical risk of bias rating for 'Bias in classification of exposures'. For example, if a study did not use a validated food frequency questionnaire to measure the dietary intake of dairy, the study was classified as having a risk of bias for the domain of classification of exposures. For all other domains, the risk of bias classifications were similarly distributed across studies with industry ties, industry sponsorship or COI vs no industry ties, industry sponsorship or COI, respectively (see Supplementary file 5). Favourable results - Statistical significance: Industry ties vs no industry ties; industry sponsorship vs no sponsorship; COI v no COI There was no clear evidence of an association between the reporting of favourable results and studies with industry ties (1/14) compared to those with no industry ties (8/29), RR= 0.26 (95% CI 0.04, 1.87; n=43 studies) (Supplementary file 6). When comparing studies with industry sponsorship (1/8) with those with no industry sponsorship (8/35), there was no clear evidence of an association, RR = 0.55 (95% CI 0.08, 3.77; n=43 studies). There was again no clear evidence of an association between the reporting of favourable results and studies with an author with a COI (0/10) than those with no COI (9/33), RR= 0.16 (95% CI 0.01, 2.57); n=43 studies). Effect Size, Cardiovascular Disease: Industry ties v no industry ties; industry sponsorship vs no industry sponsorship; COI v no COI For studies that quantified the association between dairy consumption and CVD outcomes using a RR, we found no important difference in the magnitude of the effect in studies with industry ties (RR = 0.89; n=3 studies) compared with those studies with no industry ties, (RR= 0.99; n=7 studies) (ratio of RRs 0.90 (95% CI 0.74, 1.09)); P=0.27 (Supplementary file 7).

Page 15 of 84

1 2 BMJ Open

2		
3 4	360	For studies that had quantified the association using HRs, we similarly did not find an
5 6	361	important difference in the magnitude of HRs between studies with industry ties, (HR=0.96;
7	362	n=7 studies) and those studies with no industry ties, (HR=0.95; n=14 studies) (ratio of HRs
8 9	363	1.01 (95% CI 0.90, 1.13)); P=0.86.
10 11	364	
12	365	In our analysis comparing studies with industry sponsorship, (RR 0.83; n=2 studies) and
13 14	366	those with no industry sponsorship, (RR 0.97; n=8 studies) we again did not find an
15 16	367	important difference in the magnitude of RRs (ratio of RRs 0.86 (95% CI 0.44, 1.66));
17	368	P=0.65 (Supplementary file 7). However, when we compared industry sponsored studies,
18 19	369	(HR =0.78; n=3 studies) and non-industry sponsored studies, (HR=0.97; n=18 studies) that
20 21	370	measured the association using HRs, we found a statistically significant difference in the
22	371	magnitude of the HRs (ratio of HRs 0.80 (95%CI 0.66, 0.97)); P=0.03 (Figure 3).
23 24	372	
25 26	373	In our analysis comparing studies with an author with a COI (RR 0.89; n=2 studies) and those
27 28	374	with no COI, (RR 0.99; n= 8 studies) we found no important difference in the magnitude of
29	375	RRs (ratio of RRs 0.90 (95% CI 0.76-1.07)); P=0.22 (Supplementary file 7). When we
30 31	376	compared studies with a COI, (HR =1.00; n= 5 studies) and studies with no COI, (HR=0.93;
32 33	377	n=16 studies) that measured the association using HRs, we again found no difference in the
34 35	378	magnitude of the HRs (ratio of HRs 1.08 (95% CI 0.99, 1.17)); P=0.12.
36	379	
37 38	380	Effect Size, Elevated Blood Pressure / Hypertension: Industry ties v no industry ties,
39 40	381	and industry sponsorship vs no sponsorship
41	382	We found no important difference in the magnitude of the HRs for elevated blood pressure /
42 43	383	hypertension in studies with industry ties, (HR = 0.89 ; n =2) and those studies with no
44 45	384	industry ties, (HR = 0.78; n= 5) (ratio of HRs 1.14 (95% CI 0.88, 1.49); P=0.32
46 47	385	(Supplementary file 7).
48	386	
49 50	387	All of these studies with industry ties also had industry sponsorship, so the ratio of HRs was
51 52	388	the same.
53	389	
54 55	390	Favourable conclusions: Industry ties vs no industry ties; industry sponsorship vs no
56 57	391	sponsorship; COI v no COI
58 59	392	There was no clear evidence of an association between the reporting of favourable
60	393	conclusions and studies with industry ties (4/14) compared to those with no industry ties

(11/29), RR= 0.75 (95% CI 0.29, 1.95; n=43) (Supplementary file 6). When we compared studies only by industry sponsorship, there was no clear evidence of an association between industry sponsored studies (3/8), compared to studies with no sponsorship (12/35), RR = 1.09 (95% CI 0.40, 2.99; n=43). There was again no clear evidence of an association between the reporting of favourable conclusions and studies with an author with a COI (2/10) than those without a COI (13/33), RR= 0.51 (95% CI 0.14, 1.88; n=43 studies). **Risk of Bias Assessment by Industry Ties** As every study had an overall high (serious or critical) risk of bias rating, there was no difference in the proportion of studies at a high risk of bias between those with industry ties, industry sponsorship or COI and those without industry ties, sponsorship or COI. **Concordance between study results and conclusions** Six (of 43) studies, all with unfavorable results, overemphasized the benefits of the dairy exposure in their conclusions and thus were coded as 'favourable' conclusions. There was no clear evidence of an association between discordant results and conclusions and studies with industry ties (3/14) than those with no industry ties (3/29), RR = 2.07 (95% CI 0.48, 8.99; n=43) (Supplementary file 6). There was no clear evidence of an association when comparing studies with industry sponsorship (2/8) to those with no industry sponsorship (4/35), RR = 2.19 (95% CI 0.48-9.94). There was again no clear evidence of an association between studies with an author with a COI (2/10) than those with no COI (4/33), RR = 1.65 (95% CI 0.35, 7.72; n=43). DISCUSSION There was no clear evidence of an association between studies with food industry ties and the reporting of favourable results and conclusions of observational studies measuring the effects of dairy foods on cardiovascular disease outcomes. The 'mixed' group of funders we identified in the industry sponsored studies may influence these results, as the funding effect may be diluted by this heterogeneous group of sponsors. Unlike in drug studies, ¹² the funders in the studies included in this review were extremely diverse, with Big Food and trade

424 association jointly sponsoring several studies. Thus, dairy foods are not their sole interest.

Page 17 of 84

1

BMJ Open

2	
3 4	425
5	426
6 7	427
8 9	428
10 11	429
12	430
13 14	431
15 16	432
17 18	433
19 20	434
21	435
22 23	436
24 25	437
26 27	438
28 29	439
30	440
31 32 33	441
34 35	442
36 37	443
38 39	444
40	445
41 42	446
43 44	447
45 46	448
47	449
48 49	450
50 51	451
52	452
53 54	453
55 56	
57	454
58 59 60	455

The meta-analysis of hazard ratios of CVD outcomes found that studies with industry 25 sponsorship showed a greater benefit from dairy than studies without industry sponsorship, 26 and this difference was statistically significant. The meta-analysis of risk ratios of CVD 27 outcomes found a similar estimate; however, this was not statistically significant. The likely 28 reason for this was that the meta-analysis of RRs had fewer studies, and so the ratio of RRs 29 30 could not be as precisely estimated. We found no evidence of a clinically important difference in the magnitude of effect between studies with industry ties or authors with a COI 31 32 compared to those with no industry ties or no COI for other outcomes.

For every study, the overall risk of bias was classified as high (meaning either serious or
critical). Therefore, differences in the risk of bias across studies with and without industry
ties would not seem to provide an explanation for our findings. However, the version of the
ROBINS-E tool that we used may not have been able to adequately discriminate across the
studies, as perhaps is indicated by the uniformity in risk of bias classification.²⁶ Therefore, we
cannot rule out the possibility that differences in bias across studies with and without industry
ties may partly explain our findings.

442 Strengths and limitations of this review

Our review was prospectively registered in Prospero.¹⁹ We followed explicit inclusion and
exclusion criteria, conducted a comprehensive search across multiple databases and hand
searched reference lists for the included studies.

For those studies missing a funding or author COI disclosure, we did not contact the authors
and we therefore may be underestimating the number of studies with industry ties. The tool
that we used to assess the risk of bias is still under development, however it is unlikely any
future changes to the tool will affect the risk of bias ratings.²² We did not analyse studies of
low and full fat dairy separately. Industry ties may have different effects on studies of low or
full fat dairy foods.

456 Agreements and disagreements with other studies or reviews

The observed greater benefit of dairy on CVD outcomes in industry sponsored studies compared to non-industry sponsored studies corroborates previous research that has demonstrated studies sponsored by the food industry reported smaller harmful effect sizes for soft drink consumption, compared with non-industry sponsored studies.¹⁷ It is not consistent, however, with a recent meta-analysis funded by the Israel Dairy Board that found non statistically significant differences in the estimated associations between industry and non-industry funded studies.¹⁸ The differences in the results of our current review and this previous study can be attributed to a number of important factors in how the studies were conducted, including how the exposures were classified, the outcomes selected for the meta-analyses and the analysis method used. For the exposures, our review included yogurt and cheese, as well as 'total dairy' and milk, whereas the Dairy Board study included only 'total dairy' and milk as exposures. We included all outcomes related to CVD, and the Dairy Board study included only CVD and stroke, as well as Type 2 diabetes. For the analysis method, we fitted separate meta-analyses for studies that had measured the association using HRs and those that had used either RRs or ORs, while the Dairy Board study only measured the associations using RRs.

The lack of difference in the risks of bias between studies with industry ties and those with no industry ties, is consistent with a previous review that examined the association of industry ties with outcomes of studies examining the effect of wholegrain foods on CVD and mortality that used the same tool to assess risk of bias.¹⁶ These findings have also been shown in pharmaceutical and tobacco research that have demonstrated industry sponsored studies are of equal or better internal validity than studies with no sponsorship.^{12, 13, 15, 27, 28}

481 Implications for clinicians, policy makers and future research

As dietary guidelines depend on an evidence base that should be as free as possible of bias,
the difference in the magnitude of effects between industry sponsored studies compared to
non-industry sponsored studies is concerning. Therefore, the dairy intake recommendations
made in dietary guidelines should account for the potential influence of industry sponsorship
on evidence of health effects.

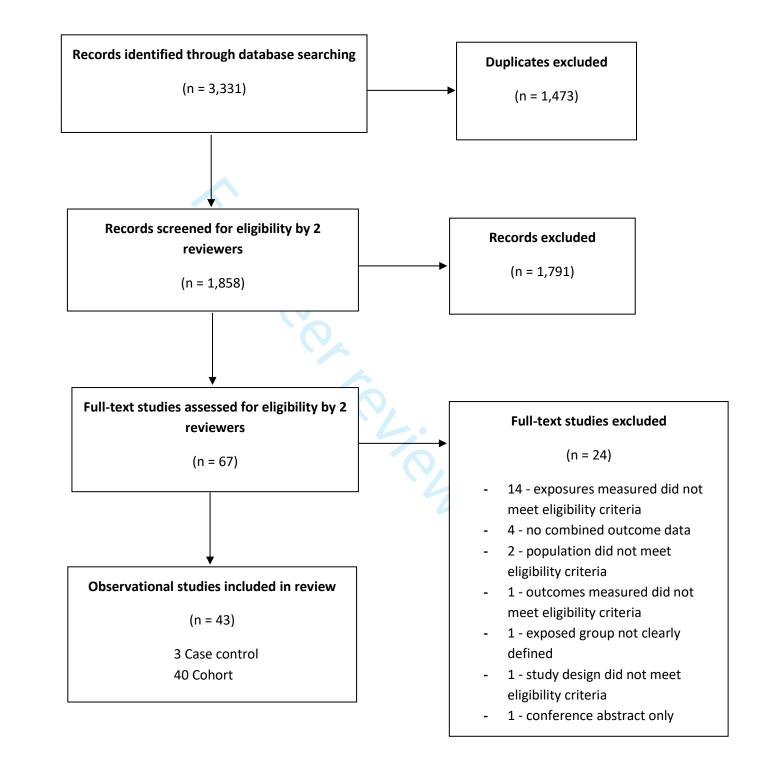
Page 19 of 84

BMJ Open

Industry sponsors may bias research via different mechanisms, including the design and conduct of a study, the selective reporting of results and by spinning conclusions,¹¹ as well as how the questions are asked.²⁹ It has been suggested that the dairy industry may preferentially fund research on topics which will provide them with more favourable outcomes.³⁰ The influence of the food industry on the research agenda has been demonstrated in an examination of research topics covered by samples of randomised controlled trials included in systematic reviews of nutrition studies and obesity.³¹ It was shown that most food industry studies focused on the manipulations of specific nutrients, and not on dietary behaviours, therefore limiting the public health relevance of rigorous evidence available for use in both systematic reviews and dietary guidelines.³¹ The topics examined in cohort studies on the relationship of nutrition and obesity, which tend to focus on more complex exposures than trials, did not demonstrate a similar influence of funding source. However, the disclosure of food industry sponsorship was low, making a comparison difficult.³²

503 Conclusion

There was no clear evidence of an association between studies with food industry ties and the
reporting of favourable results and conclusions compared with studies without industry ties.
However, the statistically significant difference in the magnitude of effects identified in
industry sponsored studies compared to non-industry sponsored studies is important in
quantifying industry influence on studies included in dietary guidelines.


3 4	509	Acknowledgements: We thank Agnes Lau, University of California, San Francisco, for her
5	510	assistance with data collection.
6 7 8	511	
9 10	512	Contributors: NC, AF and LB designed and wrote the review protocol. NC wrote the search
10 11 12	513	strategy and undertook the literature search. NC, AF and SMc, conducted the title and
12 13	514	abstract screening and full article screening for final study inclusion. NC, AF, JD, AL and
14 15	515	SMc conducted data collection and cleaning, LB supervised. NC and JMc undertook all data
16	516	analysis. LB advised on methods, statistical analyses, and interpretation of findings. All
17 18	517	authors contributed to the final manuscript. NC and LB are guarantors.
19 20 21	518	
22 23	519	Funding: This work was supported by Australian Health and Medical Research Council
24 25	520	Project Grant APP 1139997. Nicholas Chartres is a recipient of the James Millner PhD
25 26 27	521	Scholarship in Pharmacy from the University of Sydney.
28 29	522	
30 31 32	523	Competing interests: None declared.
33 34	524	
35 36	525	Data sharing statement: Available from The University of Sydney data repository. DOI to
37 38	526	be determined.
39 40 41	527	
42 43	528	Patient consent for publication: Not required.
44 45		
46		
47 48		
49		
50		
51		
52		
53		
54 55		
55 56		
50 57		
58		
59		
60		

229 References 330 1. Qin LQ, Xu JY, Han SF, et al. Dairy consumption and risk of Cardiovascular disease: an updated meta-analysis of prospective cohort studies. <i>Asia Pac J Clin Nutr.</i> 2015;24(1):90-100. 331 2. Alexander DD, Pylsma LC, Vargas AJ, et al. Dairy consumption and CVD: a systematic review and meta-analysis. <i>al V Nutr.</i> 2016;115(4):73-50. 335 3. Gholami F, Khoramdad M, Esmalinasab N, et al. The effect of dairy consumption on the prevention of cardiovascular diseases: A meta-analysis of prospective studies. <i>J Cardiovasc Thorac</i> <i>Res.</i> 2017;9(1):1-11. 336 4. Drouin-Chartier JP, Brassard D, Tessier-Grenier M, et al. Systematic Review of the Sasociation between Dairy Product Consumption and Risk of Cardiovascular-Related Clinical Outcomes. <i>Adv Nutr.</i> 2016;7(6):1026-40. 541 5. Lee M, Lee H, Kim J, Dairy food consumption is associated with al lower risk of the metabolic syndrome and its components: a systematic review and meta-analysis. <i>Br J Nutr.</i> 2018;120(4):373- 384. 545 6. National Health and Medical Research Council: Department of Health and Ageing. Australian Dietary Guidelines. Camberra, Commonwealth of Australia: NHMRC; 2013. 546 7. Public Health England. The Eavell Guide. Internet: J. 2016. Available from: https://www.gov.uk/government/publications/the-eatwell-guide. Accessed 18 March, 2016. 547 1. Drose who have the gold make the evidence: how the pharmaceutical industry biases the outcomes of clinical trials of medications. <i>Sci Eng Ethics</i> , 18(2):2047-61. 548 8. Lexchin J, Mintzes B,	1		
 Interfects Interfects	2		
 Qin LQ, Xu JY, Han SF, et al. Dairy consumption and risk of cardiovascular disease: an updated meta-analysis of prospective cohort studies. <i>Asia Pac J Clin Nutr.</i> 2015;24(1):90-100. Alexander DD, Bythan LC, Vargas AJ, et al. Dairy consumption and CVD: a systematic review and meta-analysis. <i>Br J Nutr.</i> 2016;115(4):737-50. Gholami F, Khoramdad M, Esmailinasab N, et al. The effect of dairy consumption on the prevention of cardiovascular diseases: A meta-analysis of prospective studies. <i>J Cardiovasc Thorac Res.</i> 2017;9(1):1-11. Drouin-Chartier JP, Brassard D, Tessler-Grenier M, et al. Systematic Review of the Association between Dairy Product Consumption and Risk of Cardiovascular-Related Clinical Outcomes. <i>Adv Nutr.</i> 2016;7(6):1026-40. Lee M, Lee H, Kim J, Dairy food consumption is associated with a lower risk of the metabolic syndrome and its components: a systematic review and meta-analysis. <i>Br J Nutr.</i> 2018;120(4):373- A. A. National Health and Medical Research Council: Department of Health and Ageing. Australian Dietary Guidelines. Canberra, Commonwealth of Australian. NHMRC; 2013. Public Health England. The Eatwell Guide. [Internet]. 2016. Available from: https://www.gov.uk/government/publicatins/the.eatwell.guide. Acessed 18 March, 2016. Lex Chin J. Those who have the gold make the evidence: how the pharmaceutical industry blases the outcomes of clinical trials of medications. <i>Sci Eng Ethics</i>, 19(2):247-61. Sismondo S. How pharmaceutical industry funding and frets trial outcomes: causal structures and responses. Social science & medicine (1982). 2008;66(9):1909-14. Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled trials with statistically nonsignificant results for primary outcomes. <i>JMAA</i>. 2010;3(20):2058-64. Mottaro BJ, Porsyth SR, White J, et al. The cycle of bias in health research. <i>J Heal</i>		529	References
 J. Up LD, XU /Y, Han SF, et al. Dairy consumption and risk of cardiovascular disease: an updated meta-analysis of prospective cohort studies. <i>Asia Pac J Clin Nutr.</i> 2015;24(1):90-100. Alexander DD, Bylsma LC, Vargas AJ, et al. Dairy consumption and CVD: a systematic review and meta-analysis. <i>Br J Nutr.</i> 2016;115(4):737-50. Gholami F, Khoramdad M, Esmailinasab N, et al. The effect of dairy consumption on the prevention of cardiovascular disease: A meta-analysis of prospective studies. <i>J Cardiovasc Thorac</i> Res. 2017;9(1):1-11. Drouin-Chartier JP, Brassard D, Tessier-Grenier M, et al. Systematic Review of the Association between Dairy Product Consumption and Risk of Cardiovascular-Related Clinical Outcomes. <i>Adv Nutr.</i> 2016;7(6):1026-40. Lee M, Lee H, Kim J, Dairy food consumption is associated with a lower risk of the metabolic syndrome and its components: a systematic review and meta-analysis. <i>Br J Nutr.</i> 2018;120(4):373-84. National Health and Medical Research Council: Department of Health and Ageing. Australian Dietary Guidelines. Canberra, Commonwealth of Australia: NHMRC; 2013. Public Health England. The Eatwell Guide. [Internet]. 2016. Available from: https://www.go.uk/governmet/publications. <i>Sci Leg Hits</i>: 18(2):247-61. Sismondo S. How pharmaceutical industry funding affects trial outcomes: causal structures and responses. Social science & medicine (1982). 2008;6(6):1909-14. Boutron I, Dutton S, Ravad P, et al. The cycle of bais in health research: a framework and toolbox for critical appraisal training. <i>Account Res</i>. 2013;2(2):127-61. Barnes DE, Bero LA. Industry-funded research and Conflict of interest: an analysis of research and toolbox for critical appraisal training. <i>Account Res</i>. 2013;20(2):127-41. Dietaros S. Social appraisal training. <i>Account Res</i>. 2013;20(2):127-41. Chartres N, Fabbri A, Bero LA. Association of industry sponsorship wit		530	
 updated meta-analysis of prospective cohort studies. <i>Asia Pac J Clin Nutr.</i> 2015;24(1):90-100. Alexander DD, Pykma LC, Vargas AJ, et al. Dairy consumption and CVD: a systematic review and meta-analysis. <i>Br J Nutr.</i> 2016;115(4):737-50. Gholami F, Khoramdad M, Esmailinasab N, et al. The effect of dairy consumption on the prevention of cardiovascular diseases: A meta-analysis of prospective studies. <i>J Cardiovasc Thorac Res.</i> 2017;9(1):1-11. Touin-Chartier JP, Brassard D, Tessier-Grenier M, et al. Systematic Review of the Association between Dairy Product Consumption and Risk of Cardiovascular-Related Clinical Outcomes. <i>Adv Nutr.</i> 2016;7(6):1026-40. Lee M, Lee H, Kim J, Dairy food consumption is associated with a lower risk of the metabolic syndrome and its components: a systematic review and meta-analysis. <i>Br J Nutr.</i> 2018;120(4):373-348. Matonal Health and Medical Research Council: Department of Health and Ageing. Australian Dietary Guidelines. Canberra, Commonwealth of Australia: NHMRC; 2013. Public Health England. The Eatwell Guide. Internet]. 2016. Available from: https://www.gov.uk/governmenl/publications/the-eatwell-guide. Acessed 18 March, 2016. Lexchin J. Those who have the gold make the evidence: how the pharmaceutical industry biases the outcomes of clinical trials of medications. <i>Sci Eng Ethics</i>, 18(2):247-61. Sismondo S. How pharmaceutical Industry founding affects trial outcomes: causal structures and response. Social science & medicine (1982). 2008;6(6):1909-14. Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled trials with statistically nonsignificant results for primary outcomes. <i>JAMA</i>, 2010;303(20):2058-64. Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled 555 tolders. Dyth SR, White J, et al. The cycle of bias in health research: a framework and toolbox for critical a		531	1. Qin LQ, Xu JY, Han SF, et al. Dairy consumption and risk of cardiovascular disease: an
 Alexander DD, Bylsma LC, Vargas AJ, et al. Dairy consumption and CVD: a systematic review and meta-analysis. <i>Br J Nutr.</i> 2016;115(4):737-50. Gholami F, Khoramdad M, Esmainasab N, et al. The effect of dairy consumption on the prevention of cardiovascular diseases: A meta-analysis of prospective studies. <i>J Cardiovasc Thorac</i> <i>Res.</i> 2017;9(1):1-11. Torouin-Chartler JP, Brassard D, Tessier-Grenler M, et al. Systematic Review of the Sasociation between Dairy Product Consumption and Risk of Cardiovascular-Related Clinical Outcomes. <i>Adv Nutr.</i> 2016;7(6):1026-40. Lee M, Lee H, Kim J, Dairy food consumption is associated with a lower risk of the metabolic syndrome and its components: a systematic review and meta-analysis. <i>Br J Nutr.</i> 2018;120(4):373- 84. National Health and Medical Research Council: Department of Health and Ageing. Australian Dietary Guidelines. Canberra, Commonwealth of Australia: NHMRC; 2013. Public Health England. The Eatwell Guide. [Internet]. 2016. Available from: https://www.gov.uk/government/publications/the-eatwell-guide. Acesssed 18 March, 2016. Lexchin J. Those who have the gold make the evidence: how the pharmaceutical industry blases the outcomes of clinical trials of medications. <i>Sci Eng Ethics</i>.18(2):247-61. Sismondo S. How pharmaceutical industry funding affects trial outcomes: causal structures and responses. Social science & medicine (1982). 2008;66(9):1909-14. Boutron I, Dutton S, Ravaud P, et al. Reporting and Interpretation of randomized controlled stials with statistically nonsignificant results for primary outcomes. <i>JAMA</i>. 2010;33(20):208-64. Cuudh A, Lexchin J, Mintzes B, et al. Industry sponsorship and research outcome. <i>Cochrane</i> <i>Database Syst Rev.</i> 2017;2:Mr00033. Barnes DE, Bero LA. Industry funded research and conflict of interest: an analysis of research sponsorehip with bolacco industry through the Center for Indoor Air Resear		532	updated meta-analysis of prospective cohort studies. Asia Pac J Clin Nutr. 2015;24(1):90-100.
10 535 3. Gholami F, Khoramdad M, Esmainasab N, et al. The effect of dairy consumption on the prevention of cardiovascular diseases: A meta-analysis of prospective studies. <i>J Cardiovasc Thorac</i> 537 538 4. Drouin-Chartier JP, Brassard D, Tessier-Grenier M, et al. Systematic Review of the 539 539 Association between Dairy Product Consumption and Risk of Cardiovascular-Related Clinical 540 541 5. Lee M, Lee H, Kim J, Dairy food consumption is associated with a lower risk of the metabolic 542 543 6. National Health and Medical Research Council: Department of Health and Ageing. Australian 545 544 6. National Health England. The Eatwell Guide. [Internet]. 2016. Available from: 546 547 https://www.gov.uk/government/publications/the-eatwell-guide. Accessed 18 March, 2016. 548 Euckhin J. Those who have the gold make the evidence: how the pharmaceutical industry 549 549 Bucthin J. Those who have the gold make the evidence: how the pharmaceutical industry 541 551 and responses. Social science & medicine (1982). 2008;66(9):1909-14. 552 10. Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled 552 553 11. Odierna DH, Forsyth SP, White J, et al. The cycle of bias in health research: a framework and 555 554 12. Lundh A, Lexchin J, Mi		533	2. Alexander DD, Bylsma LC, Vargas AJ, et al. Dairy consumption and CVD: a systematic review
 prevention of cardiovascular diseases: A meta-analysis of prospective studies. <i>J Cardiovasc Thorac</i> <i>Res</i>. 2017;9(1):1-11. A. Drouin-Chartier JP, Brassard D, Tessier-Grenier M, et al. Systematic Review of the Association between Dairy Product Consumption and Risk of Cardiovascular-Related Clinical Outcomes. <i>Adv Nutr</i>. 2016;7(6):1026-40. Lee M, Lie H, Kim J, Dairy food consumption is associated with a lower risk of the metabolic syndrome and its components: a systematic review and meta-analysis. <i>Br J Nutr</i>. 2018;120(4):373- A. National Health and Medical Research Council: Department of Health and Ageing. Australian Dietary Guidelines. Canberra, Commonwealth of Australia: NHMRC; 2013. Public Health England. The Eatwell Guide. [Internet]. 2016. Available from: https://www.gov.uk/government/publications/the-eatwell-guide. Acesssed 18 March, 2016. B. Lexchin J. Those who have the gold make the evidence: how the pharmaceutical industry biases the outcomes of clinical trials of medications. <i>Sci Eng Ethis</i>. 18(2):247-61. Sismondo S. How pharmaceutical industry funding affects trial outcomes: causal structures and responses. Social science & medicine (1982). 2008;66(9):1909-14. Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled trais of tricical appraisal training. <i>Account Res</i>. 2013;20(2):274-41. Lundh A, Lexchin J, Mintzes B, et al. Industry sponsorship and research outcome. <i>Cochrane Database Syste</i>. 49: 217-211/21/21515-42. Barnes DE, Bero LA. Industry-funded research and conflict of interest: an analysis of research sponsored by the tobacco industry through the Center for Indoor Air Research. <i>J Health Policy Low</i>. 996(2):1395-154. Chartres N, Fabbri A, McDonald S, et al. Association of industry sponsorship with	9	534	and meta-analysis. <i>Br J Nutr</i> . 2016;115(4):737-50.
Res. 2017;9(1):1-11. 4. Drouin-Chartier JP, Brassard D, Tessier-Grenier M, et al. Systematic Review of the Association between Dairy Product Consumption and Risk of Cardiovascular-Related Clinical Outcomes. Adv Nutr. 2016;7(6):1026-40. 5. Lee M, Lee H, Kim J, Dairy food consumption is associated with a lower risk of the metabolic 5.41 S. 5.42 Lee M, Lee H, Kim J, Dairy food consumption is associated with a lower risk of the metabolic 5.43 Syndrome and its components: a systematic review and meta-analysis. <i>Br J Nutr.</i> 2018;120(4):373- 5.43 A. 5.44 Eaxth I Eatwell Guide. [Internet]. 2016. Available from: 5.45 Public Health England. The Eatwell Guide. [Internet]. 2016. Available from: 5.46 N. Rutovick M, Kownenet/Dublications/the-eatwell-guide. Acessed 18 Mmrch, 2016. 5.47 Public Health England. The Eatwell Guide. [Internet]. 2016. Available from: 5.48 Lexchin J. Those who have the gold make the evidence: how the pharmaceutical industry biases the outcomes of clinical trials of medications. <i>Sci Eng Ethics</i> .18(2):247-61. 5.51 and responses. Social science & medicine (1982). 2008;66(9):1909-14. 5.51 and responses. Social science & medicine (1982). 2008;66(9):1909-14. 5.51 and responses. Social science & medicine (1982). 2008;66(9):1909-14.		535	3. Gholami F, Khoramdad M, Esmailnasab N, et al. The effect of dairy consumption on the
 John Marken Marken Jahren J. Status and St		536	prevention of cardiovascular diseases: A meta-analysis of prospective studies. J Cardiovasc Thorac
 Journe Lander JP, bissand D, ressender J, Fessen JP, Bisk of Cardiovascular-Related Clinical Outcomes. Adv Nutr. 2016;7(6):1026-40. Lee M, Lee H, Kim J, Dairy food consumption and Risk of Cardiovascular-Related Clinical Outcomes. Adv Nutr. 2016;7(6):1026-40. Lee M, Lee H, Kim J, Dairy food consumption is associated with a lower risk of the metabolic syndrome and its components: a systematic review and meta-analysis. <i>Br J Nutr.</i> 2018;120(4):373- 44. National Health and Medical Research Council: Department of Health and Ageing. Australian Dietary Guidelines. Canberra, Commonwealth of Australia: NHMRC; 2013. Public Health England. The Eatwell Guide. [Internet]. 2016. Available from: https://www.gov.uk/government/publications/the-eatwell-guide. Accessed 18 March, 2016. Leckin J. Those who have the gold make the evidence: how the pharmaceutical industry biases the outcomes of clinical trials of medications. <i>Sci Eng Ethics</i>.18(2):247-61. Sisomodo S. How pharmaceutical industry funding affects trial outcomes: causal structures and responses. Social science & medicine (1982). 2008;66(9):1909-14. Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled trials with statistically nonsignificant results for primary outcomes. <i>JAMA</i>. 2010;302(0):2058-64. Odierna DH, Forsyth SR, White J, et al. Industry sponsorship and research and conclusions to trials with statistically nonsignificant research and conflict of interest: an analysis of research sponsored by the tobacce industry through the Center for Indoor Air Research. J Health Policy <i>Low</i>. 1996;21(3):515-42. Sei T, Yark V, Rennie D, Bero LA. Financial ties and concordance between results and conclusions in meta-analysis: retrospective cohort study. <i>BMI</i>.335(7631):1202-5. Chartres N, Fabbri A, McDonald S, et al. Association of industry ties with outcomes of sudies: Asystematic review and meta-a		537	Res. 2017;9(1):1-11.
 Association between Dairy Product Consumption and Risk of CardioVascular-Related Clinical Outcomes. Adv Nutr. 2016;7(6):1026-40. Lee M, Lee H, Kim J. Dairy food consumption is associated with a lower risk of the metabolic syndrome and its components: a systematic review and meta-analysis. Br J Nutr. 2018;120(4):373- 84. National Health and Medical Research Council: Department of Health and Ageing, Australian Dietary Guidelines. Canberra, Commonwealth of Australia: NHMRC; 2013. Public Health England. The Eatwell Guide. [Internet]. 2016. Available from: https://www.gov.uk/government/publications/the-eatwell-guide. Acesssed 18 March, 2016. Lexchin J. Those who have the gold make the evidence: how the pharmaceutical industry biases the outcomes of clinical trials of medications. <i>Sci Eng Ethics</i>, 18(2):247-61. Sismondo S. How pharmaceutical industry funding affects trial outcomes: causal structures and responses. Social science & medicine (1982). 2008;66(9):1909-14. Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled trials with statistically nonsignificant results for primary outcomes. <i>JAMA</i>. 2010;303(20):2058-64. Ollow Ton I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled trials with statistically nonsignificant results for primary outcomes. <i>JAMA</i>. 2010;303(20):2058-64. Clundh A, Lexchin J, Mintzes B, et al. Industry sponsorship and research: a framework and toolbox For critical appraisal training. <i>Account Res.</i> 2013;20(2):127-41. Lundh A, Lexchin J, Mintzes B, et al. Industry sponsorship and research. <i>J Health Polit Policy Law</i>. 1996;21(3):515-42. Lundh A, Lexchin J, Mintzes B, et al. Association of industry sponsorship with outcomes of nutrition studies:		538	4. Drouin-Chartier JP, Brassard D, Tessier-Grenier M, et al. Systematic Review of the
 Outcomes. Adv Nutr. 2016;7(6):1026-40. S. Lee M, Lee H, Kim J, Dairy food consumption is associated with a lower risk of the metabolic syndrome and its components: a systematic review and meta-analysis. Br J Nutr. 2018;120(4):373-84. A. National Health and Medical Research Council: Department of Health and Ageing. Australian Dietary Guidelines. Canberra, Commonwealth of Australia: NHMRC; 2013. Public Health England. The Eatwell Guide. [Internet]. 2016. Available from: https://www.gov.uk/government/publications/the-eatwell-guide. Accessed 18 March, 2016. R. Lexchin J. Those who have the gold make the evidence: how the pharmaceutical industry biases the outcomes of clinical trials of medications. Sci Eng Ethics.18(2):247-61. S. Sismondo S. How pharmaceutical industry funding affects trial outcomes: causal structures and responses. Social science & medicine (1982). 2008;66(9):1909-14. Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled trials with statistically nonsignificant results for primary outcomes. JAMA. 2010;302(0):2058-64. Odierna DH, Forsyth SR, White J, et al. The cycle of bias in health research: a framework and toolbox for critical appraisal training. Account Res. 2013;20(2):127-41. Barnes DE, Bero LA. Industry-funded research and conflict of interest: an analysis of research sponsored by the tobacco industry through the Center for Indoor Air Research. J Health Polit Policy Low. 1996;21(3):515-42. Chartres N, Fabbri A, Bero LA. Financial ties and concordance between results and conclusions in meta-analyses: retrospective cohort study. BMJ:35(7631):1202-5. Sc. Chartres N, Fabbri A, Bero LA. Financial ties and concordance between results and conclusions in meta-analyses: retrospective cohort study. BMJ:35(7631):202-5. Chartres N, Fabbri A, Bero LA. Financial ties and concordance between results and conclusions		539	Association between Dairy Product Consumption and Risk of Cardiovascular-Related Clinical
 541 5. Lee M, Lee H, Kim J, Dairy food consumption is associated with a lower risk of the metabolic syndrome and its components: a systematic review and meta-analysis. <i>Br J Nutr.</i> 2018;120(4):373- 543 6. National Health and Medical Research Council: Department of Health and Ageing. Australian Dietary Guidelines. Canberra, Commonwealth of Australia: NHMRC; 2013. 7. Public Health England. The Eatwell Guide. [Internet]. 2016. Available from: https://www.gov.uk/government/publications/the-eatwell-guide. Acessed 18 March, 2016. 548 8. Lexchin J. Those who have the gold make the evidence: how the pharmaceutical industry biases the outcomes of clinical trials of medications. <i>Sci Eng Ethics</i>. 18(2):247-61. 9. Sismondo S. How pharmaceutical industry funding affects trial outcomes: causal structures and responses. Social science & medicine (1982). 2008;66(9):1909-14. 551 10. Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled trials with statistically nonsignificant results for primary outcomes. <i>JAMA</i>. 2010;303(20):2058-64. 11. Odierna DH, Forsyth SR, White J, et al. The cycle of bias in health research: a framework and toolbox for critical appraisal training. <i>Account Res</i>. 2013;20(2):127-41. 13. Barnes DE, Bero LA. Industry-funded research and conflict of interest: an analysis of research sponsored by the tobacco industry through the Center for Indoor Air Research. <i>J Health Polic Policy Law</i>. 1996;21(3):515-42. 14. Yank V, Rennie D, Bero LA. Financial ties and concordance between results and conclusions in meta-analysis. <i>BMU Open</i>. 2019;9(5):e022912. 15. Chartres N, Fabbri A, Bero LA. Association of industry ties with outcomes of suntition studies: A systematic review and meta-analysis. <i>JMM Litern Med</i>. 2016;176(12):1769-77. 16. Chartres N, Fabbri A, Bero LA. Financial ties and concordance between results and conclusions in meta-anal		540	Outcomes. <i>Adv Nutr</i> . 2016;7(6):1026-40.
 543 84. 543 84. 544 6. National Health and Medical Research Council: Department of Health and Ageing. Australian 545 Dietary Guidelines. Canberra, Commonwealth of Australia: NHMRC; 2013. 7. Public Health England. The Eatwell Guide. [Internet]. 2016. Available from: 546 7. Public Health England. The Eatwell Guide. [Internet]. 2016. Available from: 547 https://www.gov.uk/government/publications/the-eatwell-guide. Acesssed 18 March, 2016. 548 8. Lexchin J. Those who have the gold make the evidence: how the pharmaceutical industry biases the outcomes of clinical trials of medications. <i>Sci Eng Ethics</i>.18(2):247-61. 9. Sismondo S. How pharmaceutical industry funding affects trial outcomes: causal structures and responses. Social science & medicine (1982). 2008;66(9):1909-14. 552 10. Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled trials with statistically nonsignificant results for primary outcomes. <i>JAMA</i>. 2010;303(20):2058-64. 11. Odierna DH, Forsyth SR, White J, et al. The cycle of bias in health research: a framework and toolbox for critical appraisal training. <i>Account Res.</i> 2013;20(2):127-41. 12. Lundh A, Lexchin J, Mintzes B, et al. Industry sponsorship and research outcome. <i>Cochrane</i> <i>Database Syst Rev.</i> 2017;2:Mn000033. 13. Barnes DE, Bero LA. Industry-funded research and conflict of interest: an analysis of research sponsored by the tobacco industry through the Center for Indoor Air Research. <i>J Health Polit Policy Law.</i> 1996;21(3):515-42. 14. Yank V, Rennie D, Bero LA. Financial ties and concordance between results and conclusions in meta-analysis: retrospective cohort study. <i>BMJ</i>.335(7631):1202-5. 15. Chartres N, Fabbri A, Bero LA. Bissociation of industry ties with outcomes of studies		541	
 544 6. National Health and Medical Research Council: Department of Health and Ageing. Australian 545 Dietary Guidelines. Canberra, Commonwealth of Australia: NHMRC; 2013. 7. Public Health England. The Eatwell Guide. [Internet]. 2016. Available from: https://www.gov.uk/government/publications/the-eatwell-guide. Acesssed 18 March, 2016. 548 8. Lexchin J. Those who have the gold make the evidence: how the pharmaceutical industry biases the outcomes of clinical trials of medications. <i>Sci Eng Ethics</i>. 18(2):247-61. 9. Sismondo S. How pharmaceutical industry funding affects trial outcomes: causal structures and responses. Social science & medicine (1982). 2008;66(9):1909-14. Doi Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled trials with statistically nonsignificant results for primary outcomes. <i>IAMA</i>. 2010;03(20):2058-64. 11. Odierna DH, Forsyth SR, White J, et al. The cycle of bias in health research: a framework and toolbox for critical appraisal training. <i>Account Res</i>. 2013;20(2):127-41. 12. Lundh A, Lexchin J, Mintzes B, et al. Industry sponsorship and research outcome. <i>Cochrane</i> <i>Database Syst Rev</i>. 2017;2:Mr000033. 13. Barnes DE, Bero LA. Industry-funded research and conflict of interest: an analysis of research sponsored by the tobacco industry through the Center for Indoor Air Research. <i>J Health Policy Uov</i>. 1996;21(3):515-42. 14. Yank V, Rennie D, Bero LA. Financial ties and concordance between results and conclusions in meta-analyses: retrospective cohort study. <i>BMJ</i>.355(7631):1202-5. 15. Chartres N, Fabbri A, Bero LA. Association of industry ties with outcomes of nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med</i>. 2016;176(12):1769-77. 16. Chartres N, Fabbri A, Be		542	syndrome and its components: a systematic review and meta-analysis. Br J Nutr. 2018;120(4):373-
 545 Dietary Guidelines. Canberra, Commonwealth of Australia: NHMRC; 2013. 546 7. Public Health England. The Eatwell Guide. [Internet]. 2016. Available from: 547 https://www.gov.uk/government/publications/the-eatwell-guide. Acesssed 18 March, 2016. 548 8. Lexchin J. Those who have the gold make the evidence: how the pharmaceutical industry 549 biases the outcomes of clinical trials of medications. <i>Sci Eng Ethics</i>.18(2):247-61. 550 9. Sismondo S. How pharmaceutical industry funding affects trial outcomes: causal structures 551 and responses. Social science & medicine (1982). 2008;66(9):1909-14. 552 10. Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled 553 trials with statistically nonsignificant results for primary outcomes. <i>IAMA</i>. 2010;303(20):2058-64. 11. Odierna DH, Forsyth SR, White J, et al. The cycle of bias in health research: a framework and toolbox for critical appraisal training. <i>Account Res</i>. 2013;20(2):127-41. 12. Lundh A, Lexchin J, Mintzes B, et al. Industry sponsorship and research outcome. <i>Cochrane</i> <i>Database Syst Rev</i>. 2017;2:M000033. 13. Barnes DE, Bero LA. Industry-funded research and conflict of interest: an analysis of research sponsored by the tobacco industry through the Center for Indoor Air Research. <i>J Health Polit Policy</i> <i>Low</i>. 1996;21(3):515-42. 14. Yank V, Rennie D, Bero LA. Financial ties and concordance between results and conclusions in meta-analyses: retrospective cohort study. <i>BMJ</i>.335(7631):1202-5. 15. Chartres N, Fabbri A, Bero LA. Association of industry sponsorship with outcomes of nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med</i>. 2016;176(12):1769-77. 16. Chartres N, Fabbri A, McDonald S, et al. Association of industry tis with outcomes of studie			
 Public Health England. The Eatwell Guide. [Internet]. 2016. Available from: https://www.gov.uk/government/publications/the-eatwell-guide. Acessed 18 March, 2016. Lexchin J. Those who have the gold make the evidence: how the pharmaceutical industry biases the outcomes of clinical trials of medications. <i>Sci Eng Ethics</i>. 18(2):247-61. Sismondo S. How pharmaceutical industry funding affects trial outcomes: causal structures and responses. Social science & medicine (1982). 2008;66(9):1909-14. Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled trials with statistically nonsignificant results for primary outcomes. <i>JAMA</i>. 2010;303(20):2058-64. O Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled toolbox for critical appraisal training. <i>Account Res</i>. 2013;20(2):127-41. Lundh A, Lexchin J, Mintzes B, et al. Industry sponsorship and research outcome. <i>Cochrane Database Syst Rev</i>. 2017;2:Mr000033. Barnes DE, Bero LA. Industry-funded research and conflict of interest: an analysis of research sponsored by the tobacco industry through the Center for Indoor Air Research. <i>J Health Policy Law</i>. 1996;21(3):515-42. Law 1996;21(3):515-42. Chartres N, Fabbri A, Bero LA. Association of industry sponsorship with outcomes of nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med</i>. 2016;176(12):1769-77. Chartres N, Fabbri A, McDonald S, et al. Association of industry ties with outcomes of studies examining the effect of wholegrain foods on cardiovascular disease and mortality: systematic review and meta-analysis. <i>BMJ Open</i>. 2019;9(5):e022912. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. <i>Am J Public Health</i>. 2007;97(4):667-75. Mishali M, Kisner M, Avrech T. Funding sources and outcomes o			
 Jaco F. Public Health Cited View Outer Under View Outer, 2010; Available Hollin, 2016. Https://www.gov.uk/government/publications/the-eatvell-guide. Acesssed 18 March, 2016. Lexchin J. Those who have the gold make the evidence: how the pharmaceutical industry biases the outcomes of clinical trials of medications. <i>Sci Eng Ethics</i>. 18(2):247-61. Sismondo S. How pharmaceutical industry funding affects trial outcomes: causal structures and responses. Social science & medicine (1982). 2008;66(9):1909-14. Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled trials with statistically nonsignificant results for primary outcomes. <i>JAMA</i>. 2010;303(20):2058-64. Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled trials with statistically nonsignificant results for primary outcomes. <i>JAMA</i>. 2010;303(20):2058-64. Lundh A, Lexchin J, Mintzes B, et al. Industry sponsorship and research: a framework and toolbox for critical appraisal training. <i>Account Res</i>. 2013;20(2):127-41. Lundh A, Lexchin J, Mintzes B, et al. Industry sponsorship and research outcome. <i>Cochrane Database Syst Rev</i>. 2017;2:Mr000033. Barnes DE, Bero LA. Industry-funded research and conflict of interest: an analysis of research sponsored by the tobacco industry through the Center for Indoor Air Research. <i>J Health Policy Law</i>. 1996;21(3):515-42. Chartres N, Fabbri A, McDonald S, et al. Association of industry sponsorship with outcomes of nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med</i>. 2016;176(12):1769-77. Chartres N, Fabbri A, McDonald S, et al. Association of industry sponsorship with outcomes of nutrition studies: A systematic review and meta-analysis. <i>Am J Public Health</i>. 2007;97(4):667-75. Mishali M, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption research. a meta-analysi			
 547 https://www.gov.uk/government/publications/inte-eatweil-guide. Accessed 18 March, 2016. 548 8. Lexchin J. Those who have the gold make the evidence: how the pharmaceutical industry biases the outcomes of clinical trials of medications. <i>Sci Eng Ethics</i>, 18(2):247-61. 9. Sismondo S. How pharmaceutical industry funding affects trial outcomes: causal structures and responses. Social science & medicine (1982). 2008;66(9):1909-14. 10. Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled trials with statistically nonsignificant results for primary outcomes. <i>JAMA</i>. 2010;303(20):2058-64. 11. Odierna DH, Forsyth SR, White J, et al. The cycle of bias in health research: a framework and toolbox for critical appraisal training. <i>Account Res</i>. 2013;20(2):127-41. 12. Lundh A, Lexchin J, Mintzes B, et al. Industry sponsorship and research outcome. <i>Cochrane Database Syst Rev</i>. 2017;2:Mr000033. 13. Barnes DE, Bero LA. Industry-funded research and conflict of interest: an analysis of research sponsored by the tobacco industry through the Center for Indoor Air Research. <i>J Health Polit Policy Law</i>. 1996;21(3):515-42. 14. Yank V, Rennie D, Bero LA. Financial ties and concordance between results and conclusions in meta-analyses: retrospective cohort study. <i>BMJ</i>.335(7631):1202-5. 15. Chartres N, Fabbri A, Bero LA. Association of industry sponsorship with outcomes of nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med</i>. 2016;176(12):1769-77. 16. Chartres N, Fabbri A, McDonald S, et al. Association of industry ties with outcomes of studies examining the effect of wholegrain foods on cardiovascular disease and mortality: systematic review and meta-analysis. <i>JAMA Intern Med</i>. 2016;176(12):1769-77. 17. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-			
 S48 8. Lexchin J. Those who have the gold make the evidence: how the pharmaceutical industry biases the outcomes of clinical trials of medications. <i>Sci Eng Ethics</i>. 18(2):247-61. Sismondo S. How pharmaceutical industry funding affects trial outcomes: causal structures and responses. Social science & medicine (1982). 2008;66(9):1909-14. Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled trials with statistically nonsignificant results for primary outcomes. <i>JAMA</i>. 2010;303(20):2058-64. U. Odierna DH, Forsyth SR, White J, et al. The cycle of bias in health research: a framework and toolbox for critical appraisal training. <i>Account Res</i>. 2013;20(2):127-41. Lundh A, Lexchin J, Mintzes B, et al. Industry sponsorship and research outcome. <i>Cochrane</i> <i>Database Syst Rev</i>. 2017;2:Mr000033. Tsa Barnes DE, Bero LA. Industry-funded research and conflict of interest: an analysis of research sponsored by the tobacco industry through the Center for Indoor Air Research. <i>J Health Policy Law</i>. 1996;21(3):515-42. <i>Law</i>. 1996;21(3):515-42. Chartres N, Fabbri A, Bero LA. Association of industry sponsorship with outcomes of nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med</i>. 2016;176(12):1769-77. Chartres N, Fabbri A, McDonald S, et al. Association of industry ties with outcomes of studies examining the effect of wholegrain foods on cardiovascular disease and mortality: systematic review and meta-analysis. <i>BMJ Open</i>. 2019;9(5):e022912. Mathibali M, Kisner M, Avrech T. Funding Sources and outcomes of diary consumption research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular diseases. <i>Int Dairy J</i>. 2019. National Institute for Health Research. Intern			
 Sismondo S. How pharmaceutical industry funding affects trial outcomes: causal structures and responses. Social science & medicine (1982). 2008;66(9):1909-14. Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled trials with statistically nonsignificant results for primary outcomes. <i>JAMA</i>. 2010;303(20):2058-64. Odierna DH, Forsyth SR, White J, et al. The cycle of bias in health research: a framework and toolbox for critical appraisal training. <i>Account Res</i>. 2013;20(2):127-41. Lundh A, Lexchin J, Mintzes B, et al. Industry sponsorship and research outcome. <i>Cochrane</i> <i>Database Syst Rev</i>. 2017;2:Mr000033. Barnes DE, Bero LA. Industry-funded research and conflict of interest: an analysis of research sponsored by the tobacco industry through the Center for Indoor Air Research. <i>J Health Policy</i> <i>Law</i>. 1996;21(3):515-42. Chartres N, Rabbri A, Bero LA. Financial ties and concordance between results and conclusions in meta-analyses: retrospective cohort study. <i>BMJ</i>.335(7631):1202-5. Chartres N, Fabbri A, Bero LA. Association of industry sponsorship with outcomes of nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med</i>. 2016;176(12):1769-77. Chartres N, Fabbri A, McDonald S, et al. Association of industry ties with outcomes of sexamining the effect of wholegrain foods on cardiovascular disease and mortality: systematic review and meta-analysis. <i>BMJ Open</i>. 2019;9(5):e022912. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. <i>Am J Public Health</i>. 2007;97(4):667-75. Mishali M, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular diseases. <i>Int Dairy J</i>. 2019. National Institute for Health Research. International Prospective			
 s51 and responses. Social science & medicine (1982). 2008;66(9):1909-14. s52 10. Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled trials with statistically nonsignificant results for primary outcomes. <i>JAMA</i>. 2010;303(20):2058-64. s54 11. Odierna DH, Forsyth SR, White J, et al. The cycle of bias in health research: a framework and toolbox for critical appraisal training. <i>Account Res.</i> 2013;20(2):127-41. s56 12. Lundh A, Lexchin J, Mintzes B, et al. Industry sponsorship and research outcome. <i>Cochrane</i> <i>Database Syst Rev.</i> 2017;2:Mr000033. s58 13. Barnes DE, Bero LA. Industry-funded research and conflict of interest: an analysis of research sponsored by the tobacco industry through the Center for Indoor Air Research. <i>J Health Polit Policy</i> <i>Law.</i> 1996;21(3):515-42. s61 14. Yank V, Rennie D, Bero LA. Financial ties and concordance between results and conclusions in meta-analyses: retrospective cohort study. <i>BMJ</i>:335(7631):1202-5. s63 15. Chartres N, Fabbri A, Bero LA. Association of industry sponsorship with outcomes of nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med.</i> 2016;176(12):1769-77. S64 examining the effect of wholegrain foods on cardiovascular disease and mortality: systematic review and meta-analysis. <i>BMJ Open.</i> 2019;9(5):e022912. S75 17. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. <i>An J Public Health.</i> 2007;97(4):667-75. S70 18. Mishali M, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular diseases. <i>Int Dairy J.</i> 2019. S73 19. National Institute for Health Research. International Prospective Register for Sytematic Reviews [Internet]. 2015 [Available from: http://www.crd.york.ac.uk/PROSP			
 552 10. Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled trials with statistically nonsignificant results for primary outcomes. <i>JAMA</i>. 2010;303(20):2058-64. 553 11. Odierna DH, Forsyth SR, White J, et al. The cycle of bias in health research: a framework and toolbox for critical appraisal training. <i>Account Res</i>. 2013;20(2):127-41. 554 12. Lundh A, Lexchin J, Mintzes B, et al. Industry sponsorship and research outcome. <i>Cochrane Database Syst Rev</i>. 2017;2:Mr000033. 558 13. Barnes DE, Bero LA. Industry-funded research and conflict of interest: an analysis of research sponsored by the tobacco industry through the Center for Indoor Air Research. <i>J Health Polit Policy Law</i>. 1996;21(3):515-42. 561 14. Yank V, Rennie D, Bero LA. Financial ties and concordance between results and conclusions in meta-analyses: retrospective cohort study. <i>BMJ</i>.335(7631):1202-5. 562 15. Chartres N, Fabbri A, Bero LA. Association of industry sponsorship with outcomes of nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med</i>. 2016;176(12):1769-77. 563 16. Chartres N, Fabbri A, McDonald S, et al. Association of industry ties with outcomes of studies examining the effect of wholegrain foods on cardiovascular disease and mortality: systematic review and meta-analysis. <i>BMJ Open</i>. 2019;9(5):e022912. 573 18. Mishali M, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular diseases. <i>Int Dairy J</i>. 2019. 573 19. National Institute for Health Research. International Prospective Register for Sytematic Reviews [Internet]. 2015 [Available from: http://www.crd.york.ac.uk/PROSPERO/. Accessed 11 March, 2016. 574 20. Dietitians Association of Australia. A review of the evidence to address targeted questions to inform the revision of the Australian dietar			
 trials with statistically nonsignificant results for primary outcomes. <i>JAMA</i>. 2010;303(20):2058-64. Odierna DH, Forsyth SR, White J, et al. The cycle of bias in health research: a framework and toolbox for critical appraisal training. <i>Account Res.</i> 2013;20(2):127-41. Lundh A, Lexchin J, Mintzes B, et al. Industry sponsorship and research outcome. <i>Cochrane</i> <i>Database Syst Rev.</i> 2017;2:Mr000033. Barnes DE, Bero LA. Industry-funded research and conflict of interest: an analysis of research sponsored by the tobacco industry through the Center for Indoor Air Research. <i>J Health Polit Policy</i> <i>Law.</i> 1996;21(3):515-42. Yank V, Rennie D, Bero LA. Financial ties and concordance between results and conclusions in meta-analyses: retrospective cohort study. <i>BMJ</i>.335(7631):1202-5. Chartres N, Fabbri A, Bero LA. Association of industry sponsorship with outcomes of nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med.</i> 2016;176(12):1769-77. Chartres N, Fabbri A, McDonald S, et al. Association of industry ties with outcomes of studies examining the effect of wholegrain foods on cardiovascular disease and mortality: systematic review and meta-analysis. <i>BMJ Open.</i> 2019;9(5):e022912. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. <i>Am J Public Health.</i> 2007;97(4):667-75. Mishali M, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular diseases. <i>Int Dairy J.</i> 2019. National Institute for Health Research. International Prospective Register for Sytematic Reviews [Internet]. 2015 [Available from: <u>http://www.crd.york.ac.uk/PROSPERO/</u>. Accessed 11 March, 2016. Dietitians Association of Australia. A review of the evidence to address targeted questions to inform the revisio			
 Sos duals duals and the probability of prince yold yold of prince yold yold of prince yold yold yold yold yold yold yold yold			
 Sofa 11. Contenta Dr., Porsytha Sr., Writte J, et al. The Cycle of bals in flexibility estability and the end of the second secon			
 555 toolbox for critical appraisal training. Account Res. 2015;20(2):127-41. 556 toolbox for critical appraisal training. Account Res. 2015;20(2):127-41. 557 Jatabase Syst Rev. 2017;2:Mr000033. 558 13. Barnes DE, Bero LA. Industry-funded research and conflict of interest: an analysis of research sponsored by the tobacco industry through the Center for Indoor Air Research. <i>J Health Polit Policy Law</i>. 1996;21(3):515-42. 561 14. Yank V, Rennie D, Bero LA. Financial ties and concordance between results and conclusions in meta-analyses: retrospective cohort study. <i>BMJ</i>.335(7631):1202-5. 563 15. Chartres N, Fabbri A, Bero LA. Association of industry sponsorship with outcomes of nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med</i>. 2016;176(12):1760-77. 564 nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med</i>. 2016;176(12):1769-77. 565 16. Chartres N, Fabbri A, McDonald S, et al. Association of industry ties with outcomes of studies examining the effect of wholegrain foods on cardiovascular disease and mortality: systematic review and meta-analysis. <i>JAMA Intern Med</i>. 2016;176(12):1760-77. 568 17. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. <i>Am J Public Health</i>. 2007;97(4):667-75. 570 18. Mishali M, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption 571 research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular diseases. <i>Int Dairy J</i>. 2019. 573 19. National Institute for Health Research. International Prospective Register for Sytematic for Sytematic for Sytematic for the version of the Australia. A review of the evidence to address targeted questions to inform the revision of the Australia ditary guidelines 2009: Process Manual. 2011. 575 March, 2016.			
 577 Database Syst Rev. 2017;2:Mr000033. 558 13. Barnes DE, Bero LA. Industry-funded research and conflict of interest: an analysis of research sponsored by the tobacco industry through the Center for Indoor Air Research. <i>J Health Polit Policy</i> <i>Law.</i> 1996;21(3):515-42. 561 14. Yank V, Rennie D, Bero LA. Financial ties and concordance between results and conclusions in meta-analyses: retrospective cohort study. <i>BMJ</i>.335(7631):1202-5. 563 15. Chartres N, Fabbri A, Bero LA. Association of industry sponsorship with outcomes of nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med</i>. 2016;176(12):1769-77. 564 nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med</i>. 2016;176(12):1769-77. 565 16. Chartres N, Fabbri A, McDonald S, et al. Association of industry ties with outcomes of studies examining the effect of wholegrain foods on cardiovascular disease and mortality: systematic review and meta-analysis. <i>BMJ Open</i>. 2019;9(5):e022912. 568 17. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. <i>Am J Public Health</i>. 2007;97(4):667-75. 570 18. Mishali M, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular diseases. <i>Int Dairy J</i>. 2019. 573 19. National Institute for Health Research. International Prospective Register for Sytematic 574 Reviews [Internet]. 2015 [Available from: <u>http://www.crd.york.ac.uk/PROSPERO/</u>. Acesssed 11 575 March, 2016. 576 20. Dietitians Association of Australia. A review of the evidence to address targeted questions to 577 inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011. 578 21. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non- 579 randomised studies of interventions. <i>BMJ</i>. 2016;355.<			
 558 13. Barnes DE, Bero LA. Industry-funded research and conflict of interest: an analysis of research sponsored by the tobacco industry through the Center for Indoor Air Research. <i>J Health Polit Policy</i> <i>Law.</i> 1996;21(3):515-42. 561 14. Yank V, Rennie D, Bero LA. Financial ties and concordance between results and conclusions in meta-analyses: retrospective cohort study. <i>BMJ</i>.335(7631):1202-5. 563 15. Chartres N, Fabbri A, Bero LA. Association of industry sponsorship with outcomes of nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med.</i> 2016;176(12):1769-77. 564 nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med.</i> 2016;176(12):1769-77. 565 16. Chartres N, Fabbri A, McDonald S, et al. Association of industry ties with outcomes of studies scaming the effect of wholegrain foods on cardiovascular disease and mortality: systematic review and meta-analysis. <i>BMJ Open.</i> 2019;9(5):e022912. 576 17. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. <i>Am J Public Health.</i> 2007;97(4):667-75. 570 18. Mishali M, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption 571 research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular 572 diseases. <i>Int Dairy J.</i> 2019. 573 19. National Institute for Health Research. International Prospective Register for Sytematic 574 Reviews [Internet]. 2015 [Available from: http://www.crd.york.ac.uk/PROSPERO/. Acesssed 11 575 March, 2016. 576 20. Dietitians Association of Australia. A review of the evidence to address targeted questions to 577 inform the revision of the Australian dietary guideline			
 sponsored by the tobacco industry through the Center for Indoor Air Research. <i>J Health Polit Policy</i> <i>Law.</i> 1996;21(3):515-42. 14. Yank V, Rennie D, Bero LA. Financial ties and concordance between results and conclusions in meta-analyses: retrospective cohort study. <i>BMJ.</i> 335(7631):1202-5. 15. Chartres N, Fabbri A, Bero LA. Association of industry sponsorship with outcomes of nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med.</i> 2016;176(12):1769-77. 16. Chartres N, Fabbri A, McDonald S, et al. Association of industry ties with outcomes of studies examining the effect of wholegrain foods on cardiovascular disease and mortality: systematic review and meta-analysis. <i>BMJ Open.</i> 2019;9(5):e022912. 17. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. <i>Am J Public Health.</i> 2007;97(4):667-75. 18. Mishali M, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular diseases. <i>Int Dairy J.</i> 2019. 573 19. National Institute for Health Research. International Prospective Register for Sytematic Keviews [Internet]. 2015 [Available from: http://www.crd.york.ac.uk/PROSPERO/. Acessed 11 March, 2016. 576 20. Dietitians Association of Australia. A review of the evidence to address targeted questions to inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non- randomised studies of interventions. <i>BMJ.</i> 2016;355. 			
 560 Law. 1996;21(3):515-42. 561 14. Yank V, Rennie D, Bero LA. Financial ties and concordance between results and conclusions 562 in meta-analyses: retrospective cohort study. <i>BMJ</i>.335(7631):1202-5. 563 15. Chartres N, Fabbri A, Bero LA. Association of industry sponsorship with outcomes of 564 nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med</i>. 2016;176(12):1769-77. 565 16. Chartres N, Fabbri A, McDonald S, et al. Association of industry ties with outcomes of studies 566 examining the effect of wholegrain foods on cardiovascular disease and mortality: systematic review s67 and meta-analysis. <i>BMJ Open</i>. 2019;9(5):e022912. 578 17. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. <i>Am J Public Health</i>. 2007;97(4):667-75. 570 18. Mishali M, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption 571 research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular 572 diseases. <i>Int Dairy J</i>. 2019. 573 19. National Institute for Health Research. International Prospective Register for Sytematic 574 Reviews [Internet]. 2015 [Available from: http://www.crd.york.ac.uk/PROSPERO/. Accessed 11 575 March, 2016. 576 20. Dietitians Association of Australia. A review of the evidence to address targeted questions to 577 inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011. 578 21. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non- 579 randomised studies of interventions. <i>BMJ</i>. 2016;355. 			
 561 14. Yank V, Rennie D, Bero LA. Financial ties and concordance between results and conclusions in meta-analyses: retrospective cohort study. <i>BMJ</i>.335(7631):1202-5. 563 15. Chartres N, Fabbri A, Bero LA. Association of industry sponsorship with outcomes of nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med</i>. 2016;176(12):1769-77. 565 16. Chartres N, Fabbri A, McDonald S, et al. Association of industry ties with outcomes of studies examining the effect of wholegrain foods on cardiovascular disease and mortality: systematic review and meta-analysis. <i>BMJ Open</i>. 2019;9(5):e022912. 568 17. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. <i>Am J Public Health</i>. 2007;97(4):667-75. 570 18. Mishali M, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular diseases. <i>Int Dairy J</i>. 2019. 573 19. National Institute for Health Research. International Prospective Register for Sytematic Fix Reviews [Internet]. 2015 [Available from: http://www.crd.york.ac.uk/PROSPERO/. Acesssed 11 March, 2016. 576 20. Dietitians Association of Australia. A review of the evidence to address targeted questions to inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011. 578 21. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non- randomised studies of interventions. <i>BMJ</i>. 2016;355. 			
 562 in meta-analyses: retrospective cohort study. <i>BMJ</i>.335(7631):1202-5. 563 15. Chartres N, Fabbri A, Bero LA. Association of industry sponsorship with outcomes of nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med</i>. 2016;176(12):1769-77. 563 16. Chartres N, Fabbri A, McDonald S, et al. Association of industry ties with outcomes of studies examining the effect of wholegrain foods on cardiovascular disease and mortality: systematic review and meta-analysis. <i>BMJ Open</i>. 2019;9(5):e022912. 568 17. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. <i>Am J Public Health</i>. 2007;97(4):667-75. 570 18. Mishali M, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular diseases. <i>Int Dairy J</i>. 2019. 573 19. National Institute for Health Research. International Prospective Register for Sytematic systematic 574 Reviews [Internet]. 2015 [Available from: http://www.crd.york.ac.uk/PROSPERO/. Acesssed 11 March, 2016. 575 March, 2016. 576 20. Dietitians Association of Australia. A review of the evidence to address targeted questions to inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011. 578 21. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non- randomised studies of interventions. <i>BMJ</i>. 2016;355. 			
 Soza in intera dinaryses. Techospective econor strugt. <i>Biol.</i> 353(1051):102 J. Soza in intera dinaryses. Techospective econor strugt. <i>Biol.</i> 353(1051):102 J. Soza in intera dinaryses. <i>N</i>, Fabbri A, Bero LA. Association of industry sponsorship with outcomes of nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med.</i> 2016;176(12):1769-77. Chartres N, Fabbri A, McDonald S, et al. Association of industry ties with outcomes of studies examining the effect of wholegrain foods on cardiovascular disease and mortality: systematic review and meta-analysis. <i>BMJ Open.</i> 2019;9(5):e022912. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. <i>Am J Public Health.</i> 2007;97(4):667-75. National In, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular diseases. <i>Int Dairy J.</i> 2019. National Institute for Health Research. International Prospective Register for Sytematic Reviews [Internet]. 2015 [Available from: http://www.crd.york.ac.uk/PROSPERO/. Accessed 11 March, 2016. Dietitians Association of Australia. A review of the evidence to address targeted questions to inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. <i>BMJ.</i> 2016;355. 			
 Sos 15. Chartes N, Fabbri A, Bero LA. Association of industry sponsorship with outcomes of nutrition studies: A systematic review and meta-analysis. <i>JAMA Intern Med.</i> 2016;176(12):1769-77. Sos 16. Chartres N, Fabbri A, McDonald S, et al. Association of industry ties with outcomes of studies examining the effect of wholegrain foods on cardiovascular disease and mortality: systematic review and meta-analysis. <i>BMJ Open.</i> 2019;9(5):e022912. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. <i>Am J Public Health.</i> 2007;97(4):667-75. Mishali M, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular diseases. <i>Int Dairy J.</i> 2019. National Institute for Health Research. International Prospective Register for Sytematic Reviews [Internet]. 2015 [Available from: http://www.crd.york.ac.uk/PROSPERO/. Acessed 11 March, 2016. Dietitians Association of Australia. A review of the evidence to address targeted questions to inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non- randomised studies of interventions. <i>BMJ.</i> 2016;355. 			
 565 16. Chartres N, Fabbri A, McDonald S, et al. Association of industry ties with outcomes of studies 566 examining the effect of wholegrain foods on cardiovascular disease and mortality: systematic review 567 and meta-analysis. <i>BMJ Open</i>. 2019;9(5):e022912. 568 17. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and 569 health: a systematic review and meta-analysis. <i>Am J Public Health</i>. 2007;97(4):667-75. 570 18. Mishali M, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption 571 research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular 572 diseases. <i>Int Dairy J</i>. 2019. 573 19. National Institute for Health Research. International Prospective Register for Sytematic 574 Reviews [Internet]. 2015 [Available from: http://www.crd.york.ac.uk/PROSPERO/. Acesssed 11 575 March, 2016. 576 20. Dietitians Association of Australia. A review of the evidence to address targeted questions to 577 inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011. 578 21. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non- 579 randomised studies of interventions. <i>BMJ</i>. 2016;355. 			
 566 examining the effect of wholegrain foods on cardiovascular disease and mortality: systematic review 567 and meta-analysis. <i>BMJ Open</i>. 2019;9(5):e022912. 568 17. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and 569 health: a systematic review and meta-analysis. <i>Am J Public Health</i>. 2007;97(4):667-75. 570 18. Mishali M, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption 571 research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular 572 diseases. <i>Int Dairy J</i>. 2019. 573 19. National Institute for Health Research. International Prospective Register for Sytematic 574 Reviews [Internet]. 2015 [Available from: http://www.crd.york.ac.uk/PROSPERO/. Acessed 11 575 March, 2016. 576 20. Dietitians Association of Australia. A review of the evidence to address targeted questions to 577 inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011. 578 21. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non- 579 randomised studies of interventions. <i>BMJ</i>. 2016;355. 			
 and meta-analysis. <i>BMJ Open</i>. 2019;9(5):e022912. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. <i>Am J Public Health</i>. 2007;97(4):667-75. Mishali M, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular diseases. <i>Int Dairy J</i>. 2019. National Institute for Health Research. International Prospective Register for Sytematic Reviews [Internet]. 2015 [Available from: <u>http://www.crd.york.ac.uk/PROSPERO/</u>. Acesssed 11 March, 2016. Dietitians Association of Australia. A review of the evidence to address targeted questions to inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non- randomised studies of interventions. <i>BMJ</i>. 2016;355. 			
 47 568 17. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and 48 569 health: a systematic review and meta-analysis. <i>Am J Public Health</i>. 2007;97(4):667-75. 49 570 18. Mishali M, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption 50 571 research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular 51 572 diseases. <i>Int Dairy J</i>. 2019. 52 573 19. National Institute for Health Research. International Prospective Register for Sytematic 54 574 Reviews [Internet]. 2015 [Available from: http://www.crd.york.ac.uk/PROSPERO/. Accessed 11 55 576 20. Dietitians Association of Australia. A review of the evidence to address targeted questions to 57 inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011. 578 21. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non- 59 579 randomised studies of interventions. <i>BMJ</i>. 2016;355. 			
 health: a systematic review and meta-analysis. <i>Am J Public Health</i>. 2007;97(4):667-75. 18. Mishali M, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular diseases. <i>Int Dairy J</i>. 2019. National Institute for Health Research. International Prospective Register for Sytematic Reviews [Internet]. 2015 [Available from: http://www.crd.york.ac.uk/PROSPERO/. Acesssed 11 March, 2016. Dietitians Association of Australia. A review of the evidence to address targeted questions to inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non- randomised studies of interventions. <i>BMJ</i>. 2016;355. 			
 49 570 18. Mishali M, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption 50 571 research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular 51 572 diseases. <i>Int Dairy J</i>. 2019. 52 573 19. National Institute for Health Research. International Prospective Register for Sytematic 54 574 Reviews [Internet]. 2015 [Available from: http://www.crd.york.ac.uk/PROSPERO/. Accessed 11 55 575 March, 2016. 56 576 20. Dietitians Association of Australia. A review of the evidence to address targeted questions to 57 inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011. 58 578 21. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non- 59 579 randomised studies of interventions. <i>BMJ</i>. 2016;355. 			
 570 10. Initial III, Italiel III, Italiel III, Italiel Bources and outcomes of dull y consumption 571 research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular 572 diseases. Int Dairy J. 2019. 573 19. National Institute for Health Research. International Prospective Register for Sytematic 574 Reviews [Internet]. 2015 [Available from: http://www.crd.york.ac.uk/PROSPERO/. Acesssed 11 575 March, 2016. 576 20. Dietitians Association of Australia. A review of the evidence to address targeted questions to 577 inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011. 58 578 21. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non- 59 579 randomised studies of interventions. <i>BMJ</i>. 2016;355. 			, , , , , , , , , , , , , , , , , , , ,
 571 Tresearch – a meta-analysis of conort studies. The case of type-2 diabetes and cardiovascular 572 diseases. Int Dairy J. 2019. 573 19. National Institute for Health Research. International Prospective Register for Sytematic 574 Reviews [Internet]. 2015 [Available from: http://www.crd.york.ac.uk/PROSPERO/. Acessed 11 575 March, 2016. 576 20. Dietitians Association of Australia. A review of the evidence to address targeted questions to 577 inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011. 58 578 21. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non- 59 579 randomised studies of interventions. <i>BMJ</i>. 2016;355. 			
 573 19. National Institute for Health Research. International Prospective Register for Sytematic 574 Reviews [Internet]. 2015 [Available from: http://www.crd.york.ac.uk/PROSPERO/. Acesssed 11 575 March, 2016. 576 20. Dietitians Association of Australia. A review of the evidence to address targeted questions to 577 inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011. 58 578 21. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non- 59 579 randomised studies of interventions. <i>BMJ</i>. 2016;355. 	51		
 574 Reviews [Internet]. 2015 [Available from: http://www.crd.york.ac.uk/PROSPERO/. Acesssed 11 55 575 March, 2016. 56 576 20. Dietitians Association of Australia. A review of the evidence to address targeted questions to 57 577 inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011. 58 578 21. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non- 59 579 randomised studies of interventions. <i>BMJ</i>. 2016;355. 			
 575 March, 2016. 576 20. Dietitians Association of Australia. A review of the evidence to address targeted questions to 577 inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011. 58 578 21. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non- 59 579 randomised studies of interventions. <i>BMJ</i>. 2016;355. 			
 56 576 20. Dietitians Association of Australia. A review of the evidence to address targeted questions to 57 577 inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011. 58 578 21. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non- 59 579 randomised studies of interventions. <i>BMJ</i>. 2016;355. 			
 57 577 inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011. 58 578 21. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non- 59 579 randomised studies of interventions. <i>BMJ</i>. 2016;355. 			
 58 578 21. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non- 579 randomised studies of interventions. <i>BMJ</i>. 2016;355. 			
⁵⁹ 579 randomised studies of interventions. <i>BMJ</i> . 2016;355.			
60			
	60		

2		
3	580	22. University of Bristol. The ROBINS-E tool (Risk Of Bias In Non-randomized Studies - of
4	581	Exposures) 2019 [Available from: https://www.bristol.ac.uk/population-health-
5	582	sciences/centres/cresyda/barr/riskofbias/robins-e/
6 7	583	23. Harris PA, Taylor R, Thielke R, et al. Research Electronic Data Capture (REDCap) - A
8	584	metadata-driven methodology and workflow process for providing translational research informatics
9	585	support. J Biomed Inform X. 2009;42(2):377-81.
10	586	24. Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary time-to-
11	587	event data into meta-analysis. <i>Trials</i> . 2007;8:16.
12	588	25. Review Manager (RevMan) [Computer program]. Version 5.3. Copenhagen: The Nordic
13	589	Cochrane Centre, The Cochrane Collaboration, 2014.
14	590	26. Bero L, Chartres N, Diong J, et al. The risk of bias in observational studies of exposures
15	591	(ROBINS-E) tool: concerns arising from application to observational studies of exposures. <i>Syst Rev.</i>
16	592	
17		2018;7(1):242.
18	593	27. Mandrioli D, Kearns CE, Bero LA. Relationship between Research Outcomes and Risk of Bias,
19 20	594	Study Sponsorship, and Author Financial Conflicts of Interest in Reviews of the Effects of Artificially
20 21	595	Sweetened Beverages on Weight Outcomes: A Systematic Review of Reviews. <i>PloS one</i> .
22	596	2016;11(9):e0162198.
23	597	28. Cho MK, Bero LA. The quality of drug studies published in symposium proceedings. <i>Ann</i>
24	598	Intern Med. 1996;124(5):485-9.
25	599	29. Fabbri A, Lai A, Grundy Q, et al. The Influence of Industry Sponsorship on the Research
26	600	Agenda: A Scoping Review. Am J Public Health. 2018;108(11):e9-e16.
27	601	30. Wilde P, Morgan E, Roberts J, et al. Relationship between funding sources and outcomes of
28	602	obesity-related research. Physiol & Behav. 2012;107(1):172-5.
29	603	31. Fabbri A, Chartres N, Bero LA. Study sponsorship and the nutrition research agenda: analysis
30	604	of cohort studies examining the association between nutrition and obesity. Public Health Nutr.
31	605	2017;20(17):3193-9.
32 33	606	32. Fabbri A, Chartres N, Bero LA. Study sponsorship and the nutrition research agenda: analysis
33 34	607	of cohort studies examining the association between nutrition and obesity. Public Health Nutr.
35	608	2017;20(17):3193-9.
36		
37	609	
38		
39		
40		
41		
42		
43		
44 45		
46		
47		
48		
49		
50		
51		
52		
53		
54 57		
55 56		
50 57		
58		
59		
60		

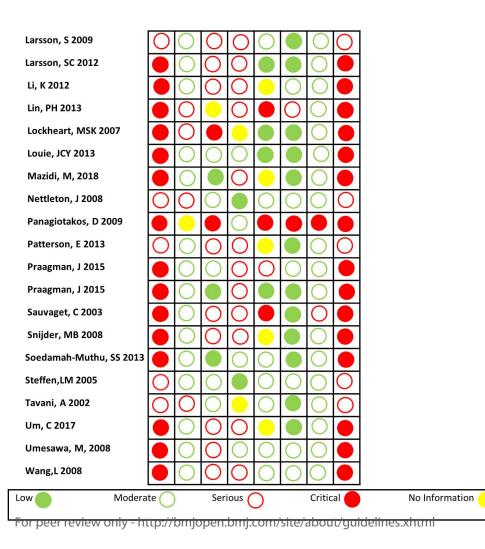

1		
2 3 4	610	Figures
5 6	611	Figure 1. Study Flow Diagram
7 8 9	612	Figure 2. Risk of Bias in Included Studies
10 11	613	Figure 3. Effect Size, Cardiovascular Disease: Industry sponsorship vs no industry
12 13	614	sponsorship, Hazard Ratio
14 15 16	615	
17 17 18 19 20 21 22 23 24 25 26 27 28 9 30 31 22 33 45 36 37 8 9 40 41 23 44 50 51 52 34 55 67 89 60	616	tor occr teries only

Figure 1. Study Flow Diagram

		E	BMJ C)p <mark>e</mark> n				
	Confounding	Selection of participants	Classification of exposures	Deviations from intended expos	Missing data	Measurement of outcomes	Selection of the reported result	Overall bias
Aerde, M 2013		0	0	0	0	\bigcirc	0	
Al-Delaimy, WK 2003	0	0	0				Ο	Ō
Alonso A, 2005		Ο	0	0	Ο	Ο	0	
Altorf-van der Kuil, W 20	12 🔴	Ο	0	0	Ο	Ο	0	
Avalos, EE 2013		Ο			0	Ο	0	
Bernstein, AM 2012	0	0	0		•	0	0	0
Biong, A 2008	0		0	•	0	0	0	0
Bonthuis, M 2010		0		0	0		0	
Buendia, JR 2018	0	0	0		0	Ο	0	0
Chen, M 2016		0	0				\bigcirc	
Dalmeijer, G 2013		0	0	Ο	0	0	0	
Dauchet, L 2007		0	0	0	0	0	0	
Dehghan, M 2018		0	0	0	0	0	0	
Elwood, PC 2004		O	\bigcirc	0	0		\bigcirc	
Engberink, MF 2009		0	O	\bigcirc	O	\bigcirc	0	
Farvid, MS 2017		\bigcirc	\bigcirc	\overline{O}	\bigcirc		0	
Haring, B 2014		00	\bigcirc	0		0	0	
He, K 2003	\bigcirc	\bigcirc		\bigcirc		0	0	
Heraclides, A 2012 Johansson, I 2018		0		0		\bigcirc	00	
Johansson, I 2019		00	\bigcirc	$\frac{1}{2}$			00	
Kim, D 2017 For peer review only -	- http://	bmjc	pen.	Omj.		s <mark>ite</mark> /	abou	v uideline

1 2	
3	
4	
5	
6	
7 8	
9	
10 11	
12	
13	
14	
15	
16	
16 17 18	
19	
20	
21 22	
22	
24	
25	
26	
27 28	
28	
29	
30	
31	
32 33	
33 34	
35	
36	
37	
38	
39	
40	
41	

Figure 3. Effect Size, Cardiovascular Disease, Industry sponsorship vs no Industry sponsorship, Hazard Ratio

7						
8					Hazard Ratio	Hazard Ratio
9	Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
10	Industry Sponsored	0.000	0.000	10000		225
11	Dehghan, M 2018 Louis JCX 2012	-0.2614		2.8%	0.77 [0.59, 1.01]	200 B
12	Louie, JCY 2013 Praagman, J 2015 a	-0.2744 -0.1054		2.5% 1.0%	0.76 [0.57, 1.02] 0.90 [0.56, 1.45]	
13	Subtotal (95% CI)	0.1004	0.2400	6.3%	0.78 [0.65, 0.94]	•
14	Heterogeneity: Tau ² = 0.00; C	hi² = 0.38, df = 2 (P =	0.83); l²	= 0%		
	Test for overall effect: Z = 2.5	9 (P = 0.010)				
15	Non-Industry Sponsore	ad				
16	Aerde, M 2013		0.1002	4.7%	1.06 [0.87, 1.29]	_ _ _
17	Bonthuis, M 2010		0.4472	0.3%	0.77 [0.32, 1.85]	
18	Chen, M 2016	0	0.0249	14.8%	1.00 [0.95, 1.05]	+
19	Dalmeijer,G 2013	-0.0101	0.03		0.99 [0.93, 1.05]	1
20	Elwood, PC 2004	-0.4155		0.2% 5.4%	0.66 [0.24, 1.81]	
21	Farvid, MS 2017 Haring, B 2014		0.0907 0.1099	5.4% 4.1%	0.72 [0.60, 0.86] 1.04 [0.84, 1.29]	
22	Johansson, I 2019		0.0565	9.3%	1.11 [0.99, 1.24]	
23	Li, K 2012	0.2624	0.2043	1.4%	1.30 [0.87, 1.94]	
24	Lin, PH 2013	-0.3011		1.2%	0.74 [0.48, 1.14]	
	Mazidi, M, 2018 Dependiatekse, D 2000	-0.0101		16.3% 2.8%	0.99 [0.96, 1.02]	
25	Panagiotakos, D 2009 Patterson, E 2013	-0.0305 -0.2614		4.2%	0.97 [0.74, 1.27] 0.77 [0.62, 0.95]	
26	Praagman, J 2015 b		0.1101	4.1%	1.08 [0.87, 1.34]	
27	Sauvaget, C 2003	-0.3147	0.129	3.2%	0.73 [0.57, 0.94]	
28	Soedamah-Muthu, SS 2013		0.1496	2.5%	0.91 [0.68, 1.22]	
29	Um, C 2017 Umesawa, M, 2008		0.1148	3.8% 1.4%	1.03 [0.82, 1.29]	
30	Subtotal (95% CI)	0.0662	0.2022	93.7%	1.09 [0.73, 1.62] 0.97 [0.93, 1.02]	
31	Heterogeneity: Tau ² = 0.00; C	; hi ^z = 34.09, df = 17 (F	P = 0.008			
32	Test for overall effect: Z = 1.0	9 (P = 0.27)				
33	Total (DEN/ CI)			100.0%	0.0610.04 4.041	
34	Total (95% CI) Heterogeneity: Tau² = 0.00; C	biz - 40.40 df - 20.4	2 - 0.004	100.0%	0.96 [0.91, 1.01]	
35	Test for overall effect: Z = 1.6		- 0.004), I = 31 X)	
36	Test for subgroup difference:		P = 0.03)	, I ^z = 79.7	%	Favourable to Dairy Unfavourable to Dairy
37						
38						
39						
40						
41						
42						
43						
44						
45						
46						
47						
48						
49						
50						
51						
52						
53						
54						
55						
56						
57						
58						
59	Forr		- http	·//hmio	nen hmi com/sit	e/about/quidelines.xhtml

PROSPERO International prospective register of systematic reviews

National Institute for Health Research

UNIVERSITY of York Centre for Reviews and Dissemination

Systematic review

Please complete all mandatory fields below (marked with an asterisk *) and as many of the non-mandatory fields as you can then click *Submit* to submit your registration. You don't need to complete everything in one go, this record will appear in your *My PROSPERO* section of the web site and you can continue to edit it until you are ready to submit. Click *Show help* below or click on the icon

to see guidance on completing each section.

This record cannot be edited because it has been rejected

1. * Review title.

Give the working title of the review, for example the one used for obtaining funding. Ideally the title should state succinctly the interventions or exposures being reviewed and the associated health or social problems. Where appropriate, the title should use the PI(E)COS structure to contain information on the Participants, Intervention (or Exposure) and Comparison groups, the Outcomes to be measured and Study designs to be included.

The association of food industry ties with findings of studies examining the effect of dairy foods intake with

cardiovascular disease and mortality: Systematic review and Meta-analysis: protocol registration:

2. Original language title.

For reviews in languages other than English, this field should be used to enter the title in the language of the review. This will be displayed together with the English language title.

3. * Anticipated or actual start date.

Give the date when the systematic review commenced, or is expected to commence.

01/09/2016

4. * Anticipated completion date.

Give the date by which the review is expected to be completed.

01/06/2019

5. * Stage of review at time of this submission.

Indicate the stage of progress of the review by ticking the relevant Started and Completed boxes. Additional information may be added in the free text box provided.

Please note: Reviews that have progressed beyond the point of completing data extraction at the time of initial registration are not eligible for inclusion in PROSPERO. Should evidence of incorrect status and/or completion date being supplied at the time of submission come to light, the content of the PROSPERO record will be removed leaving only the title and named contact details and a statement that inaccuracies in the stage of the review date had been identified.

This field should be updated when any amendments are made to a published record and on completion and publication of the review. If this field was pre-populated from the initial screening questions then you are not able to edit it until the record is published.

The review has not yet started: No

50104	вив орен				
PROSPERO International prospect	PROSPERO nternational prospective register of systematic reviews				
Review stage		Started	Completed		
Preliminary searches		Yes	No		
Piloting of the study select	ion process	Yes	No		
Formal screening of searc	h results against eligibility criteria	Yes	No		
Data avtraction		Yes	No		

Data extraction		
Risk of bias (quality) assessment	Yes	No
Data analysis	No	No

Provide any other relevant information about the stage of the review here (e.g. Funded proposal, protocol not yet finalised).

6. * Named contact.

The named contact acts as the guarantor for the accuracy of the information presented in the register record.

Nicholas Chartres

Email salutation (e.g. "Dr Smith" or "Joanne") for correspondence:

Mr Chartres

7. * Named contact email.

Give the electronic mail address of the named contact.

ngar0960@uni.sydney.edu.au

8. Named contact address

Give the full postal address for the named contact.

The University of Sydney, D17, the Hub, 6th Floor, Charles Perkins Centre the University of Sydney | Nsw |

9. Named contact phone number.

Give the telephone number for the named contact, including international dialling code.

02 8627 4328

10. * Organisational affiliation of the review.

Full title of the organisational affiliations for this review and website address if available. This field may be completed as 'None' if the review is not affiliated to any organisation.

University of Sydney

Organisation web address:

11. * Review team members and their organisational affiliations.

PROSPERO International prospective register of systematic reviews

National Institute for Health Research

Give the personal details and the organisational affiliations of each member of the review team. Affiliation refers to groups or organisations to which review team members belong. **NOTE: email and country are now mandatory fields for each person.**

Mr Nicholas Chartres. University of Sydney

Dr Alice Fabbri. The University of Sydney

Agnes Lau. University of California

- Dr Joanna Diong. The University of Sydney
- Assistant/Associate Professor Joanne Mckenzie. Monash University

Professor Lisa Bero. The University of Sydney

12. * Funding sources/sponsors.

Give details of the individuals, organizations, groups or other legal entities who take responsibility for initiating, managing, sponsoring and/or financing the review. Include any unique identification numbers assigned to the review by the individuals or bodies listed.

Nicholas Chartres is a scholarship recipient (James Milner PhD scholarship in Pharmacy) from the University

of Sydney.

Grant number(s)

13. * Conflicts of interest.

List any conditions that could lead to actual or perceived undue influence on judgements concerning the main topic investigated in the review.

None

14. Collaborators.

Give the name and affiliation of any individuals or organisations who are working on the review but who are not listed as review team members. **NOTE: email and country are now mandatory fields for each person.**

15. * Review question.

State the question(s) to be addressed by the review, clearly and precisely. Review questions may be specific or broad. It may be appropriate to break very broad questions down into a series of related more specific questions. Questions may be framed or refined using PI(E)COS where relevant.

The objective of this study is to determine if the presence of food industry sponsorship in primary nutrition

studies examining the association of dairy foods with cardiovascular outcomes is associated with effect

sizes, statistical significance of results and/ or conclusions that are favorable to the sponsor. We will also

determine whether primary nutrition studies assessing the association of dairy foods with cardiovascular

outcomes with industry sponsorship differ in their risk of bias compared with studies with no or other sources

of sponsorship.

16. * Searches.

State the sources that will be searched. Give the search dates, and any restrictions (e.g. language or publication period). Do NOT enter the full search strategy (it may be provided as a link or attachment.)

We will search the following databases from 2000-March 2019: Ovid MEDLINE; CINAHL; PubMed;

Cochrane Library; and ScienceDirect. No language restrictions will be applied

PROSPERO

17. URL to search strategy.

Give a link to a published pdf/word document detailing either the search strategy or an example of a search strategy for a specific database if available (including the keywords that will be used in the search strategies), or upload your search strategy.Do NOT provide links to your search results.

https://www.crd.york.ac.uk/PROSPEROFILES/129659_STRATEGY_20190322.pdf

Alternatively, upload your search strategy to CRD in pdf format. Please note that by doing so you are consenting to the file being made publicly accessible.

Do not make this file publicly available until the review is complete

18. * Condition or domain being studied.

Give a short description of the disease, condition or healthcare domain being studied. This could include health and wellbeing outcomes.

To determine whether industry sponsorship and/or study methods are associated with the results and/or

conclusions of primary nutrition studies assessing the association of dairy foods and cardiovascular

outcomes.

19. * Participants/population.

Give summary criteria for the participants or populations being studied by the review. The preferred format includes details of both inclusion and exclusion criteria.

We will include primary research studies of any design that quantitatively examine the association of dairy

foods with cardiovascular outcomes in healthy adults.

20. * Intervention(s), exposure(s).

Give full and clear descriptions or definitions of the nature of the interventions or the exposures to be reviewed.

- •The study quantitatively measures the effects of dairy consumption in humans.
- •The study evaluates the effectiveness, efficacy or harms of dairy consumption.
- The study compares dairy food to control OR dairy food to other foods OR different levels of dairy

consumption

• The study evaluates cow, goat or sheep milk, yogurt, cheese or custard. We will include and use the

studies definition of dairy it is broader than milk, yogurt, cheese or custard.

- The study evaluates skim, low or full fat dairy products
- The study evaluates the effect of nutrients, e.g calcium and vitamin D when consumed within a dairy

product

21. * Comparator(s)/control.

Where relevant, give details of the alternatives against which the main subject/topic of the review will be compared (e.g. another intervention or a non-exposed control group). The preferred format includes details of both inclusion and exclusion criteria.

Dairy vs Dairy (different doses) Dairy vs Dairy (different fat content) Dairy vs No dairy Dairy vs Other food

PROSPERO International prospective register of systematic reviews

National Institute for Health Research

Other (mixed intervention)

22. * Types of study to be included.

Give details of the types of study (study designs) eligible for inclusion in the review. If there are no restrictions on the types of study design eligible for inclusion, or certain study types are excluded, this should be stated. The preferred format includes details of both inclusion and exclusion criteria.

RCTs, Controlled Trials, Cohort, Case-control, Pre/Post, Other/Various

23. Context.

Give summary details of the setting and other relevant characteristics which help define the inclusion or exclusion criteria.

• The study baalaatestclonice hoedsomeense (ategd risk caadio/hascauldaradio/easteds ratio (RR/HR/OR) of cardiovascular

mortality, nonfatal heart attack, stroke, etc.) and/or the surrogate outcomes of Blood Pressure (mmHg)

24. * Main outcome(s).

Give the pre-specified main (most important) outcomes of the review, including details of how the outcome is defined and measured and when these measurement are made, if these are part of the review inclusion criteria.

a. Primary Outcome 1 and 2

o Statistical significance of results

o Effect size of outcomes

For each study, the result reported for each primary outcome will be categorized as:

(1) Favourable if the result are statistically significant (p 0.05 or 95% confidence interval [CI] excluding no difference) and in the direction of dairy being more efficacious, less harmful or no more harmful than the comparator;

(2) Unfavourable if the result was statistically significant (e.g. P 0.05 or 95% confidence interval including the possibility of no difference) in the direction of the comparator being more efficacious or less harmful.

We will also extract the effect estimates for primary outcomes.

We will classify the results of the study as favourable if the stated primary outcome is reported as favourable. If the study has multiple primary outcomes we will report the study as favourable if at least one of the outcomes is reported as favourable.

b. Primary Outcome 3 (Conclusions)

The conclusions reported in the published papers will be categorized as:

(1) Favourable if the dairy intervention was preferred to comparator

(2) Unfavourable if the comparator intervention was preferred to the test one OR if the test intervention

PROSPERO

International prospective register of systematic reviews

showed a risk increase.

* Measures of effect

Please specify the effect measure(s) for you main outcome(s) e.g. relative risks, odds ratios, risk difference, and/or 'number needed to treat.

As this is not relevant to our study, we have nothing to include.

25. * Additional outcome(s).

List the pre-specified additional outcomes of the review, with a similar level of detail to that required for main outcomes. Where there are no additional outcomes please state 'None' or 'Not applicable' as appropriate to the review

WSexiblousterthe Ottoohranie (Risthood Bliagi tab hisk calibitation) is d studies (15) to measure the methodological

quality of randomized controlled trials. The tool assesses bias across 7 domains and each of these will be

reported separately. To measure methodological quality in observational studies we will use the ROBINS-I

tool for non-randomized studies (ROBINS-I)(16), which also measures bias across 7 domains.

d. Secondary Outcome 2 (Concordance between results and conclusions)

We will classify concordance between study results and conclusions as 'yes' if the authors' conclusions are

supported by all outcomes. This will include the reporting of all significant and non-significant results.

Otherwise, concordance will be classified as 'no'

* Measures of effect

Please specify the effect measure(s) for you additional outcome(s) e.g. relative risks, odds ratios, risk difference, and/or 'number needed to treat.

As this is not relevant to our study, we have nothing to include.

26. * Data extraction (selection and coding).

Describe how studies will be selected for inclusion. State what data will be extracted or obtained. State how this will be done and recorded.

Selection Process

Two investigators (NC & AF) will independently screen the titles and abstracts of all retrieved records for obvious exclusions. Two investigators (NC & AF) will then assess the remaining papers based on full text, applying the aforementioned inclusion criteria for included studies. Agreement will be reached on any discrepancies by consensus between the two assessors. If agreement cannot be reached, a third assessor (LB) will make a decision. The reasons for the eligible papers being excluded will be described in

National Institute for Health Research

'Characteristics of excluded papers' table.

Data collection process

- a) Title of the paper
- b) Year of publication
- c) Study design
- d) Comparisons:
- e) Sample size of study
- f) Mean age of participants
- g) Intervention or observation period
- h) Definition of intervention and exposure
- i) Risk of Bias
- j) Primary Hypothesis of the study (Verbatim)
- k) Primary outcomes measures
- I) Conclusion
- m) Concordance between conclusions and results
- n)Industry Sponsorship
- o) Role of the Funder: Information about the role of the sponsor as stated in the study
- p) The institutional affiliation of the corresponding author will be obtained from the article and classified into

the following categories

- q) Country of origin (verbatim)
- r) Author COI

27. * Risk of bias (quality) assessment.

Describe the method of assessing risk of bias or quality assessment. State which characteristics of the studies will be assessed and any formal risk of bias tools that will be used.

We will use the Cochrane Risk of Bias tool for randomised studies (15) to measure the methodological

quality of randomized controlled trials. The tool assesses bias across 7 domains and each of these will be

reported separately. To measure methodological quality in observational studies we will use the ROBINS-I

tool for non-randomized studies (ROBINS-I)(16), which also measures bias across 7 domains.

28. * Strategy for data synthesis.

Provide details of the planned synthesis including a rationale for the methods selected. This **must not be generic text** but should be **specific to your review** and describe how the proposed analysis will be applied to your data.

To test our hypothesis that studies with dairy industry sponsorship will be more likely to have favourable

PROSPERO

International prospective register of systematic reviews

results, we will compare the risk of dairy industry sponsored studies having a favourable result with the risk of non-dairy industry funded studies having a favorable result. Using Rev Manager we will calculate the pooled risk ratio (RR) and its 95% confidence interval using the Mantel-Haenszel fixed-effect model. However, when substantial heterogeneity is observed, we will use an inverse variance DerSimonian-Laird random-effects model. We will assess heterogeneity using l² and use a random-effects model when statistical heterogeneity is substantial, defined as an l² 50%.

To test our hypothesis that effect estimates will differ between studies with dairy industry sponsorship and those without sponsorship, we will compare the pooled effect estimates from dairy vs. non-dairy sponsored studies. We will pool the effect estimates of homogenous studies measuring dichotomous outcomes, (e.g. RR, HR, OR for all-cause mortality, CVD mortality, cardiovascular events, etc) calculating pooled risk ratios as described above. Blood pressure is a continuous outcome, so we will attempt to pool homogenous studies and measure the mean difference from baseline measures.

To test our hypothesis that studies with dairy industry sponsorship would be more likely to have favourable conclusions we will compare the risk of dairy industry sponsored studies having favourable conclusions with the risk of non-dairy industry funded studies having a favorable conclusion. We will calculate the pooled risk ratio (RR) and its 95% confidence interval using the Mantel-Haenszel fixed-effect model. However, when substantial heterogeneity is observed, we will use an inverse variance DerSimonian-Laird random-effects model. We will assess heterogeneity using l² and use a random-effects model when statistical heterogeneity is substantial, defined as an l² 50%.

29. * Analysis of subgroups or subsets.

State any planned investigation of 'subgroups'. Be clear and specific about which type of study or participant will be included in each group or covariate investigated. State the planned analytic approach. We will conduct an a priori subgroup analysis on low fat and full fat dairy products to determine if studies measuring the effects of low fat products have different results from studies that measure full fat dairy products.

We will conduct an a priori subgroup analysis by the risks of bias of the included studies to determine if studies that have a high risk of bias have different results from studies that have a low risk of bias. We hypothesize that industry sponsored studies will have the same level of risk of bias as non-industry sponsored studies.

30. * Type and method of review.

Select the type of review and the review method from the lists below. Select the health area(s) of interest for your review.

Type of review

Cost effectiveness

NHS

National Institute for

Health Research

PROSPERO International prospective register of systematic reviews

international prospective register of systematic reviews	
No	
Diagnostic No	
Epidemiologic No	
Individual patient data (IPD) meta-analysis No	
Intervention No	
Meta-analysis Yes	
Methodology No	
Narrative synthesis No	
Network meta-analysis No	
Pre-clinical No	
Prevention No	
Pre-clinical No Prevention No Prognostic No Prospective meta-analysis (PMA) No	
Prospective meta-analysis (PMA) No	
No Review of reviews No Service delivery No Synthesis of qualitative studies No	
Service delivery No	
Synthesis of qualitative studies No	
Yes	
Other No	
Health area of the review Alcohol/substance misuse/abuse No	
Blood and immune system No	
Cancer No	
Cardiovascular Yes	
Care of the elderly No	

- 58 Child health 59 No
- 59 N 60 (

Complementary therapies

1	PROSPERO
1 2	International prospective register of systematic reviews
3	
4	No
5	Crime and justice No
6 7	Dental
8 9	No
10	Digestive system No
11 12	Ear, nose and throat
13	No
14 15	Education No
16	Endocrine and metabolic disorders
17 18	No
18 19	Eye disorders No
20	General interest
21 22	No
23	Genetics
24	No
25 26	Health inequalities/health equity No
27 28	Infections and infestations No
29 30 31	International development No
32 33	Mental health and behavioural conditions No
34 35	Musculoskeletal No
36	
37 38	No
39	Neurological No Nursing No Obstetrics and gynaecology No Oral health No
40 41	Obstetrics and gynaecology
42	No
43 44	Oral health No
45	Palliative care
46	No
47 48	Perioperative care
48	No
50	Physiotherapy
51	No
52 53	Pregnancy and childbirth No
54	Public health (including social determinants of health)
55	Yes
56 57	Rehabilitation
58	No
59	Respiratory disorders
60	No

NHS National Institute for Health Research

PROSPERO International prospective register of systematic reviews

Service delivery No Skin disorders No Social care No Surgery No Tropical Medicine No Urological No Wounds, injuries and accidents

No Violence and abuse

No

31. Language.

Select each language individually to add it to the list below, use the bin icon to remove any added in error. English

There is not an English language summary

32. * Country.

Select the country in which the review is being carried out from the drop down list. For multi-national collaborations select all the countries involved.

Australia

33. Other registration details.

Give the name of any organisation where the systematic review title or protocol is registered (such as with The Campbell Collaboration, or The Joanna Briggs Institute) together with any unique identification number assigned. (N.B. Registration details for Cochrane protocols will be automatically entered). If extracted data will be stored and made available through a repository such as the Systematic Review Data Repository (SRDR), details and a link should be included here. If none, leave blank.

34. Reference and/or URL for published protocol.

Give the citation and link for the published protocol, if there is one

Give the link to the published protocol.

Alternatively, upload your published protocol to CRD in pdf format. Please note that by doing so you are consenting to the file being made publicly accessible.

No I do not make this file publicly available until the review is complete

Please note that the information required in the PROSPERO registration form must be completed in full even if access to a protocol is given.

35. Dissemination plans.

Give brief details of plans for communicating essential messages from the review to the appropriate audiences.

PROSPERO International prospective register of systematic reviews

Do you intend to publish the review on completion?

Yes

36. Keywords.

Give words or phrases that best describe the review. Separate keywords with a semicolon or new line. Keywords will help users find the review in the Register (the words do not appear in the public record but are included in searches). Be as specific and precise as possible. Avoid acronyms and abbreviations unless these are in wide use.

Nutrition, Industry Sponsorship, Conflict of Interest, Bias, Food Industry

37. Details of any existing review of the same topic by the same authors.

Give details of earlier versions of the systematic review if an update of an existing review is being registered, including full bibliographic reference if possible.

CRD42017055841 The association of industry sponsorship with outcomes of studies examining the effect of

intake of wholegrain foods with cardiovascular disease and mortality: protocol

38. * Current review status.

Review status should be updated when the review is completed and when it is published. For newregistrations the review must be Ongoing. Please provide anticipated publication date

Review_Ongoing

39. Any additional information.

Provide any other information the review team feel is relevant to the registration of the review.

40. Details of final report/publication(s).

This field should be left empty until details of the completed review are available.

Give the link to the published review.

Supplementary file 2. Search Strategy OVID Medline: Dairy, CVD, Adults

- 1. Randomized controlled trial*.tw.
- 2. experimental design.tw.
- 3. intervention*.tw.
- 4. (RCT* or rct*).tw.
- 5. random* control* trial*.tw.
- 6. clinical trial*.tw.
- 7. field trial*.tw.
- 8. community trial*.tw.
- ιw. .t*.tw. 9. controlled clinical trial*.tw.
- 10. pragmatic trial*.tw.
- 11. observational stud*.tw.
- 12. cohort stud*.tw.
- 13. prospective cohort*.tw.
- 14. retrospective cohort*.tw.
- 15. case control*.tw.
- 16. ecological stud*.tw.
- 17. time series analys?s*.tw.
- 18. before-after stud*.tw.
- 19. pre-post stud*.tw.
- 20. follow up stud*.tw.
- 21. comparative stud*.tw.
- 22. evaluation stud*.tw.
- 23. dairy.mp.
- 24. dairy intake*.mp.

25. dairy consumption.mp.

- 26. dairy food*.mp.
- 27. Dairy Products/ or dairy product*.mp.
- 28. dairy serv*.mp.
- 29. dairy type*.mp.
- 30. dairy source*.mp.

31. (calcium adj15 food sourc*).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]

32. (vitamin D adj15 food sourc*).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]

33. (milk and (cow or goat or sheep)).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]

4.04

34. yogurt.mp. or Yogurt/

35. cheese.mp. or Cheese/

36. custard.mp.

37. (milk and (skim or full fat or low fat)).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]

38. (yogurt and (skim or full fat or low fat)).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]

39. Milk/

40. 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39

41. cardiovascular disease.mp. or exp Cardiovascular Diseases/

42. coronary*.tw.

2
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 21
5
6 7
8
9 10
11
12 13
14
15 16
17
18 19
20
21 22
22
24 25
25 26
27 20
28 29
30
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
33
34 35
36
37 38
39
40 41
42
43 44
45
46 47
48
49 50
51
52 53
54
55 56
57
58 59
59 60

43. heart*.tw.

44. cardia*.tw.

45. cardio*.tw.

46. myocard*.tw.

47. isch?em*.tw.

48. angina*.tw.
49. ventric*.tw.
50. tachycardi*.tw.
51. pericard*.tw.
52. endocardi*.tw.
53. atrial fibrillat*.tw.
54. arrhythmi*.tw.
55. athero*.tw.
56. arterio*.tw.
57. exp Atherosclerosis/
58. exp Arteriosclerosis/
59. HDL.tw.
60. LDL.tw.
61. VLDL.tw.
62. lipid*.tw.
63. lipoprotein*.tw.
64. triacylglycerol*.tw.
65. exp Hyperlipidemias/
66. hyperlipid*.tw.
67. hypercholesterol*.tw.
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2 3	68. hypercholester?emia*.tw.
4 5 6	69. hypertriglycerid?emia*.tw.
7 8	70. exp Cholesterol/
9 10	71. cholesterol*.tw.
11 12	72. exp Stroke/
13 14	73. stroke*.tw.
15 16	74. CVA.tw.
17 18	75. cerebrovasc*.tw.
19 20	
21 22	76. "vascular accident".tw.
23 24	77. TIA.tw.
25 26	78. cerebral vascular.tw.
27 28	79. thrombo*.tw.
29 30	80. emboli*.tw.
31 32	81. apoplexy.tw.
33 34	82. (brain adj2 accident*).tw.
35 36 27	83. ((brain* or cerebral or lacunar) adj2 infarct*).tw.
37 38 39	84. Hypertension/
40 41	85. exp Blood Pressure/
42 43	86. hypertensi*.tw.
44 45	87. blood pressure*.tw.
46 47	88. systolic blood pressure.tw.
48 49	89. diastolic blood pressure.tw.
50 51	90. peripheral arter* disease*.tw.
52 53	91. (coronar\$ adj5 (bypas\$ or graft\$ or disease\$ or event\$)).tw.
54 55	92. (cerebrovasc\$ or cardiovasc\$ or mortal\$ or angina\$ or stroke or strokes).tw.
56 57	
58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

93. (myocardi\$ adj5 (infarct\$ or revascular\$ or ischaemi\$ or ischemi\$)).tw.

94. (morbid\$ adj5 (heart\$ or coronar\$ or ischaem\$ or ischem\$ or myocard\$)).tw.

95. (vascular\$ adj5 (peripheral\$ or disease\$ or complication\$)).tw.

96. (heart\$ adj5 (disease\$ or attack\$ or bypass\$)).tw.

97. 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56 or 57 or 58 or 59 or 60 or 61 or 62 or 63 or 64 or 65 or 66 or 67 or 68 or 69 or 70 or 71 or 72 or 73 or 74 or 75 or 76 or 77 or 78 or 79 or 80 or 81 or 82 or 83 or 84 or 85 or 86 or 87 or 88 or 89 or 90 or 91 or 92 or 93 or 94 or 95 or 96

98. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22

99. 40 and 97 and 98

100. limit 99 to yr="2000 - 2019"

101. limit 100 to humans

102. limit 101 to "all adult (19 plus years)"

Supplementary	file 3. List	of excluded	l studies and	l reasons for	exclusion
Supplementary	THE J. LISU		i studies and	i icasons ioi	CACIUSION

Author	Title	Reason for Exclusion
Akbaraly, T	Does overall diet in midlife predict future	Dietary patterns only were
20131	aging phenotypes? A cohort study	assessed, not dairy foods
Anderson, LA 2011 ²	Dietary Patterns and Survival of Older Adults	No relevant outcomes were measured
Baylin, A 2003 ³	High 18:2 trans-fatty acids in adipose tissue are associated with increased risk of nonfatal acute myocardial infarction in Costa Rican adults	Effects of dairy foods not measured
Beydoun, MA 2018 ⁴	Dairy product consumption and its association with metabolic disturbance in a prospective study of urban adults	Groups exposed to dairy not clearly defined
Biong, AS 2006 ⁵	Intake of milk fat, reflected in adipose tissue fatty acids and risk of myocardial infarction: a case–control study	Effects of dairy foods not measured
Chen, y 2013 ⁶	Prospective investigation of major dietary patterns and risk of cardiovascular mortality in Bangladesh	Dietary patterns only were assessed, not dairy foods
Ding, M 2017 ⁷	Dairy consumption, systolic blood pressure, and risk of hypertension: Mendelian randomization study	Not an observational design study
Eguchi, E 2012 ⁸	Healthy lifestyle behaviours and cardiovascular mortality among Japanese men and women: the Japan collaborative cohort study	Dietary patterns only were assessed, not dairy foods
Geleijnse, JM 2017 ⁹	Dietary Patterns in Relation to Cardiovascular Disease Incidence and Risk Markers in a Middle-Aged British Male Population: Data from the Caerphilly Prospective Study	Dietary patterns only were assessed, not dairy foods
Goldbohm, RA 2011 ¹⁰	Dairy consumption and 10-y total and cardiovascular mortality: a prospective cohort study in the Netherlands	No combined outcome data
Julián- Almárcegui, C 2016 ¹¹	Association of heart rate and blood pressure among European adolescents with usual food consumption: The HELENA study	Participants were adolescents, not adults
Larsson, SC 2018 ¹²	Dietary patterns, food groups, and incidence of aortic valve stenosis: A prospective cohort study	Dietary patterns only were assessed, not dairy foods
Lupton, BS 2003 ¹³	The Finnmark Intervention Study: is it possible to change CVD risk factors by community-based intervention in an Arctic village in crisis?	No combined outcome data
Meyer, J 2011 ¹⁴	Dietary patterns, subclinical inflammation, incident coronary heart disease and mortality	Dietary patterns only were assessed, not dairy foods

	in middle-aged men from the MONICA/KORA Augsburg cohort study	
Michaelsson, K 2013 ¹⁵	Long term calcium intake and rates of all cause and cardiovascular mortality: community based prospective longitudinal cohort study	Dietary calcium only was assessed, not dairy foods
Oomen, CM 2000 ¹⁶	Arginine intake and risk of coronary heart disease mortality in elderly men	Effects of dairy foods not measured
Paillard, F 2015 ¹⁷	Cardiovascular risk and lifestyle habits of consumers of a phytosterol-enriched yogurt in a real-life setting	Yogurt was enriched with phytosterols
Praagman, J 2016 ¹⁸	The association between dietary saturated fatty acids and ischemic heart disease depends on the type and source of fatty acid in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort	Effects of dairy foods not measured
Streppel, MT 2014 ¹⁹	Nutrient-rich foods, cardiovascular diseases and all-cause mortality: the Rotterdam study	Dietary patterns only were assessed, not dairy foods
Umesawa, M 2006 ²⁰	Dietary intake of calcium in relation to mortality from cardiovascular disease: the JACC Study	No combined outcome data
van der Pols, J C 2009 ²¹	Childhood dairy and calcium intake and cardiovascular mortality in adulthood: 65- year follow-up of the Boyd Orr cohort	Participants were children, not adults
Warensjo, E 2009 ²²	Stroke and plasma markers of milk fat intake – a prospective nested case-control study	Effects of dairy foods not measured
Warensjo, E 2009 ²³	Milk Fat Biomarkers and the Risk of a First Ever Acute Myocardial Infarction - A Prospective Nested Case-Control Study. Journal of the American Dietetic Association. 2009;1	Poster presentation only, full study not available
Warensjo, E 2010 ²⁴	Biomarkers of milk fat and the risk of myocardial infarction in men and women: a prospective, matched case-control study	No combined outcome data

1. Akbaraly T, Sabia S, Hagger-Johnson G, et al. Does overall diet in midlife predict future aging phenotypes? A cohort study. *The American journal of medicine*. 2013;126(5):411-419.e413.

- 2. Anderson AL, Harris TB, Tylavsky FA, et al. Dietary Patterns and Survival of Older Adults. *Journal of the American Dietetic Association.* 2011;111(1):84-91.
- 3. Baylin A, Kabagambe EK, Ascherio A, et al. 18:2 trans-fatty acids in adipose tissue are associated with increased risk of nonfatal acute myocardial infarction in costa rican adults. *Journal of Nutrition*. 2003;133(4):1186-1191.
- 4. Beydoun MA, Fanelli-Kuczmarski MT, Beydoun HA, et al. Dairy product consumption and its association with metabolic disturbance in a prospective study of urban adults. *British Journal of Nutrition.* 2018;119(6):706-719.

BMJ Open

2		
3	5.	Biong AS, Veierod MB, Ringstad J, et al. Intake of milk fat, reflected in adipose tissue fatty acids
4		and risk of myocardial infarction: a case-control study. European Journal of Clinical Nutrition.
5		2006;60(2):236-244.
6	6.	Chen Y, McClintock TR, Segers S, et al. Prospective investigation of major dietary patterns and
7		risk of cardiovascular mortality in Bangladesh. International Journal of Cardiology.
8		2013;167(4):1495-1501.
9 10	7.	Ding M, Huang T, Bergholdt HK, et al. Dairy consumption, systolic blood pressure, and risk of
10		hypertension: Mendelian randomization study. <i>Bmj.</i> 2017;356:j1000.
12	8.	Eguchi E, Iso H, Tanabe N, et al. Healthy lifestyle behaviours and cardiovascular mortality
13		among Japanese men and women: the Japan collaborative cohort study. <i>European heart journal</i> .
14		2012;33(4):467-477.
15	9.	Geleijnse JM, Mertens E, Markey O, et al. Dietary Patterns in Relation to Cardiovascular Disease
16		Incidence and Risk Markers in a Middle-Aged British Male Population: Data from the Caerphilly
17		Prospective Study. Nutrients. 2017;9(1):75.
18	10.	Goldbohm RA, Chorus AMJ, Galindo Garre F, et al. Dairy consumption and 10-y total and
19		cardiovascular mortality: a prospective cohort study in the Netherlands. American Journal of
20		<i>Clinical Nutrition.</i> 2011;93(3):615-627 613p.
21	11.	Julián-Almárcegui C, Vandevijvere S, Gottrand F, et al. Association of heart rate and blood
22		pressure among European adolescents with usual food consumption: The HELENA study.
23		Nutrition, Metabolism & Cardiovascular Diseases. 2016;26(6):541-548.
24	12.	Larsson SC, Wolk A, Bäck M. Dietary patterns, food groups, and incidence of aortic valve
25		stenosis: A prospective cohort study. International Journal of Cardiology. 2018.
26	13.	Lupton BS, Fonnebo V, Sogaard AJ, et al. The Finnmark Intervention Study: is it possible to
27		change CVD risk factors by community-based intervention in an Arctic village in crisis?
28		Scandinavian Journal of Public Health. 2003;31(3):178-186.
29 30	14.	Meyer J, Doring A, Herder C, et al. Dietary patterns, subclinical inflammation, incident coronary
31		heart disease and mortality in middle-aged men from the MONICA/KORA Augsburg cohort
32		study. European journal of clinical nutrition. 2011;65(7):800-807.
33	15.	Michaelsson K, Melhus H, Warensjo E, et al. Long term calcium intake and rates of all cause and
34		cardiovascular mortality: community based prospective longitudinal cohort study. <i>Bmj</i> .
35		2013;346:f228.
36	16.	Oomen CM, van Erk MJ, Feskens EJ, et al. Arginine intake and risk of coronary heart disease
37		mortality in elderly men. Arteriosclerosis, thrombosis, and vascular biology. 2000;20(9):2134-
38		2139.
39	17.	Paillard F, Bruckert E, Naelten G, et al. Cardiovascular risk and lifestyle habits of consumers of a
40		phytosterol-enriched yogurt in a real-life setting. Journal of Human Nutrition & Dietetics.
41		2015;28(3):226-235 210p.
42	18.	Praagman J, Beulens JW, Alssema M, et al. The association between dietary saturated fatty acids
43		and ischemic heart disease depends on the type and source of fatty acid in the European
44		Prospective Investigation into Cancer and Nutrition-Netherlands cohort. American Journal of
45		Clinical Nutrition. 2016;103(2):356-365.
46	19.	Streppel MT, Sluik D, van Yperen JF, et al. Nutrient-rich foods, cardiovascular diseases and all-
47		cause mortality: the Rotterdam study. European journal of clinical nutrition. 2014;68(6):741-747.
48 49	20.	Umesawa M, Iso H, Date C, et al. Dietary intake of calcium in relation to mortality from
49 50		cardiovascular disease: the JACC Study. Stroke. 2006;37(1):20-26.
50	21.	van der Pols JC, Gunnell D, Williams GM, et al. Childhood dairy and calcium intake and
52		cardiovascular mortality in adulthood: 65-year follow-up of the Boyd Orr cohort. Heart.
53		2009;95(19):1600-1606.
55	22.	Warensjo E, Smedman A, Stegmayr B, et al. Stroke and plasma markers of milk fat intakea
55		prospective nested case-control study. Nutrition Journal. 2009;8:21.
56		· · · · ·
57		
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

23. Warensjo E, Sjogren P, Cederholm T, et al. Milk Fat Biomarkers and the Risk of a First Ever Acute Myocardial Infarction - A Prospective Nested Case-Control Study. *Journal of the American Dietetic Association*. 2009;109(9, Supplement):A51.

24. Warensjö E, Jansson JH, Cederholm T, et al. Biomarkers of milk fat and the risk of myocardial infarction in men and women: a prospective, matched case-control study. *American Journal of Clinical Nutrition*. 2010;92(1):194-202 199p.

tor per terien ont

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interes
Aerde, M 2013 ⁽¹⁾	Cohort	12.4 years	1,956 men & women	61.6 years	Total Dairy, 271 g/day per SD of the mean intake for Total dairy (all dairy products except butter)		Fatal CVD	Non- Industry ¹	Yes ^a
Al-Delaimy, WK 2003 ⁽²⁾	Cohort	12 years	39,800 men	40-75 years	Dairy Calcium Q5, 819 mg/day (median) (dairy calcium intake summed the calcium intake from whole milk, skim or low- fat milk, yogurt, ice cream, cottage cheese, and other cheese was summed)	Q1, 106 mg/day	Fatal Ischemic Heart Disease	Non Industry ²	No ^b
Alonso A, 2005 ⁽³⁾	Cohort	27 months	5,880 men & women	37 years	Dairy Q 5, 798.8 g/day (whole-fat milk, partially skim milk, skim milk, condensed milk, whipped cream, yogurt, skim yogurt, milk- shake, cottage cheese or junket, petit Suisse cheese, spreadable cheese wedges, soft unripened cheese, other cheese, custard, and ice cream)	Q 1, 155.6 g/day	Hypertension	Non- industry ³	No ^c

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interes
Altorf-van der Kuil, W2012 ⁽⁴⁾	Cohort	Mean follow up 7·5 years	3,588 men & women	44 years	Dairy Protein T3, ≥ 27 g/day (dairy protein was calculated as protein from milk, yogurt, coffee creamer, curd, pudding, porridge, custard, whipped cream and cheese)	T1, ≤ 19 g/day	Hypertension	Industry ⁴	Yes ^d
Avalos, EE 2013 ⁽⁵⁾	Cohort	Mean follow up 16.2 years	1,759 men & women	70.6 years men, 70.1 women	Whole Milk, Non-Fat Milk, Yogurt & Cheese, Sometimes/often (included daily, 4–6 times/week, 1–3 times/week and 1–3 times/months)	Rarely/never (included never & 1–11 times/year)	Incident CHD	Non- industry ⁵	Noe
Bernstein, AM 2012 ⁽⁶⁾ 2 Cohorts 26 and 22 years of follow-up in women and men, respectively	127,160 (43 150 men 84 010 women)	Men 40 to 75 years, Woman 30 to 55 years	Whole Fat Q 5, Men 2.55 servings/day, Woman 2.81 servings/day (whole milk, ice cream, hard cheese, full fat cheese, cream, sour cream, cream cheese, butter)	Q 1, Men 0.21 servings/day, Woman 0.34 servings/day.	Total Stroke	Non- industry ⁶	Yesf		
					Low Fat Q5, Men 2.64 servings/day, Women 2.20 servings/day (skim/low-fat milk, 1% and 2% milk, yogurt, cottage and ricotta cheeses, low-fat cheese, sherbet)	Low Fat Q1, Men 0.11 servings/day, Women 0.07 servings/day			
Biong, A 2008 ⁽⁷⁾	Case Control		218 men & women	62.4 years	Dairy Fat, > 34.1 g/day	<14.6 g/day	First Myocardial Infarction	Industry ⁷	Yes ^g

Page 51 of 84

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interes
Bonthuis, M 2010 ⁽⁸⁾	Cohort	Mean 14.4 years	1,529 men & women	25–78 years	Total Dairy T3, 599 g/day (median) ('low-fat dairy products was computed by adding daily servings (in grams) of skim milk, low-fat milk, low-fat yoghurt, cottage or ricotta cheese, whereas the food group 'high- fat/unmodified dairy' included whole milk, cream, ice cream, yoghurt, full-fat cheese and custard. Total dairy intake was the sum of intake	T1, 174 g/day	Cardiovascular Disease Mortality	Non- Industry ⁸	No ^h
Buendia, JR 2018 ⁽⁹⁾	3 Cohorts	30 years of follow-up in NHS, 20 years in NHS II, 24 years in the HPFS	NHS (N=69298), NHS II (N=84368), HPFS (N=30512)	Mean baseline ages in the 3 cohorts were 44.6, 35.8, and 50.7 years, respectively	of all these dairy foods) Total Dairy Q4, 3 - <6 servings/day (total dairy intake included: milk (skim, low-fat, whole), ice cream, sherbet/ frozen yogurt, cheese (cottage, ricotta, hard, sliced), and yogurt (all types)	Q1, <0.5 servings/day	High Blood Pressure	Industry ⁹	No ⁱ
Chen, M 2016 ⁽¹⁰⁾	3 Cohorts	24 years in the HPFS, 32 years NHS, 20 years in NHS II	222,234 - 43,652 men HPFS, 87,907 women NHS, 90,675 women NHS II	40–75 years HPFS, 30– 55 years NHS, 25– 42 y NHS II	Dairy Fat, Q5	Q1	CVD	Non- Industry ¹⁰	No ^j

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interest
Dalmeijer,G 2013 ⁽¹¹⁾	Cohort	13 years	33,625 men & women	49.0 years	Total dairy and its subtypes were evaluated as continuous variables per standard deviation of the mean intake which is 265 g/d for total dairy (total dairy included all dairy food products except for butter and ice cream. Milk and milk products included all kinds of milk, yogurt, coffee creamers, curd, pudding, porridge, custard, and whipping cream)		Incident of Coronary Heart Disease & Incident Stroke	Non- Industry ¹¹	Yes ^k
Dauchet, L 2007 ⁽¹²⁾	Cohort	5.4 years	2,341 men & women	Men 52.7 years, Women 46.9 years	Dairy Q4, 456 g/day (dairy products including milk, cheese, yogurt, and other dairy products)	Q1, 84 g/day	Systolic & Diastolic Blood Pressure	Non- Industry ¹²	No ¹
						0 7			

Page 53 of 84

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interest
Dehghan, M 2018 ⁽¹³⁾	Cohort	9.1 yrs	136,384 men & women	50·1 years	Dairy Q4, >2 servings/ day (median) (dairy comprised milk, yoghurt, various types of cheese, yoghurt drink, and mixed dishes prepared with dairy. Mixed dishes prepared with dairy were dis- aggregated into their constituents and a proportional weight was assigned to each component. Then each component was included in the related dairy group.	Q1, 0 servings/day	Cardiovascular Mortality or Major Events	Industry ¹³	No ^m
Elwood, PC 2004 ⁽¹⁴⁾	Cohort	20-24 years	2,403 men	45-59 years	Milk Q4, >1 pint per day	Q1, None	Vascular Event	Non- Industry ¹⁴	No disclosure

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interest
Engberink, MF 2009 ⁽¹⁵⁾	Cohort	6 years	2,245 men & women	66	Dairy Q4, 691 g/day (i.e. 4.5 servings/day) (median intake) (calculated total dairy intake by summing the intake of individual dairy items, except butter and ice cream. The category "milk and milk products" included all kinds of milk, yogurt, coffee creamer, curd, pudding, porridge, custard, and whipped cream. The category "cheese" included all kinds of cheese products, ie, soft cheese, hard cheese, and cheese spreads)	Q1, 164 g/day (i.e. 1 serving/day) (median intake)	Hypertension	No disclosure	No ⁿ
Farvid, MS 2017 ⁽¹⁶⁾	Cohort	8 years	42,403 men & women	51.6 years	Total Dairy Q5, 2.4 servings/day (median) (total dairy product items listed in the food frequency questionnaire included milk, cheese, yogurt, liquid yogurt (doogh), dried yogurt paste (kashk), and cream)	Q1, 0.4 servings/day (median)	Cardiovascular Disease Mortality	Non- Industry ¹⁵	Noº
Haring, B 2014 ⁽¹⁷⁾	Cohort	22 years (median)	12,066 men & women	45-64 years	Dairy Protein Q5, 2.9 servings/day	Q1, 0.1 median servings/day	Coronary Heart Disease	Non- Industry ¹⁶	No ^p
He, K 2003 ⁽¹⁸⁾	Cohort	14 years	43,732 men	40-75 years	High Fat Dairy Q5, ≥1/day	Q1, <1/week	Ischaemic & Haemorrhagic Stroke	Non- Industry ¹⁷	Noq

Page	55	of	84
------	----	----	----

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interest
Heraclides, A 2012 ⁽¹⁹⁾	Cohort	10 years	1,750 men & women	Men 43 years, Women 53 years	Total Dairy T3, 309.0 g/day (median) (full-fat milk; semi-skimmed milk; skimmed milk; milk-containing beverages (full fat, semi- skimmed and skimmed); full-fat cheese; low-fat cheese; full-fat yoghurt; low-fat yoghurt; fruit- flavoured yoghurt (full fat and low fat); and milk- based puddings)	T1, 224.1 g/day	Incident Hypertension	Non- Industry ¹⁸	Yesr
Johansson, I 2018 ⁽²⁰⁾	Cohort	8-12 years	27,682 men & women	29-65 years	Dairy Q 5, 7.1 servings/day (median)	Q1, 1.6 servings/day (median)	Blood Pressure	Non- Industry ¹⁹	No ^S
Johansson, I 2019 ⁽²¹⁾	Cohort	14.2 years	108,065 men & women	calculated mean = 52.5 years *	High Fat & Low Fat Non- Fermented Milk & Cheese Q 4, high dose	Q1, low dose	Myocardial Infarction & Stroke	Non- Industry ²⁰	No ^t
Kim, D 2017 ⁽²²⁾	Cohort	67.4 months	4,335 men & women	40-69 years	Total Dairy Q 5, >7 servings/week	Q 1, <1 servings/week	Blood Pressure	Non- Industry ²¹	No ^u
Larsson,S 2009 ⁽²³⁾	Cohort	13.6 years	26,556 men	50-69 years	Dairy Q5, 1295.6 g/day (median) (including low- fat milk, whole milk, sour milk, yogurt, cheese, cream, ice cream, and butter)	Q1 286.5 g/day	Cerebral Infarction, Intracerebral Haemorrhage, Subarachnoid Hemorrhage	Non- Industry ²²	No disclosure

1 2 3 4 5 6 7 8 9	
10 11 12 13 14 15 16 17	
18 19 20 21 22 23 24 25	
25 26 27 28 29 30 31 32	
33 34 35 36 37 38 39	
40 41 42 43 44 45 46 47	

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interest
Larsson, SC 2012 ⁽²⁴⁾	Cohort	10.2 years	74,961 men & women	45-83 years	Dairy Q5, 9.3 servings/day (median) (dairy foods included low-fat milk (0.5% fat), medium-fat milk (1.5% fat), full-fat milk (3% fat), milk in pancakes, low-fat sour milk/yogurt (0.5% fat), full-fat sour milk/ yogurt (3% fat), cottage cheese (4% fat), low-fat cheese (10%-17% fat), full-fat cheese (approximately 28% fat), ice cream, cream, and creme fraiche)	Q1, 2.3 servings/day	Total Stroke	Non- Industry ²³	Nov
Li, K 2012 ⁽²⁵⁾	Cohort	11 years	23,980 men & women	35-64 years	Dairy Calcium Q4, 780 mg/day	Q1, 188 mg/day	CVD Mortality	Non- Industry ²⁴	Now
Lin, PH 2013 ⁽²⁶⁾	Cohort	12 years	2,061 men & women	45.8 years (no information for stroke group)	Dairy T3, (dairy milk of any kind, cheese, yogurt).		Total Stroke	Non- Industry ²⁵	No ^x
Lockheart, MSK 2007 ⁽²⁷⁾	Case Control		211 men & women	62.5 years cases and 62.2 years controls	Low Fat Dairy T3, 618 g/day (Low-fat milk, skimmed milk, light sour cream)	T 1, 48 g/day	First Myocardial Infarction	Industry ²⁶	No disclosure
Louie, JCY 2013 ⁽²⁸⁾	Cohort	15 years	2,625 men & women	49–97 years	Total Dairy T3, 2.9 servings/day (median) (included all dairy foods)	T1, 0.6 servings/day	Total CVD	Industry ²⁷	No disclosure
Mazidi, M, 2018 ⁽²⁹⁾	Cohort	76.4 months	24,474 men & women	47.6 years	Total Dairy Q4, 3.08 cup equivalent servings/day (total dairy, milk, cheese, and yogurt)	Q1, 0.25 cup equivalent servings/day	CHD Mortality & Cerebrovascular Disease mortality	Non- Industry ²⁸	No ^y

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interes
Ness, AR 2001 ⁽³⁰⁾	Cohort	25 years	5,765 men	35-64 years	Milk T3, > 1 pint (= 0.568 liters)	T1, None	Cardiovascular Disease Deaths	Non- Industry ²⁹	No ^z
Nettleton, J 2008 ⁽³¹⁾	Cohort	13.3 years	14,153 men & women	45 to 64 years	High Fat Dairy, per 1 daily serving difference in food group intake		Incident Heart Failure	Non Industry ³⁰	No ^{aa}
Panagiotakos, D 2009 ⁽³²⁾	Cohort	5 years	3,042 men & women	18-89 years	Low Fat Dairy, 1-unit increase in components' scores (0%, 2% or total fat), like cheese, yogurt, milk)		CVD Events	Non- Industry ³¹	No disclosure
Patterson, E 2013 ⁽³³⁾	Cohort	11.6 years	33,636 women	48-83 years	Total Dairy, Q5 8.4 servings/day (median) (total dairy intake was the sum of milk [full-fat (\geq 3.0% fat), semi- skimmed (\leq 1.5% fat), skimmed (0.5% fat), and pancakes], cultured milk/yogurt [full-fat (\geq 3.0% fat) and low-fat (\leq 1.5% fat)], cheese [full- fat (>17% fat), low-fat (\leq 17% fat), and cottage cheese/ quark], cream and creme fariche (full fat and low fat) intakes)	Q1, 2.2 servings/day	Myocardial Infarction	Non Industry ³²	No ^{bb}
Praagman, J 2015 (a) ⁽³⁴⁾	Cohort	13.3 years (median)	4,235 men & women	66.9 years	Total Dairy, T3 >400g/day (total dairy included milk, buttermilk, yogurt, coffee creamer, curd, pudding, porridge, custard, whipped cream, ice cream, and cheese, but not butter)	Total Dairy, T 1 <200 g/day	Fatal Stroke & Fatal CHD	Industry ³³	Yes ^{cc}

1 2 3	
4	
5 6	
7 8	
9 10	
11	
12 13	
14 15	
16 17	
18	
19 20	
21	
22 23 24	
25	
26 27	
28 29	
30	
31 32	
33 34	
34 35 36 37	
38 39	
40 41	
42 43	
44	
45 46	
47	

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interest
Praagman, J 2015 (b) ⁽³⁵⁾	Cohort	15 years	34,409 men & women	Men 51 years & women 43 years	Total Yogurt & Cheese Q4, (fermented dairy foods)	Q1	CVD Mortality	Non- Industry ³⁴	Yes ^{dd}
Sauvaget, C 2003 ⁽³⁶⁾	Cohort	16 years	37,130 men & women	56 years	Dairy Q4, Almost Daily (dairy products (butter and cheese, excluding margarine))	Q1, Never	Total Stroke	Non- Industry ³⁵	No disclosure
Snijder, MB 2008 ⁽³⁷⁾	Cohort	6.4 years	1,124 men & women	50–75 years	Dairy Q4, 5.75-17.24 servings/day (range) (total dairy consumption was categorized as low-fat dairy (≤2% fat) or high- fat dairy (>2% fat). The variable dairy desserts included yoghurt, curds, and custard. The variable milk included low-fat, skim, and, whole milk. The variable yoghurt included all low- fat, skim, and whole yoghurts)	Q1 0-2.97 servings/day (range)	Systolic & Diastolic Blood Pressure	Industry ³⁶	Yes ^{ee}
Soedamah- Muthu, SS 2013 ⁽³⁸⁾	Cohort	10.8 years	4,255 men & women	56 years	Dairy, T3 575 g/day (median) (all dairy products, except butter and ice cream)	T1, 246 g/day (median)	Fatal & Non- Fatal CHD	Non- Industry ³⁷	Yes ^{ff}
Steffen, LM 2005 ⁽³⁹⁾	Cohort	15 years	4,304 men & women	18-30 years	Dairy Foods Q5, >3.4 times/day (dairy foods, including milk, cheese, yogurt, and dairy desserts)	Q1, <1.1 times/day	Blood Pressure	Non- Industry ³⁸	No ^{gg}

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interes
Tavani, A 2002 ⁽⁴⁰⁾	Case Control		985 men & women	61 years (median)	Total milk >7 cups/week, Yogurt >= 7 portions/week, Cheese >=350g/week	Total milk 0 cups/week, Yogurt 0 portions/week, Cheese <200g/week	Acute Myocardial Infarction	Non- Industry ³⁹	No ^{hh}
Um, C 2017 ⁽⁴¹⁾	Cohort	5.7 years of follow-up	21,427 men & women	calculated mean = 64.8 years**	Total Dairy Q5, 17.8 servings/day (dairy products (milk, cream, fermented dairy products, ice cream, butter, cheeses))	Q1, 0.9 servings/day	CVD Mortality	Non- Indutry ⁴⁰	No ⁱⁱ
Umesawa, M, 2008 ⁽⁴²⁾	Cohort	12.9-year follow-up	41,526 men & women	40-59 years	Dairy Calcium, Q5, 116 mg/day (median) (to calculate dairy calcium intake, we specified 2 kinds of dairy products, ie, cheese and dairy products except cheese, for the baseline questionnaire, and 4 kinds, ie, whole milk, low fat milk, cheese, and yogurt, for the 5-year follow-up questionnaire)	Q1, 0 mg/day	Total Stroke & CHD	Non- Industry ⁴¹	No ^{ij}

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interest
Wang,L 2008 ⁽⁴³⁾	Cohort	10 years	28,886 women	53.8 years	Total Diary Q5, 3.69 servings/day (median) (total dairy product intake was calculated by summing the intake of individual dairy items: low-fat dairy items include skim or low-fat milk, sherbet, yogurt, and cottage/ricotta cheese, high-fat dairy items include whole milk, cream, sour cream, ice cream, cream cheese, and other cheese)	Q1, 0.56 servings/day (median)	Hypertension	Non- Industry ⁴²	No ^{kk}

* We calculated the mean age score of participants by summing Non-cases, T2D, MI and stroke cases at baseline and dividing them by 4 **We calculated the mean age score of participants by summing all quintiles 1, 3, & 5 (they were the only ones available) at baseline and dividing them by 5

Description of Funding Source (Verbatim)

- 1. The Hoorn Study has been made possible by the Vrije Universiteit Amsterdam and the VU University Medical Center, and by grants from the Dutch Diabetes Research Foundation, the Dutch Organization for Scientific Research, the Netherlands Heart Foundation, and the Health Research and Development Council of the Netherlands.
- 2. Supported by research grants HL24074, HL34594, DK36798, and CA87969 from the National Institutes of Health.
- 3. Supported by the Spanish Ministry of Health (grants PI040233 and G03-140), the Navarra Regional Government (PI41-2005), and the University of Navarra (línea especial Nutricio LE-97). AA was supported partially by a Fulbright fellowship and an MMA Foundation grant.
- 4. The Doetinchem Cohort Study was financially supported by the Ministry of Health, Welfare and Sport of the Netherlands and the National Institute for Public Health and the Environment. For the present analysis, Wageningen University was supported by the Top Institute Food and Nutrition, which is a public/private partnership that generates vision on scientific breakthroughs in food and nutrition, resulting in the development of innovative products and technologies. Partners are major Dutch Food companies and research organisations.
- 5. The study was supported by grants AG007181 and AG028507 from the National Institutes of Health/National Institute on Aging, and by grant DK31801 from the National Institute of Diabetes and Digestive and Kidney Diseases.
- 6. This study was supported by grant P01CA087969 from the National Institutes of Health, Department of Health and Human Services. A.M.B. was supported through the Harvard Human Nutrition Program.
- 7. The study was supported financially by the Research Council of Norway, Throne Holst's Foundation for Nutrition Research, The Norwegian Association of Margarine Producers, DeNoFa Fabrikker A/S and Tine BA. Tine BA is a dairy company.
- 8. This study was supported by the National Health and Medical Research Council of Australia.
- 9. Funding sources: The Nurses' Health Study and Health Professionals Follow-up Study cohorts are supported by grants UM1 CA186107, UM1 CA176726, and UM1 CA167552 from the National Institutes of Health. The current analyses were supported by small grants from the National Dairy Council, the General Mills Bell Institute for Health and Nutrition, and the Boston Nutrition and Obesity Research Center.
- 10. Supported by the NIH (grants R01 HL034594, UM1 CA176726, UM1 CA186107, R01 HL35464, R01 HL088521, R01 CA67262, HL60712, and UM1 CA167552).
- 11. This research was supported by a personal Dr. Dekker postdoctoral grant (2008T062) from The Netherlands Heart Foundation (JWJ Beulens).
- 12. The SU.VI.MAX study is supported by the Direction Générale de la Santé, the Ministère de la Santé, and the Institut Virtuel de Recherche en Santé Publique (groupe cohorte) INSERM.
- 13. The PURE Study is an investigator-initiated study that is funded by the Population Health Research Institute, the Canadian Institutes of Health Research (CIHR), Heart and Stroke Foundation of Ontario, support from CIHR's Strategy for Patient Oriented Research (SPOR) through the Ontario SPOR Support Unit, as well as the Ontario Ministry of Health and Long-Term Care and through unrestricted grants from several pharmaceutical companies, with major contributions from AstraZeneca (Canada), Sanofi-Aventis (France and Canada), Boehringer Ingelheim (Germany and Canada), Servier, and GlaxoSmithKline, and additional contributions from Novartis and King Pharma and from various

national or local organisations in participating countries. These include Brazil: Unilever Health Institute, Brazil; South Africa: The SA Sugar Association (SASA).

- 14. The Medical Research Council, the University of Wales College of Medicine and Bristol University, Food Standards Agency.
- 15. This work was supported by Tehran University of Medical Sciences (grant 82-603); Cancer Research UK (grant C20/A5860); the Intramural Research Program of the National Cancer Institute, US National Institutes of Health (grant Z01 CP000185-03); and various collaborative research agreements with the International Agency for Research on Cancer. M.F. was supported by a Takemi Fellowship from the Japan Pharmaceutical Manufacturers Association.
- The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C).
- 17. This work was supported by the research grant HL35464 and CA55075 from the National Institutes of Health.
- 18. The study was funded by the Medical Research Council, and some aspects of the analysis were funded by The European Commission, Quality of Life and Management of Living Resources Programme, contract number QLG1-CT-2000–01643.
- 19. The present study was supported by the Swedish Research Council for Health, Working Life and Welfare (FORTE).
- 20. This research was funded by The Swedish Research Council for Health, Working Life and Welfare (FORTE), grant number 2016-00960. The Northern Sweden Diet Database has been supported by the Swedish Research Council for Health, Working Life and Welfare (FORTES) and The Swedish Research Council.
- 21. This research was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science, and Technology (NRF2016R1D1A1B03931307).
- 22. The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study was supported by Public Health Service contracts N01-CN-45165, N01-RC-45035 and N01-RC-37004 from the US National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Md. Dr. Larsson's research at the National Public Health Institute in Helsinki, Finland, was supported by a grant from the Swedish Council for Working Life and Social Research.
- 23. This study was supported by a research grant from the Swedish Council for Working Life and Social Research (FAS), the Swedish Research Council, and by a Research Fellow grant from Karolinska Institutet (to Dr Larsson).
- 24. This work was supported by supported by the Deutsche Krebshilfe (grant-No70-488-Ha I) and the Graduiertenkolleg 793: Epidemiology of communicable and chronic non-communicable disease and their inter-relationships.
- 25. Data collection was supported by the Department of Health in Taiwan.
- 26. The present study was supported by NIH NRSA T32HL007779, CVD Epidemiology and Prevention, American Heart Association Greater Midwest Affiliate, Throne Holst's Foundation for Nutrition Research, The Norwegian Association of Margarine Producers, DeNoFa Fabriker A/S and Tine Norwegian Dairies.
- 27. This study was funded by Dairy Australia.

- 28. This manuscript was written independently; no company or institution supported it financially.
- 29. Funding: this study was provided with funding by a grant from the NHS Management Executive Cardiovascular Disease and Stroke Research and Development Initiative.
- 30. This research was supported by the National Institutes of Health grant HL73366, training grant T32 HL07779, and contracts N01-HC-55015, N01-HC-55016, N01-HC-55018, N01-HC-55019, N01-HC-55020, N01-HC-55021, and N01-HC-55022 from the National Heart, Lung, and Blood Institute.
- 31. The ATTICA study was supported by research grants from the Hellenic Cardiological Society (HCS2002).
- 32. Supported by research grants from the Swedish Council for Working Life and Social Research and from the Swedish Research Council/Infrastructure Medicine.
- 33. This study was supported by an unrestricted grant from the Dutch Dairy Organization (NZO) for epidemiological analyses on dairy intake and cardiovascular diseases.
- 34. The present study was supported by a personal Dr Dekker postdoctoral grant (2008T062) from the Netherlands Heart Foundation (J. W. J. B.).
- 35. This publication is based on research performed at the Radiation Effects Research Foundation (RERF), Hiroshima and Nagasaki, Japan. RERF is a private nonprofit foundation funded equally by the Japanese Ministry of Health, Labor and Welfare and the US Department of Energy through the National Academy of Sciences.
- 36. This particular study has been supported by a grant from the Dutch Dairy Association (NZO).
- 37. The Whitehall II study was supported by grants from the Medical Research Council (G0902037), the British Heart Foundation (RG/07/008/23674), the Stroke Association, the National Heart Lung and Blood Institute (5RO1 HL036310), the National Institute on Aging (5RO1AG13196) and the Agency for Health Care Policy Research (5RO1AG034454).
- 38. The CARDIA Study is supported by National Heart, Lung, and Blood Institute contracts N01-HC-48047, N01-HC-48048, N01-HC-48049, N01-HC-48050, and N01-HC-95095.
- 39. Funding: partly supported by the Italian Ministry of Health (Programmi Speciali).
- 40. The REGARDS research project is supported by a cooperative agreement U01 NS041588 from the National Institute of Neu- rological Disorders and Stroke, National Institutes of Health, Department of Health and Human Service. Additional support provided by the Franklin Foundation.
- 41. This study was supported by grants-in-aid for cancer research and by the Third Term Comprehensive Ten-Year Strategy for Cancer Control from the Ministry of Health, Labor and Welfare of Japan.
- 42. This work was supported by research grants CA-047988 and HL-080467 from the National Institutes of Health, Bethesda, Md.

Description of Author Disclosure Statement (Verbatim)

- a) Sabita S. Soedamah-Muthu and Johanna M. Geleijnse obtained an unrestricted grant from the Dutch Dairy Association (NZO) to carry out meta-analyses on the association between dairy products and CVD.
- b) None of the authors had any conflict of interest from a financial, personal, or professional aspect in relation to the findings of this study.
- c) None of the authors had any conflicts of interest.
- d) Altorf-van der Kuil W, Engberink MF, Geleijnse JM Top Institute Food and Nutrition, PO Box 557, 6700 AN, Wageningen, The Netherlands.
- e) The authors have no conflicts of interest.

1 2 3

4

5

6

7 8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24 25

26

27

28

29

30 31

32

33

34

35

36 37

38

39

40

- f) D.M. received research grants for studying the effects of diet on cardiometabolic diseases from the National Institutes of Health; the Searle Scholar Award from the Searle Funds at The Chicago Community Trust; the Genes and Environment Initiative at the Harvard School of Public Health; and the Gates Foundation/World Health Organization Global Burden of Diseases, Injuries, and Risk Factors Study; and from GlaxoSmithKline, Sigma Tau, Pronova, and the National Institutes of Health for an investigator-initiated, not- for-profit clinical trial of fish oil and postsurgical complications. He also received ad hoc travel reimbursement and/or honoraria for research presentations from the Chicago Council, International Life Sciences Institute, Aramark, Unilever, SPRIM, Nutrition Impact, Norwegian Seafood Export Council, United Nations Food and Agricultural Organization, World Health Organization, US Food and Drug Administration, and several universities. He received ad hoc consulting fees from Foodminds and royalties from UpToDate for an online chapter on fish oil.
- g) A. S. Biong is employed as a Ph.D. student in a research project funded jointly by TINE BA, a Norwegian dairy company, and the Norwegian Vie, Research Council.
- h) The authors declare no conflict of interest.
- i) There are no conflicts of interest.
- None of the authors reported a conflict of interest related to the study. i)
- k) SS-Mand MG obtained an unrestricted grant from the Dutch Dairy Association (NZO) to carry out meta-analyses on the association between dairy products and cardiovascular diseases.
- 1) None of the authors had any personal or financial conflicts of interest.
- m) We declare no competing interests.
- n) There were no conflicts of interest.
- o) Conflict of interest: none declared
- p) The authors have declared that no competing interests exist.
- q) Competing interests: None declared.
- r) SSM, JMG and AH and were supported by an unrestricted grant from the Dutch dairy industry (NZO).
- The authors declare that they have no competing interests. s)
- The authors declare no conflict of interest t)
- u) The authors have no conflicts of interest to declare.

v)	Disc	losures:	None
•)	D1501	iosures.	1,0110

- w) Competing interests None.
- x) AUTHOR DISCLOSURES None.
- y) All authors have nothing to declare in relation to the subject of this paper.
- z) Conflicts of interest: none.
- aa) The authors have no conflicts of interest to report.
- bb) Author disclosures: E. Patterson, S. C. Larsson, A. Wolk, and A. A kesson, no conflicts of interest.
- cc) J.M.G and S.S.S.M received an unrestricted grant from the Dutch Dairy Organization (NZO) for epidemiological analyses on dairy intake and cardiovascular diseases.
- dd) S. S. S. M. received an unrestricted research grant from the Global Dairy Platform, Dairy Research Institute and Dairy Australia for a metaanalysis project on the effect of cheese on lipids.
- ee) Gerrit J. Hiddink Dutch Dairy Association (NZO), Zoetermeer, The Netherlands.
- ff) S. S. S.-M., L. V. and J. M. G. obtained an unrestricted grant from the Dutch Dairy Association (NZO) to carry out meta-analyses on the association between dairy products. relien only
- gg) None of the authors had any conflicts of interest.
- hh) Conflicts of interest: none.
- ii) Conflict of Interests: None.
- jj) Disclosures: None.
- kk) Disclosures: None.

References

 1. Aerde M, Soedamah-Muthu S, Geleijnse J, et al. Dairy intake in relation to cardiovascular disease mortality and all-cause mortality: the Hoorn Study. European Journal of Nutrition. 2013;52(2):609-16 8p.

2. Al-Delaimy WK, Rimm E, Willett WC, et al. A prospective study of calcium intake from diet and supplements and risk of ischemic heart disease among men. American Journal of Clinical Nutrition. 2003;77(4):814-8 5p.

3. Alonso A, Beunza JJ, Delgado-Rodriguez M, et al. Low-fat dairy consumption and reduced risk of hypertension: the Seguimiento Universidad de Navarra (SUN) cohort. American Journal of Clinical Nutrition. 2005;82(5):972-9.

4. Altorf-van der Kuil W, Engberink MF, Geleijnse JM, et al. Sources of dietary protein and risk of hypertension in a general Dutch population. British Journal of Nutrition. 2012;108(10):1897-903 7p.

5. Avalos EE, Barrett-Connor E, Kritz-Silverstein D, et al. Is dairy product consumption associated with the incidence of CHD? Public health nutrition. 2013;16(11):2055-63.

6. Bernstein AM, Pan A, Rexrode KM, et al. Dietary protein sources and the risk of stroke in men and women. Stroke. 2012;43(3):637-44.

7. Biong AS, Rebnord HM, Fimreite RL, et al. Intake of dairy fat and dairy products, and risk of myocardial infarction: A case–control study. International Journal of Food Sciences and Nutrition. 2008;59(2):155-65.

8. Bonthuis M, Hughes MCB, Ibiebele TI, et al. Dairy consumption and patterns of mortality of Australian adults. European journal of clinical nutrition. 2010;64(6):569-77.

9. Buendia JR, Yanping L, Hu FB, et al. Long-term yogurt consumption and risk of incident hypertension in adults. Journal of Hypertension. 2018;36(8):1671-9.

10. Chen M, Li Y, Sun Q, et al. Dairy fat and risk of cardiovascular disease in 3 cohorts of US adults. American Journal of Clinical Nutrition. 2016;104(5):1209-17.

11. Dalmeijer GW, Struijk EA, van der Schouw YT, et al. Dairy intake and coronary heart disease or stroke—A population-based cohort study. International Journal of Cardiology. 2013;167(3):925-9.

12. Dauchet L, Kesse-Guyot E, Czernichow S, et al. Dietary patterns and blood pressure change over 5-y follow-up in the SU.VI.MAX cohort. The American journal of clinical nutrition. 2007;85(6):1650-6.

13. Dehghan M, Mente A, Rangarajan S, et al. Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): a prospective cohort study. Lancet. 2018;392 North American Edition(10161):2288-97.

14. Elwood PC, Pickering JE, Fehily AM, et al. Milk drinking, ischaemic heart disease and ischaemic stroke I. Evidence from the Caerphilly cohort. European Journal of Clinical Nutrition. 2004;58(5):711-7.

15. Engberink MF, Hendriksen MA, Schouten EG, et al. Inverse association between dairy intake and hypertension: the Rotterdam Study. The American journal of clinical nutrition. 2009;89(6):1877-83.

16. Farvid MS, Malekshah AF, Pourshams A, et al. Dairy Food Intake and All-Cause, Cardiovascular Disease, and Cancer Mortality. American Journal of Epidemiology. 2017;185(8):697-711.

Page 67 of 84

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

21

22

23

24

25

BMJ Open

Haring B, Gronroos N, Nettleton JA, et al. Dietary Protein Intake and Coronary Heart Disease in a Large Community Based Cohort: Results 17. from the Atherosclerosis Risk in Communities (ARIC) Study. PloS one. 2014;9(10):e109552. He K, Merchant A, Rimm EB, Rosner BA, et al. Dietary fat intake and risk of stroke in male US healthcare professionals: 14 year 18. prospective cohort study. BMJ. 2003;327(7418):777-82. Heraclides A, Mishra GD, Hardy RJ, et al. Dairy intake, blood pressure and incident hypertension in a general British population: the 1946 19. birth cohort. European journal of nutrition. 2012;51(5):583-91. Johansson I, Nilsson LM, Esberg A, et al. Dairy intake revisited - associations between dairy intake and lifestyle related cardio-metabolic 20. risk factors in a high milk consuming population. Nutrition Journal. 2018;17(1):N.PAG-N.PAG. Johansson I, Esberg A, Nilsson LM, at al. Dairy Product Intake and Cardiometabolic Diseases in Northern Sweden: A 33-Year Prospective 21. Cohort Study. Nutrients. 2019;11(2):284. Kim D, Kim J. Dairy consumption is associated with a lower incidence of the metabolic syndrome in middle-aged and older Korean adults: 22. the Korean Genome and Epidemiology Study (KoGES). British Journal of Nutrition. 2017;117(1):148-60. Larsson SC, Männistö S, Virtanen MJ, et al. Dairy foods and risk of stroke. Epidemiology (Cambridge, Mass) [Internet]. 2009; 20(3):[355-60 23. pp.]. Available from: http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/629/CN-00701629/frame.html. Larsson SC, Virtamo J, Wolk A. Dairy consumption and risk of stroke in Swedish women and men. Stroke. 2012;43(7):1775-80. 24. Li K, Kaaks R, Linseisen J, et al. Associations of dietary calcium intake and calcium supplementation with myocardial infarction and stroke 25. risk and overall cardiovascular mortality in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition study (EPIC-Heidelberg). Heart. 2012;98(12):920-5. Lin PH, Yeh WT, Svetkey LP, et al. Dietary intakes consistent with the DASH dietary pattern reduce blood pressure increase with age and 26. risk for stroke in a Chinese population. Asia Pacific journal of clinical nutrition. 2013;22(3):482-91. Lockheart MSK, Steffen LM, Rebnord HM, et al. Dietary patterns, food groups and myocardial infarction: a case-control study. British 27. Journal of Nutrition. 2007;98(2):380-7. Louie JCY, Flood VM, Burlutsky G, et al. Dairy consumption and the risk of 15-year cardiovascular disease mortality in a cohort of older 28. Australians. Nutrients. 2013:5(2):441-54. 29. Mazidi M, Mikhailidis DP, Sattar N, et al. Consumption of dairy product and its association with total and cause specific mortality - A population-based cohort study and meta-analysis. Clin Nutr. 2018. Ness AR, Smith GD, Hart C. Milk, coronary heart disease and mortality. Journal of Epidemiology & Community Health. 2001;55(6):379-82. 30. Nettleton JA, Steffen LM, et al. Incident heart failure is associated with lower whole-grain intake and greater high-fat dairy and egg 31. intake in the Atherosclerosis Risk in Communities (ARIC) study. Journal of the American Dietetic Association. 2008;108(11):1881-7. 32. Panagiotakos D, Pitsavos C, Chrysohoou C, et al. Dietary patterns and 5-year incidence of cardiovascular disease: A multivariate analysis of the ATTICA study. Nutrition, Metabolism and Cardiovascular Diseases. 2009;19(4):253-63. Patterson E, Larsson SC, Wolk A, et al. Association between dairy food consumption and risk of myocardial infarction in women differs by 33. type of dairy food. The Journal of nutrition. 2013;143(1):74-9. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

34. Praagman J, Franco OH, Ikram MA, et al. Dairy products and the risk of stroke and coronary heart disease: the Rotterdam Study. European journal of nutrition. 2015;54(6):981-90.

 35. Praagman J, Dalmeijer GW, van der Schouw YT, et al. The relationship between fermented food intake and mortality risk in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort. British Journal of Nutrition. 2015;113(3):498-506.

36. Sauvaget C, Nagano J, Allen N, et al. Intake of animal products and stroke mortality in the Hiroshima/Nagasaki Life Span Study. International journal of epidemiology. 2003;32(4):536-43.

37. Snijder MB, van Dam RM, Stehouwer CD, et al. A prospective study of dairy consumption in relation to changes in metabolic risk factors: the Hoorn Study. Obesity (Silver Spring, Md). 2008;16(3):706-9.

38. Soedamah-Muthu SS, Masset G, Verberne L, Geleijnse JM, et al. Consumption of dairy products and associations with incident diabetes, CHD and mortality in the Whitehall II study. The British journal of nutrition. 2013;109(4):718-26.

39. Steffen LM, Kroenke CH, Yu X, et al. Associations of plant food, dairy product, and meat intakes with 15-y incidence of elevated blood pressure in young black and white adults: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. American Journal of Clinical Nutrition. 2005;82(6):1169-77; quiz 363-4.

40. Tavani A, Gallus S, Negri E, et al. Milk, dairy products, and coronary heart disease. Journal of Epidemiology & Community Health. 2002;56(6):471-2.

41. Um CY, Judd SE, Flanders WD, et al. Associations of Calcium and Dairy Products with All-Cause and Cause-Specific Mortality in the REasons for Geographic and Racial Differences in Stroke (REGARDS) Prospective Cohort Study. Nutrition & Cancer. 2017;69(8):1185-95.

42. Umesawa M, Iso H, Ishihara J, et al. Dietary calcium intake and risks of stroke, its subtypes, and coronary heart disease in Japanese: the JPHC Study Cohort I. Stroke. 2008;39(9):2449-56.

43. Wang L, Manson JE, Buring JE, et al. Dietary intake of dairy products, calcium, and vitamin D and the risk of hypertension in middle-aged and older women. Hypertension. 2008;51(4):1073-9.

Supplementary File 5. Risk of bias in included studies

Funding Source, n (%^a)

			Spon	orship COI		IOI	Industry Ties	
Characteristic	Category	Total	Industr	Non-	COI	No COI	Industry	Non-
		N = 43	у	Industry	N =10	N=33	/COI	Industry
			N= 8	N=35			N = 14	No COI
								N = 29
Risk of Bias								
Assessment								
	Serious/Critic	43 (100)	8 (100)	35 (100)	10 (100)	33 (100)	14 (100)	29 (100)
	al Bias due to	6						
	confounding							
	Serious/Critic	6 (14)	1 (13)	5 (14)	1 (10)	5 (15)	2 (14)	4 (14)
	al Bias in		~					
	selection of							
	participants							
	into the study							
	Serious/Critic	16 (37)	3 (38)	13 (37)	2 (20)	14 (42)	3 (21)	13 (44)
	al Bias in							
	classification							
	of exposures							
	Serious/Critic	21 (49)	3 (38)	18 (51)	6 (60)	15 (45)	7 (50)	14 (48)
	al Bias due to							
	deviations							
	from							
	exposures							
	Serious/Critic	10 (23)	2 (25)	8 (23)	3 (30)	7 (21)	3 (21)	7 (24)
	al Bias due to							
	missing data							

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

al Bias in neasurement	Serious/Critic	6 (14)	2 (25)	4 (11)	1 (10)	5 (15)	2 (14)	4 (14)
of outcomes I <thi< th=""> I</thi<>	al Bias in							
Serious/Critic 4 (9) 1 (13) 3 (9) 2 (20) 2 (6) 2 (14) 2 (7) al Bias in selection of reported results Image: Critic results	measurement							
al Bias in al Bias in selection of al Bias in al Bias in<	of outcomes							
selection of icported	Serious/Critic	4 (9)	1 (13)	3 (9)	2 (20)	2 (6)	2 (14)	2 (7)
reported results Image: second s	al Bias in							
results Image: second sec	selection of							
Serious/Critic 43 (100) 8 (100) 35 (100) 10 (100) 33 (100) 14 (100) 29 (100) al overall risk of bias Image: Critic information of bias <td< td=""><td>reported</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	reported							
al overall risk of bias ^a Percentages may not add to 100 due to rounding	results							
a Percentages may not add to 100 due to rounding	Serious/Critic	43 (100)	8 (100)	35 (100)	10 (100)	33 (100)	14 (100)	29 (100)
^a Percentages may not add to 100 due to rounding	al overall risk							
	of bias							

 BMJ Open

Supplementary File 6: Favorable Outcomes by Industry Ties v No Industry Ties, Industry Sponsorship v No Industry Sponsorship and Conflicts of Interest v No Conflicts of Interest

Industry Ties: Industry Sponsorship and/or Author Conflicts of Interest					No Industry Ties: No Industry Sponsorship and No Author Conflicts of Interest				luthor
Study ID	Funding Source	Disclosed author conflicts of interest	Results Favourable/ Unfavourable	Conclusions Favourable/ Unfavourable	Study ID	Funding Source	Disclosed author conflicts of interest	Results Favourable/ Unfavourable	Conclusions Favourable/ Unfavourable
Aerde, M 2013	Non- Industry	Yes	U	U	Al- Delaimy, WK 2003	Non Industry	No	U	U
Altorf-van der Kuil, W2012	Industry	Yes	U	U	Alonso A, 2005	Non- industry	No	U	U
Bernstein, AM 2012	Non- industry	Yes	U	U	Avalos, EE 2013	Non- industry	No	U	U
Biong, A 2008	Industry	Yes	U	F	Bonthuis, M 2010	Non- Industry	No	U	U
Buendia, JR 2018	Industry	No	F	F	Chen, M 2016	Non- Industry	No	U	F
Dalmeijer, G 2013	Non- Industry	Yes	U	F	Dauchet, L 2007	Non- Industry	No	U	U
Dehghan, M 2018	Industry	No	U	F	Elwood, PC 2004	Non- Industry	No disclosure	U	U
Heraclides, A 2012	Non- Industry	Yes	U	U	Engberink, MF 2009	No disclosure	No	U	F
Lockheart, MSK 2007	Industry	No disclosure	U	U	Farvid, MS 2017	Non- Industry	No	F	F
Louie, JCY 2013	Industry	No disclosure	U	U	Haring, B 2014	Non- Industry	No	U	U
Praagman, J 2015	Industry	Yes	U	U	He, K 2003	Non- Industry	No	U	U

Industry Ti Interest	es: Industry	y Sponsorshij	p and/or Author	Conflicts of	No Industry Ties: No Industry Sponsorship and No Author Conflicts of Interest				
Study ID	Funding Source	Disclosed author conflicts of interest	Results Favourable/ Unfavourable	Conclusions Favourable/ Unfavourable	Study ID	Funding Source	Disclosed author conflicts of interest	Results Favourable/ Unfavourable	Conclusions Favourable/ Unfavourabl
Praagman J, 2015	Non- Industry	Yes	U	U	Johansson, I 2018	Non- Industry	No	U	U
Snijder, MB 2008	Industry	Yes	U	U	Johansson, I 2019	Non- Industry	No	U	U
Soedamah- Muthu, SS 2013	Non- Industry	Yes	U	U	Kim, D 2017	Non- Industry	No	F	F
				10-	Larsson,S 2009	Non- Industry	No disclosure	U	U
					Larsson, SC 2012	Non- Industry	No	U	U
					Li, K 2012	Non- Industry	No	U	U
					Lin, PH 2013	Non- Industry	No	U	U
					Mazidi, M, 2018	Non- Industry	No	F	F
					Ness, AR 2001	Non- Industry	No	U	U
					Nettleton, J 2008	Non Industry	No	U	U
					Panagiotak os, D 2009	Non- Industry	No disclosure	U	U
					Patterson, E 2013	Non Industry	No	F	F
					Sauvaget, C 2003	Non- Industry	No disclosure	F	F
					Steffen, LM 2005	Non- Industry	No	U	U

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Study ID	Funding Source	Disclosed author conflicts of interest	Results Favourable/ Unfavourable	Conclusions Favourable/ Unfavourable	Study ID	Funding Source	Disclosed author conflicts of interest	Results Favourable/ Unfavourable	Conclusions Favourable/ Unfavourable
			\sim		Tavani, A 2002	Non- Industry	No	F	F
			0		Um, C 2017	Non- Indutry	No	U	F
			6		Umesawa, M, 2008	Non- Industry	No	F	F
				20.	Wang,L 2008	Non- Industry	No	F	F

Favourable results - Statistical significance: Industry ties vs no industry ties; industry sponsorship vs no sponsorship; COI v no COI Ch Onl

Industry Ties

	Industry/COI	Non-Industry/No COI
Favourable	1	8
Unfavourable	13	21

RR= 0.26 (95% CI 0.04, 1.87)

Industry Sponsorship

	Industry	Non-Industry
Favourable	1	8
Unfavourable	7	27

Conflicts of Interest

	COI	No/COI	
Favourable	0	9	
Unfavourable	10	24	

RR= 0.16 (95% CI 0.01, 2.57)

Favourable conclusions: Industry ties vs no industry ties; industry sponsorship vs no sponsorship; COI v no COI

Industry Ties

	Industry/COI	Non-Industry/NO COI
Favourable	4	11
Unfavourable	10	18

RR = 0.75 (95% CI 0.29, 1.95)

Industry Sponsorship

	Industry	Non-Industry
Favourable	3	12
Unfavourable	5	23

RR= 1.09 (95% CI 0.40, 2.99)

Conflicts of Interest

	COI	No COI
Favourable	2	13
Unfavourable	8	20
RR =0.51 (95%	0.14, 1	.88)
× ×	,	,

Concordance between study results and conclusions: Industry ties vs no industry ties; industry sponsorship vs no sponsorship; COI v no relien only

COI Industry Ties

Industry Ties

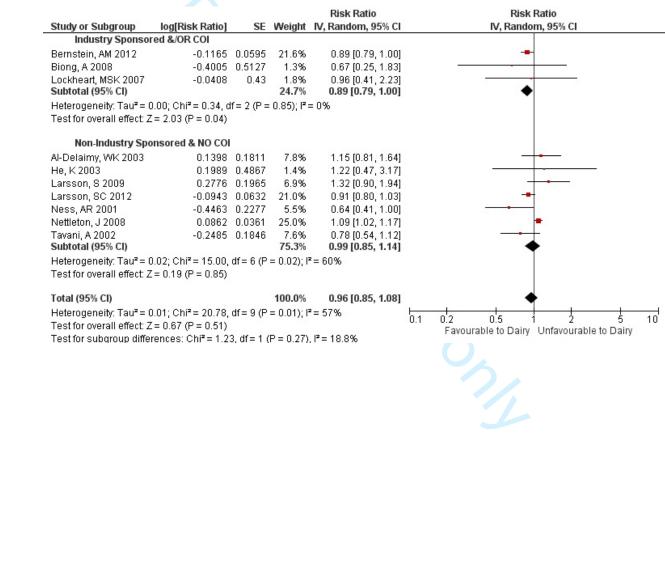
	Industry/COI	Non-Industry/NO COI
Discord	3	3
Concord	11	26

RR = 2.07 (95% CI 0.48, 8.99)

Industry Sponsorship

	Industry	Non-Industry
Discord	2	4
Concord	6	31

RR = 2.19 (95% CI 0.48, 9.94)


Conflicts of Interest

COINo/COIFavourable24Unfavourable829	
RR = 1.65 (95% CI 0.35, 7.72)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary File 7. Results for each of the meta-analyses conducted

Effect Size, Cardiovascular Disease: Industry ties v no industry ties, Risk Ratio

Effect Size, Cardiovascular Disease: Industry ties v no industry ties, Hazard Ratio

Study or Subgroup log[U	azard Datio] SE Moight	Hazard Ratio IV, Random, 95% Cl	Hazard Ratio IV, Random, 95% Cl
Study or Subgroup log[H Industry Sponsored &/OR COI	azard Ratio] SE Weight	v, Rahuom, 95% Ci	IV, Raildoin, 95% Ci
		4 00 10 07 4 001	
Aerde, M 2013	0.0583 0.1002 4.7%	1.06 [0.87, 1.29]	
Dalmeijer,G 2013	-0.0101 0.03 13.9%	0.99 [0.93, 1.05]	T
Dehghan, M 2018	-0.2614 0.1384 2.8%	0.77 [0.59, 1.01]	
Louie, JCY 2013	-0.2744 0.1501 2.5%	0.76 [0.57, 1.02]	
Praagman, J 2015 a	-0.1054 0.2433 1.0%	0.90 [0.56, 1.45]	
Praagman, J 2015 b	0.077 0.1101 4.1%	1.08 [0.87, 1.34]	
Soedamah-Muthu, SS 2013	-0.0943 0.1496 2.5%	0.91 [0.68, 1.22]	
Subtotal (95% CI)	31.4%	0.96 [0.88, 1.05]	+
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 7.7$ Test for overall effect: $Z = 0.90$ (P = 0.			
Non-Industry Sponsored &/OR	No COI		
Bonthuis, M 2010	-0.2614 0.4472 0.3%	0.77 [0.32, 1.85]	
Chen, M 2016	0 0.0249 14.8%	1.00 [0.95, 1.05]	+
Elwood, PC 2004	-0.4155 0.5147 0.2%	0.66 [0.24, 1.81]	
Farvid, MS 2017	-0.3285 0.0907 5.4%	0.72 [0.60, 0.86]	
Haring, B 2014	0.0392 0.1099 4.1%	1.04 [0.84, 1.29]	
Johansson, I 2019	0.1044 0.0565 9.3%	1.11 [0.99, 1.24]	+
Li, K 2012	0.2624 0.2043 1.4%	1.30 [0.87, 1.94]	
Lin, PH 2013	-0.3011 0.2205 1.2%	0.74 [0.48, 1.14]	
Mazidi, M, 2018		0.99 [0.96, 1.02]	
Panagiotakos, D 2009	-0.0305 0.1375 2.8%	0.97 [0.74, 1.27]	
Patterson, E 2013	-0.2614 0.1072 4.2%	0.77 [0.62, 0.95]	and the second sec
Sauvaget, C 2003	-0.3147 0.129 3.2%	0.73 [0.57, 0.94]	
Um, C 2017	0.0296 0.1148 3.8%	1.03 [0.82, 1.29]	_ _
Umesawa, M. 2008	0.0862 0.2022 1.4%	1.09 [0.73, 1.62]	
Subtotal (95% CI)	0.0862 0.2022 1.4% 68.6%	0.95 [0.89, 1.02]	
		0.00 [0.00, 1.02]	•
Heterogeneity: Tau ² = 0.01; Chi ² = 32 Test for overall effect: Z = 1.43 (P = 0.			
Total (95% CI)	100.0%	0.96 [0.91, 1.01]	•
Heterogeneity: Tau ² = 0.00; Chi ² = 40		0.1	I 0.2 0.5 1 2 5
Test for overall effect: $Z = 1.67$ (P = 0.	· · · · · · · · · · · · · · · · · · ·		Favuorable to Dairy Unfavourable to Dai
Test for subgroup differences: Chi ² =	0.03, df = 1 (P = 0.86), I ² = 0%		
	eview only - http://bmjog		

BMJ Open

Effect Size, Cardiovascular Disease: Industry sponsorship vs no industry sponsorship, Risk Ratio

6					
7				Risk Ratio	Risk Ratio
8	Study or Subgroup log[Risk Ratio]	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
9	Industry Sponsored Biong, A 2008 -0.4005	0 54 27	1.3%	0.07/0.05 4.001	
10	Lockheart. MSK 2007 -0.04003	0.5127 0.43	1.3%	0.67 [0.25, 1.83] 0.96 [0.41, 2.23]	
11	Subtotal (95% CI)		3.1%	0.83 [0.43, 1.58]	
12	Heterogeneity: Tau ² = 0.00; Chi ² = 0.29, o		: 0.59); l ² :	= 0%	
13	Test for overall effect: Z = 0.57 (P = 0.57)				
14	Non-Industry Sponsored				
15		0.1811	7.8%	1.15 [0.81, 1.64]	
16		0.0595		0.89 [0.79, 1.00]	
17		0.4856		1.22 [0.47, 3.16]	
18	· · · · · · · · · · · · · · · · · · ·	0.1965 0.0632		1.32 [0.90, 1.94] 0.91 [0.80, 1.03]	
19		0.2277		0.64 [0.41, 1.00]	
20	Nettleton, J 2008 0.0862	0.0361	24.9%	1.09 [1.02, 1.17]	+
21		0.1846		0.78 [0.54, 1.12]	
22	Subtotal (95% CI) Heterogeneity: Tau ² = 0.01; Chi ² = 20.15,	df = 7/D	96.9%	0.97 [0.85, 1.09]	T
23	Test for overall effect: $Z = 0.56$ (P = 0.57)		- 0.005),	1 - 03%	
24					
25	Total (95% CI)		100.0%	0.96 [0.85, 1.08]	• • • • • •
26	Heterogeneity: Tau ² = 0.01; Chi ² = 20.78, Tast for everall effects 7 = 0.67 (B = 0.51)		= 0.01); i	²= 57%	0.1 0.2 0.5 1 2 5 10
27	Test for overall effect: Z = 0.67 (P = 0.51) Test for subgroup differences: Chi ² = 0.2		(P = 0.65)	I ² = 0%	Favourable to Dairy Unfavourable to Dairy
28		1, ai = 1 ,	, = 0.007		
29					
30					
31					
32					
33					
34					
35					
36					
37					
38					
39					
40					
41					
42					
43					
44					
45					
46					
47					
48					
49					
50					
51					
52					
53					
54					
55					
56					
57					
58					
59		(oply)	http://l	mionon heri er	o/site/about/quidelines.yhtml
60			1111111///		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Effect Size, Cardiovascular Disease: COI vs No COI, Risk Ratio

Study or Subgroup COI	log[Risk Ratio]	SE	Weight	Risk Ratio IV, Random, 95% CI	Risk Ratio IV, Random, 95% Cl
Bernstein, AM 2012	-0.1165	0.0544	22.9%	0.89 [0.80, 0.99]	-
Biong, A 2008 Subtotal (95% CI)	-0.4005		1.2% 24.1%	0.67 [0.24, 1.87] 0.89 [0.80, 0.99]	
Heterogeneity: Tau ² = Test for overall effect: 2		lf = 1 (P =	0.59); I ²	= 0%	
No COI					
Al-Delaimy, WK 2003		0.1852	7.5%	1.15 [0.80, 1.65]	
He, K 2003		0.4867	1.4%		
Larsson, S 2009		0.2011	6.6%		
Larsson, SC 2012	-0.0943		21.0%		
Lockheart, MSK 2007 Ness, AR 2001	-0.0408 -0.4463		1.8% 5.0%		
Nettleton, J 2008		0.2390	25.3%	0.64 [0.40, 1.02] 1.09 [1.01, 1.18]	
Tavani, A 2002	-0.2485		7.3%	0.78 [0.54, 1.13]	
Subtotal (95% CI)	-0.2403	0.1070	75.9%	0.99 [0.86, 1.13]	
Heterogeneity: Tau ² = Test for overall effect: J		df = 7 (P			
Total (95% CI)	,		100.0%	0.96 [0.86, 1.08]	•
Heterogeneity: Tau ² =		df = 9 (P	= 0.02); f	² = 55%	
Test for overall effect: J		2 12 12 1		2 225777	Favourable to Dairy Unfavourable to Dairy
Test for subgroup diffe	erences: Chif = 1.5	2. df = 1 (P = 0.22)	, l*= 34.1%	
-		ا بامم	a ##107 - //I		/ site / ale evit / evide line a sub-tural
ŀ	or peer review	only - I	nttp://b	omjopen.bmj.com	n/site/about/guidelines.xhtml

4

BMJ Open

Effect Size, Cardiovascular Disease: COI vs no COI, Hazard Ratio

4	,				,	
5						
6						
7					Hazard Ratio	Hazard Ratio
	Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
8	COI					
9	Aerde, M 2013	0.0583	0.095	5.0%	1.06 [0.88, 1.28]	
10	Dalmeijer,G 2013		0.0264	14.7%	0.99 [0.94, 1.04]	*
11	Praagman, J 2015 a	-0.1054		1.0%	0.90 [0.56, 1.45]	
12	Praagman, J 2015 b		0.1103	4.0%	1.08 [0.87, 1.34]	
13	Soedamah-Muthu, SS 2013 Subtotal (95% CI)	-0.0943	0.1487	2.4% 27.2%	0.91 [0.68, 1.22] 1.00 [0.95, 1.04]	
14	Heterogeneity: Tau ² = 0.00; Cl	hi ^z = 1.57 df = 4 (P =	0.81) 17		100 [0.00, 1.04]	1
	Test for overall effect: Z = 0.19		0.017,1	- 0,0		
15						
16	No COI					
17	Bonthuis, M 2010	-0.2614	0.448	0.3%	0.77 [0.32, 1.85]	
18	Chen, M 2016		0.0262	14.8%	1.00 [0.95, 1.05]	1
19	Dehghan, M 2018	-0.2614		2.6%	0.77 [0.58, 1.02]	
20	Elwood, PC 2004 Farvid, MS 2017	-0.4155 -0.3285		0.2% 5.1%	0.66 [0.24, 1.81] 0.72 [0.60, 0.86]	
	Haring, B 2014	0.0392		4.1%	1.04 [0.84, 1.29]	
21	Johansson, I 2019		0.0584	9.0%	1.11 [0.99, 1.24]	
22	Li, K 2012		0.2049	1.4%	1.30 [0.87, 1.94]	
23	Lin, PH 2013	-0.3011	0.2209	1.2%	0.74 [0.48, 1.14]	
24	Louie, JCY 2013	-0.2744		2.3%	0.76 [0.56, 1.03]	
25	Mazidi, M, 2018		0.0157	16.5%	0.99 [0.96, 1.02]	1
	Panagiotakos, D 2009	-0.0305		2.6%	0.97 [0.73, 1.29]	
26	Patterson, E 2013	-0.2614		4.5%	0.77 [0.63, 0.94]	
27	Sauvaget, C 2003 Um, C 2017	-0.3147	0.1262	3.2% 3.7%	0.73 [0.57, 0.93] 1.03 [0.82, 1.29]	
28	Umesawa, M, 2008		0.1105	1.5%	1.09 [0.74, 1.61]	
29	Subtotal (95% CI)	0.0002	0.1010	72.8%	0.93 [0.87, 1.00]	•
30	Heterogeneity: Tau ² = 0.01; Cl	hi² = 38.11, df = 15 (F	P = 0.000	9); I ² = 61	%	
31	Test for overall effect: Z = 2.04	(P = 0.04)				
	T-4-1 (05% OB			100.00		
32	Total (95% CI)			100.0%	0.96 [0.91, 1.01]	· · · · · · · ·
33	Heterogeneity: Tau ² = 0.00; Cl Test for overall effect: Z = 1.65		r = 0.005); in= 50%)	0.1 0.2 0.5 1 2 5 10
34	Test for subgroup differences		P = 0.12	I ² = 58.89	*	Favourable to Dairy Unfavourable to Dairy
35		. offi = 2.40, ui = 1 (0.12,	, 1 = 00.0	~ ~	
36						
37						
38						
39						
40						
41						
42						
43						
44						
45						
46						
47						
48						
49						
50						
51						
52						
53						
54						
55						
56						
57						
58						
59						
60	For p	eer review only	· - http	://bmjo	pen.bmj.com/si	te/about/guidelines.xhtml
			•	-	-	-

Effect Size, Elevated Blood Pressure / Hypertension: Industry ties v no industry ties

0	1			Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	weight IV	, Random, 95% Cl	IV, Random, 95% Cl
Industry Sponsore	a &/OR COI				
Altorf-van der Kuil, W2013	2 0	0.1139	13.9%	1.00 [0.80, 1.25]	-+
Buendia, JR 2018	-0.1393	0.0173	23.0%	0.87 [0.84, 0.90]	
Subtotal (95% CI)			37.0%	0.89 [0.80, 0.99]	•
Heterogeneity: Tau ² = 0.0	10: ChiZ - 1 46 df - 1 /P	- 0.23).0			
		- 0.23), 1	1 - 32%		
Test for overall effect: Z =	2.18 (P = 0.03)				
Non-Industry Spon	oared 8/0D No COL				
			1072507	101210101010	
Alonso A, 2005	-0.2877		4.9%	0.75 [0.44, 1.27]	
Engberink, MF 2009	-0.1744	0.094	16.0%	0.84 [0.70, 1.01]	
Johansson, I 2018	-0.0101	0.072	18.4%	0.99 [0.86, 1.14]	-+-
Kim, D 2017	-0.6162	0.1101	14.3%	0.54 [0.44, 0.67]	
Steffen, LM 2005	-0.1985		9.4%	0.82 [0.59, 1.14]	
Subtotal (95% CI)	-0.1505	0.1001	63.0%	0.78 [0.61, 0.99]	
	0.01.7 04.00 46 4.4				-
Heterogeneity: Tau ² = 0.0		² = 0.00U	J3); I* = 81%		
Test for overall effect: Z =	2.02 (P = 0.04)				
Total (95% CI)			100.0%	0.83 [0.73, 0.95]	•
Heterogeneity: Tau ² = 0.0	2; Chi ² = 24.01, df = 6 (F	P = 0.000	05); I ² = 75%		0.1 0.2 0.5 1 2 5
Test for overall effect: Z =					
Test for subgroup differe		(P = 0.3)	2), I ² = 0%		Favourable to Dairy Unavourable to Dairy

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5, Supp file 1
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	7-8
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	8-9
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	8-9
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	7 & 10
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6 & 10
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for eachemater analysis - http://bmjopen.bmj.com/site/about/guidelines.xhtml	10

PRISMA 2009 Checklist

Section/topic	#	Page 1 of 2 Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	10
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	10
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	11, Figure 1, Supp file 3
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Supp file
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	13, Supp File 5, Figure 2
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	13-15
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	13-15, Supp file 6 & 7, Figure 3
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	13,Supp file 5, Figure 2
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	N/A
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	15-18
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias). For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	16

Page 85 of 84

BMJ Open

DRISMA 1 2 3

PRISMA 2009 Checklist

			1
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	18
FUNDING	_		
Funding		Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	19
	A		0(7) - 4000
doi:10.1371/journal.pmed100009	zian J, Aitma 17	n DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med For more information, visit: www.prisma-statement.org. Page 2 of 2	6(7): e1000
		For more information, visit: <u>www.prisma-statement.org</u> .	
		Page 2 of 2	
2			
}			
j			
<u>.</u>			
Ļ			
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
5			

BMJ Open

The association of food industry ties with findings of studies examining the effect of dairy foods intake on cardiovascular disease and mortality: Systematic review and Meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039036.R1
Article Type:	Original research
Date Submitted by the Author:	16-Sep-2020
Complete List of Authors:	Chartres, Nicholas; The University of Sydney, Charles Perkins Centre Fabbri, Alice; University of Insubria, Centre for Research in Medical Pharmacology McDonald, Sally ; The University of Sydney, ; the University of Sydney Diong, Joanna; The University of Sydney Faculty of Medicine and Health McKenzie, Joanne; Monash University Bero, Lisa; University of Sydney Faculty of Health Sciences, Pharmacy
Primary Subject Heading :	Research methods
Secondary Subject Heading:	Public health, Epidemiology, Health policy, Nutrition and metabolism
Keywords:	STATISTICS & RESEARCH METHODS, NUTRITION & DIETETICS, PUBLIC HEALTH

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 3 4	1	The association of food industry ties with findings of studies examining the effect of
5	2	dairy foods intake on cardiovascular disease and mortality: Systematic review and
6 7	3	Meta-analysis
8 9 10	4	
11 12	5	Authors: Nicholas Chartres ¹ , Alice Fabbri ¹ , Sally McDonald ¹ , Joanna Diong ² , Joanne
13 14	6	Mckenzie ³ , Lisa Bero ¹
15 16	7	
17 18	8	1. The University of Sydney, D17, The Hub, 6th floor, Charles Perkins Centre, The
19	9	University of Sydney, New South Wales, 2006, Australia
20 21	10	2. The University of Sydney, School of Medical Sciences, Faculty of Medicine and
22 23	11	Health, The University of Sydney, New South Wales, 2006, Australia
24 25	12	3. Monash University, 553 St Kilda Road, Melbourne, Victoria, 3004, Australia
26 27	13	
28 29	14	Corresponding author: Lisa Bero, The University of Sydney, D17, The Hub, 6th floor,
30	15	Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia, email
31 32 33	16	lisa.bero@sydney.edu.au; Telephone +612 8627
34 35	17	Word Count: 5006
36 37	18	Word Count: 5006
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	19	
59 60		

2 3	• •	
4	20	Abstract
5 6	21	Objective: To determine if the association of dairy foods with cardiovascular disease
7	22	outcomes differs between studies with food industry ties versus those without industry ties.
8 9	23	To determine whether studies with or without industry ties differ in their risk of bias.
10 11 12 13 14	24	Eligibility criteria: We included cohort and case control studies that estimated the
	25	association of dairy foods with cardiovascular disease (CVD) outcomes in healthy adults.
	26	Information sources: We searched eight databases on February 1, 2019 from 2000-2019 and
15 16	27	hand searched reference lists
16 17 18 19	28	Risk of bias: We used the Risk of Bias in Non-Randomized Studies-of Exposure (ROBINS-
	29	E) tool.
20 21	30	Included studies: 43 studies (3 case controls, 40 cohorts).
22 23	31	Synthesis of results: There was no clear evidence of an association between studies with
24	32	industry ties (1/14) vs. no industry ties (8/29) and the reporting of favourable results, RR=
25 26	33	0.26 (95% CI 0.04, 1.87; n=43 studies) and studies with industry ties (4/14) vs. no industry
27 28	34	ties (11/29) and favourable conclusions, RR= 0.75 (95% CI 0.29, 1.95; n=43) Studies with
29	35	industry sponsorship, (HR =0.78; n= 3 studies) showed a decreased magnitude of risk of
30 31	36	CVD outcomes compared to studies with no industry sponsorship (HR=0.97; n=18) (ratio of
32 33	37	HRs 0.80 (95% CI 0.66, 0.97)) P=0.03.
34 35	38	Strengths and Limitations of evidence: Every study had an overall high risk of bias rating;
36	39	this was primarily due to confounding.
37 38	40	Interpretation: There was no clear evidence of an association between studies with food
39 40	41	industry ties and the reporting of favourable results and conclusions compared with studies
41	42	without industry ties. The statistically significant difference in the magnitude of effects
42 43	43	identified in industry sponsored studies compared to non-industry sponsored studies,
44 45	44	however, is important in quantifying industry influence on studies included in dietary
46 47	45	guidelines.
48	46	Funding: This work was supported by Australian Health and Medical Research Council
49 50	47	Project Grant APP 1139997.
50 51 52	48	Registration: Prospero ID CRD42019129659
53	49	
54 55	50	
56 57	51	Keywords: Industry Sponsorship, Conflicts of Interest, Bias, Dietary Guidelines
58 59	52	
59 60	53	Strengths and limitations of this study
		- •

This is the first systematic review and meta-analysis to evaluate the association of food industry ties (industry sponsorship and / or author conflicts of interest (COI)) with the results, conclusions and risk of bias of primary nutrition studies examining the association of dairy foods with cardiovascular disease outcomes and mortality. We conducted a comprehensive search and followed explicit and well-defined • inclusion and exclusion criteria for the included studies. For studies missing a funding or author COI disclosure, we did not contact the • authors; thus we may be underestimating the number of studies with industry ties. The tool that we used to assess the risk of bias is still under modification, however it • is unlikely any future changes to the tool will affect the risk of bias ratings. We did not analyse studies of low and full fat dairy separately. Industry ties may have • different effects on studies of low or full fat dairy foods.

BMJ Open

67 INTRODUCTION

The effect of dairy foods on cardiovascular disease (CVD) is unclear. Recent systematic reviews and meta-analyses of observational studies have reported conflicting results between the association of total dairy consumption and risk of CVD, with some showing decreased risk and some showing no clear evidence.^{1–4} The beneficial effects of decreasing blood pressure, however, appear more consistent.^{4, 5} Further, dairy intake recommendations made in dietary guidelines around the world vary. Although the Australian Dietary Guidelines concluded that there is a probable association between dairy food consumption and a reduced risk of cardiovascular events,⁶ recent amendments to the Eatwell guidelines by Public Health England recommend a significant reduction in the daily intake of dairy foods.⁷

Food industry sponsors and authors with a conflict of interest (COI) with the food industry may gain financially from finding that dairy foods have health benefits, since such a finding can be used to market dairy products. Such a driver may lead industry sponsors to magnify (or bias) the health benefits of dairy foods by influencing the research agenda, design and conduct of the study, or reporting of the results.⁸⁻¹¹ Prior examinations of pharmaceutical and tobacco research have identified that even when controlling for methodological biases, studies sponsored by industry were more likely to have results that favoured the sponsor than studies with other sources of sponsorship.¹²⁻¹⁴

The effects of food industry sponsorship or author COI with the food industry on study results needs further examination.¹⁵ A systematic review assessing the association of wholegrain foods with CVD and mortality found that studies with food industry ties more often have favourable results and conclusions compared to those with no industry ties, but the association was uncertain.¹⁶ One study has demonstrated an association of food industry sponsorship with the magnitude of effect estimates.¹⁷ In this examination, studies of soft drink consumption sponsored by the food industry reported significantly smaller harm effect estimates than those with no food industry sponsorship. A recent dairy industry funded meta-analysis of observational studies found that studies without food industry sponsorship showed that dairy consumption was associated with a statistically significant decreased risk of developing CVD and Type 2 diabetes, while studies with food industry sponsorship did not.¹⁸

BMJ Open

2 3	00	The minery chiestive of this systematic review and mate analysis is to determine whather					
4	98	The primary objective of this systematic review and meta-analysis is to determine whether:					
5 6	99	• Studies of observational design examining the associations of dairy foods with CVD					
7 8	100	with food industry ties (industry sponsorship and / or authors with a COI) are more					
9	101	likely to have results and / or conclusions that are favourable to industry than those					
10 11	102	with no industry ties.					
12 13	103						
14 15	104	The secondary objectives of this review are to determine whether observational studies with					
16 17	105	food industry ties compared with no industry ties:					
18 19	106	I. differ in their risk of bias;					
20 21	107	II. have a higher level of discordance between study results and conclusions, with the					
22	108	conclusions more likely to be favourable compared to the results.					
23 24	109						
25 26	109						
27 28	110	METHODS					
29	111	We conducted a systematic review of observational studies examining the effect of dairy					
30 31	112	consumption on CVD. Our study is registered with Prospero ID CRD42019129659 (see					
32 33	113	Supplementary file 1). ¹⁹					
34 35	114						
36 37	115	Search Strategy					
38	116	The search included terms to locate observational studies and randomised control trials, the					
39 40	117	latter of which are for a separate systematic review. The search used was based on the					
41 42	118	Process Manual used to develop the 2013 Australian Dietary Guidelines and the guidance of					
43 44	119	an information specialist. ²⁰ The search dates used were to ensure that we identified the					
45	120	studies used to inform the recommendations in these guidelines. We therefore searched the					
46 47	121	following databases from January 2000-February 2019: MEDLINE; CINAHL; PubMed;					
48 49	122	PreMEDLINE; Cochrane Library; PsycINFO; Science Direct; and ERIC. The search strategy					
50 51	123	used for Ovid MEDLINE on February 1, 2019 is shown in Supplementary file 2. We adapted					
52	124	this strategy for the other databases. We hand searched references lists of the identified					
53 54	125	studies and reviews.					
55 56	126						
57	127						
58 59	128						
60							

1 2		
3 4 5 6 7 8 9	129	Eligibility Criteria
	130	We included studies of cohort or case control designs that estimated the effects of dairy
	131	consumption on CVD outcomes in healthy adults. We focused on these study designs as they
	132	are often used to assess the association of diet with long term health outcomes.
10	133	
11 12	134	We included studies with no restriction on the authors' definition of dairy. For example, some
13 14	135	authors' defined dairy as milk, yogurt and cheese, while others defined dairy as 'whole fat'
15 16	136	milk, yogurt and cheese. We included studies that compared dairy foods to other foods or
17	137	compared various levels of dairy consumption.
18 19	138	
20 21	139	We included studies that measured any clinical outcome of CVD, defined as either mortality
22 23	140	related to specific CVD events, and / or CVD events, (e.g., first myocardial infarction, total
24	141	stroke etc.) or incidence of elevated blood pressure / hypertension.
25 26	142	
27 28	143	We excluded conferences presentations, opinion pieces and letters to the editor. We had no
29	144	language restrictions.
30 31	145	
32 33	146	Types of Outcome Measures
34 35	147	Primary Outcomes
36	148	We hypothesized that studies with food industry sponsorship and / or authors with a COI with
37 38	149	the food industry would be more likely to have favourable findings than those with no
39 40	150	industry ties. We assessed three primary outcomes:
41 42	151	1. Statistical significance of results favourable to dairy
43	152	Favourable results were defined as those that were in the direction of showing a health
44 45	153	benefit of dairy product(s), and were statistically significant at the 0.05 level (two tailed),
46 47	154	such as a statistically significant decreased risk of CVD compared to the comparator (i.e.
48 49	155	another food or lower dairy consumption). Otherwise, results were classified as unfavourable.
50 51 52 53 54 55 56 57 58 59	156	In the circumstance where a study reported multiple results (e.g. first myocardial infarction
	157	and total stroke), only one result needed to be 'favourable' for the study as a whole to be
	158	classified as 'favourable'.
	159	
	160	2. Effect size of results
	161	Effect size was defined as the risk ratio (RR), hazard ratio (HR) or odds ratio (OR) between
60	162	dairy foods tested versus comparator on the CVD outcome.

2 3	163	
4 5	164	3. Conclusions
6 7	165	Conclusions that suggested that the dairy consumption was beneficial to health by decreasing
8	166	CVD were considered favourable. Otherwise, the conclusions were considered unfavourable.
9 10 11 12	167	In the circumstance where a study reported multiple results (e.g. first myocardial infarction
	168	and total stroke), only one conclusion needed to be 'favourable' for the study as a whole to be
13 14	169	classified as 'favourable'.
15	170	
16 17	171	Secondary Outcomes
18 19	172	We assessed two secondary outcomes:
20 21		
22	173	1. The risk of bias of the included studies
23 24	174	To evaluate the risk of bias of included observational studies, we used an adapted version of
25 26	175	the Cochrane Collaboration's 'Risk of Bias in Non-Randomized Studies-of Interventions'
27	176	(ROBINS-I) tool, ²¹ the ROBINS-E ²² . Bias is assessed across seven domains ('Bias due to
28 29	177	confounding', 'Bias in selection of participants', 'Bias in classification of exposures', Bias
30 31	178	due to deviations from exposures', 'Bias due to missing data', 'Bias in measurement of
32 33	179	outcomes', 'Bias in selection of reported results'), with each domain classified low,
34	180	moderate, serious, critical risk of bias, or no information. The first step in using the ROBINS-
35 36	181	E tool is to identify all possible confounders that a study should control. We developed this
37 38	182	list of confounders by searching the literature for the most recent systematic reviews on
39	183	possible confounders and having this list reviewed by expert Professors in nutrition at The
40 41	184	University of Sydney (see Supplementary file 3 for list of confounder). An overall risk of bias
42 43	185	rating for the study is given based on the domain with the highest risk of bias rating. For
44 45	186	example, if a study is rated as being at a 'critical' risk of bias in one domain, the overall risk
46	187	of bias rating is 'critical.' In the circumstance where a study reported multiple results (e.g.
47 48	188	stroke and myocardial infarction), the risk of bias was only assessed for one randomly
49 50	189	selected outcome.
51 52	190	
53	191	2. Concordance between study results and conclusions
54 55 56 57	192	Results unfavourable to the sponsor with conclusions favourable to the sponsor, were
	193	considered discordant. Otherwise, the results and conclusions were considered concordant.
58 59	194	
60	195	Selection of studies

BMJ Open

2	
3 4	196
5	197
6 7	198
8 9	199
10	200
11 12	201
13	201
14 15	
16	203
17 18	204
19 20	205
20 21	206
22 23	207
24	208
25 26	209
27	210
28 29	211
30 31	212
32	212
33 34	
35	214
36 37	215
38	216
39 40	217
41 42	218
43	219
44 45	220
46	221
47 48	222
49 50	223
50 51	
52 53	224
54	225
55 56	226
57 58	227
- N A	

60

Three investigators (NC, SMc & AF), working independently in pairs, screened the titles and abstracts of all records for obvious exclusions. If both investigators agreed on excluding the study, the full text was not retrieved. Three investigators (NC, SMc & AF) working independently in pairs, assessed the full text of potentially eligible studies against the inclusion criteria. If agreement could not be reached, a fourth investigator (LB) resolved the conflict.

203 Selection of results for meta-analysis

If total dairy consumption had been assessed in the study, we included this as our only exposure. If total dairy consumption had not been assessed, we included any type of dairy consumption (e.g. milk, yogurt, and cheese; or low fat, high fat) other than fermented milk as our exposure. We included the results comparing the highest level of dairy consumption to the lowest level of dairy consumption (e.g., 'yes' to dairy consumption vs. 'no' to dairy consumption, tertile 3 vs. tertile 1, quartile 4 vs. quartile 1, quintile 5 vs. quintile 1). For the meta-analyses if our pre-specified rules for selecting results did not allow us to uniquely identify one exposure for inclusion, we randomly selected one result.

If 'cardiovascular disease mortality/death/s' (verbatim) had been assessed, we included this as our only outcome. If not, we included any type of CVD mortality (e.g., coronary heart disease mortality, stroke mortality etc.) as our outcome. If there were no mortality outcomes assessed in the study, we included any CVD event or incidence of elevated blood pressure / hypertension as our outcome. If a study used a composite outcome, which was a combination of multiple outcomes, the result pertaining to the composite outcome was selected. For the meta-analyses if our pre-specified rules for selecting results did not allow us to uniquely identify one outcome for inclusion, we randomly selected one result.

- 8 222 Data Collection
- 50 223 From each study we extracted: 51 224
 - Year of publication
 - Study design (cohort or case control)
 - Sample size of study
 - Age of participants (combined or if reported, separately)
- Exposure duration or observation period

1								
2 3	229	• How the study defined dairy (verbatim)						
4	230	 Disclosure of funding source (no disclosure, yes and there is a sponsor, the authors 						
5 6 7	230	state they received no funding for their work)						
8	231	 Name of the funders of the study (verbatim) 						
9 10	232	 Role of the funders (role of the sponsor not mentioned, sponsor not involved in study 						
11 12	233	design and analyses, sponsor involved, N/A)						
13 14	235	 Disclosure of author COI (no disclosure, yes (if at least 1 author had a COI), the authors 						
15	235	state they had no conflicts of interest to declare)						
16 17	230	 Authors COI statement (verbatim) 						
18 19	238	• Outcomes assessed in the study (any CVD death and/or event or blood						
20 21	239	pressure/hypertension)						
22 23	240	 The numerical results of the study (e.g., OR, HR, RR) 						
24	240	The numerical results of the study (e.g., ore, fire, rec)						
25 26	242	All extracted data from the included studies was stored in REDcap, a secure web-based						
27 28	243	application for the collection and management of data. ²³ Five investigators (NC, SMc, AF,						
29 30	244	AL & JD) working independently in pairs extracted data from the included studies.						
31 32	245	Discrepancies in data extraction were resolved by consensus. If agreement could not be						
33	246	reached, a sixth investigator (LB) resolved the discrepancy.						
34 35	247							
36 37	248	Classification of industry sponsorship and author conflicts of interest						
38 39	249	Sponsorship was categorized as 1) industry or 2) non-industry. Industry sponsored studies						
40 41	250	were defined as those that declared any sponsorship from the food industry, including 'Big						
42	251	Food' (i.e. Danone, Kraft, Unilever etc), trade associations (i.e. dairy associations and						
43 44	252	organisations) and dairy industry (i.e. primary producers). Studies with food industry						
45 46	253	sponsorship plus any other sponsorship were classified as industry. Any study that did not						
47 48	254	contain a funding disclosure statement was classified as 'non-industry'.						
49	255							
50 51	256	Studies with at least one author with any disclosed financial tie with the food industry were						
52 53	257	classified as having a conflict of interest (COI). Author COI were categorised as 1) COI or 2)						
54 55	258	no COI. Studies with no authors with disclosed financial ties with the food industry were						
56 57	259	classified as 'no conflict of interest'.						
58	260							
59 60								

Page 11 of 88

BMJ Open

Since the number of studies with industry sponsorship or author COI was small, we also
categorized studies as having "industry ties" for analysis. Studies classified as having an
industry tie were industry sponsored and / or had an author COI. Otherwise, they were
classified as having no industry ties.

266 Analysis

We report the frequencies and percentages of the study characteristics across all studies, and separately, by sponsorship, COI and industry ties. We visually present the risk of bias rating for each domain and overall across each study.

To quantify the association between industry ties, food industry sponsorship, or authors with a conflict of interest with the food industry and (i) favourable results, (ii) favourable conclusions, (iii) overall risk of bias across each study, and (iv) level of concordance, we calculated RR (and 95% confidence intervals). To analyse the risk of bias rating for each study, we dichotomised the overall risk of bias ratings as low (low or moderate) or high (serious or critical).

We conducted meta-analysis to examine whether studies with food industry ties, food industry sponsorship, or authors with a conflict of interest with the food industry modified the magnitude of effect of dairy on CVD outcomes.. For each outcome, we combined effect estimates using a random effects meta-analysis model using the inverse variance method. DerSimonian and Laird's method of moments estimator was used to estimate between study heterogeneity. We fitted separate meta-analyses for studies that had measured the association using HRs and those that had used either RRs or ORs. It is not recommended to combine HRs with RRs and ORs in a meta-analysis, as HRs represent instantaneous risk over the study time period, whereas RRs and ORs estimate risk/odds at a fixed time point.²⁴ We considered that the ORs approximated RRs given CVD events were rare.

We undertook a fixed-effects test for subgroup differences (defined by industry sponsorship /
authors conflict of interest) using the Chi2 test and calculated the ratio of RRs (ORs) or HRs
along with 95% confidence intervals. Analyses were undertaken in Review Manager 5.3.²⁵

We planned to use sensitivity analysis to assess the influence of risk of bias by restricting the analysis to studies at 'low risk of bias' overall (i.e. an overall risk of bias rating of low or moderate). However, as the overall risk of bias was high across all studies, this was not undertaken. **Patient and Public Involvement** No patient involved RESULTS As shown in Figure 1, there were 1, 858 studies screened for inclusion and 43 studies were included (3 case controls, 40 cohorts). See Supplementary file 4 for 'List of excluded studies and reasons for exclusion'. **Characteristics of included Studies** All studies were published between 2001 and 2019. All but one contained a funding disclosure. Eight studies disclosed food industry sponsorship, but only two of these studies described the role of the sponsor. Six studies did not contain an author COI disclosure statement. Ten studies contained an author with a COI with the food industry. Fourteen studies were classified as having industry ties, disclosing food industry sponsorship and / or an author with a COI. As shown in Table 1, most characteristics were similarly distributed across studies with industry ties or no industry ties. Studies with industry ties (64%) were more likely to have sample sizes <5000 than non-industry sponsored studies (34%). A greater proportion of industry sponsored studies (100%) than non-industry sponsored studies (83%) focused on total dairy intake rather than a specific food. Details of the individual studies are in Supplementary file 5.

325 Table 1. Characteristics of the included studies by sponsorship, author conflict of

326 interest and industry ties

Funding S	ource, n	(% ^a)
-----------	----------	-------------------

			Spor	nsorship	C	OI	Indust	try Ties
Characteristic	Category	Total	Industr	Non-	COI	No	Industry	Non-
		N =	у	Industry	N =10	COI	/COI	Indust
		43	N= 8	N=35		N=33	N = 14	No CC
								N = 29
Sex	Male	5 (12)	0 (0)	5 (14)	0 (0)	5 (15)	0 (0)	5 (17)
	Female	2 (5)	0 (0)	2 (6)	0 (0)	2 (6)	0 (0)	2 (7)
	Both	36	8 (100)	28 (80)	10	26 (79)	14	22 (76
		(84)			(100)		(100)	
Sample Size	<5000	19	6 (75)	13 (37)	7 (70)	12	9 (64)	10 (34
		(44)				(36)		
	5000-50,000	18	0 (0)	18 (51)	2 (20)	16 (48)	2 (14)	16 (55
		(42)						
	>50,000	6 (14)	2 (25)	4 (11)	1 (10)	5 (15)	3 (21)	3 (10)
Length of	N/A*	3 (7)	2 (25)	1 (3)	1 (10)	2 (6)	2 (14)	1 (3)
Follow up								
	<10 years	11	3 (38)	8 (23)	2 (20)	9 (27)	3 (21)	8 (28)
		(26)						
	10-15 years	21	2 (25)	19 (54)**	6 (60)	15	7 (50)	14 (48)
		(49)				(45)**		
	>15 years	8 (19)	1 (13)	7 (20)	1 (10)	7 (21)	2 (14)	6 (21)
Type of	Total Dairy	37	8 (100)	29 (83)	9 (90)	28 (85)	13 (93)	24 (83)
Dairy	Intake***	(86)						
	Individual Dairy	6 (14)	0 (0)	6 (17)	1 (10)	5 (15)	1 (7)	5 (17)
	Foods****							

328 ^a Percentages may not add to 100 due to rounding

* Follow up is not applicable for case control studies

330 ** Follow up for Johansson, I 2018 described the follow up as '8-12 years', we took the median of 10 years

331 *** This includes studies that looked at nutrients e.g calcium, fat & protein by measuring total dairy intake

332 ****Individual foods included milk, cheese & yogurt

333 Risk of bias in included studies

Every study was classified as having an overall high risk of bias, with 10 assessed as having a serious risk of bias and 33 as having a critical risk of bias (Figure 2). Most studies were assessed as having a critical risk of bias rating for the domain 'Bias due to confounding'. An example of one of the serval confounders we identified that studies needed to control forwas fruit and vegetable intake. If these confounders were not controlled for appropriately when measuring the effect of dairy intake on a CVD outcome, the study was classified as having a risk of bias for the confounding domain.

Studies without industry ties or without an author with a COI were more likely to have a
serious or critical risk of bias rating for 'Bias in classification of exposures'. For example, if a
study did not use a validated food frequency questionnaire to measure the dietary intake of
dairy, the study was classified as having a risk of bias for the domain of classification of
exposures. For all other domains, the risk of bias classifications were similarly distributed
across studies with industry ties, industry sponsorship or COI vs no industry ties, industry
sponsorship or COI, respectively (see Supplementary file 6).

3 350 Favourable results - Statistical significance: Industry ties vs no industry ties; industry 4 351 sponsorship vs no sponsorship; COI v no COI

There was no clear evidence of an association between the reporting of favourable results and studies with industry ties (1/14) compared to those with no industry ties (8/29), RR= 0.26 (95% CI 0.04, 1.87; n=43 studies) (Supplementary file 7). When comparing studies with industry sponsorship (1/8) with those with no industry sponsorship (8/35), there was no clear evidence of an association, RR = 0.55 (95% CI 0.08, 3.77; n=43 studies). There was again no clear evidence of an association between the reporting of favourable results and studies with an author with a COI (0/10) than those with no COI (9/33), RR= 0.16 (95% CI 0.01, 2.57); n=43 studies).

51 360

361 Effect Size, Cardiovascular Disease: Industry ties v no industry ties; industry 362 sponsorship vs no industry sponsorship; COI v no COI

For studies that quantified the association between dairy consumption and CVD outcomes using a RR, we found no important difference in the magnitude of the effect in studies with industry ties (RR = 0.89; n=3 studies) compared with those studies with no industry ties, (RR Page 15 of 88

BMJ Open

1		
2 3	366	= 0.99; n=7 studies) (ratio of RRs 0.90 (95% CI 0.74, 1.09)); P=0.27 (Supplementary file 8).
4 5 6 7	367	For studies that had quantified the association using HRs, we similarly did not find an
	368	important difference in the magnitude of HRs between studies with industry ties, (HR=0.96;
8	369	n=7 studies) and those studies with no industry ties, (HR=0.95; n=14 studies) (ratio of HRs
9 10	370	1.01 (95% CI 0.90, 1.13)); P=0.86.
11 12	371	
12 13 14 15 16 17 18 19	372	In our analysis comparing studies with industry sponsorship, (RR 0.83; n=2 studies) and
	373	those with no industry sponsorship, (RR 0.97; n=8 studies) we again did not find an
	374	important difference in the magnitude of RRs (ratio of RRs 0.86 (95% CI 0.44, 1.66));
	375	P=0.65 (Supplementary file 8). However, when we compared industry sponsored studies,
20 21	376	(HR =0.78; n=3 studies) and non-industry sponsored studies, (HR=0.97; n=18 studies) that
22	377	measured the association using HRs, we found a statistically significant difference in the
23 24	378	magnitude of the HRs (ratio of HRs 0.80 (95%CI 0.66, 0.97)); P=0.03 (Figure 3).
25 26	379	
27 28	380	In our analysis comparing studies with an author with a COI (RR 0.89; n=2 studies) and those
29	381	with no COI, (RR 0.99; n= 8 studies) we found no important difference in the magnitude of
30 31	382	RRs (ratio of RRs 0.90 (95% CI 0.76-1.07)); P=0.22 (Supplementary file 8). When we
32 33	383	compared studies with a COI, (HR =1.00; n= 5 studies) and studies with no COI, (HR=0.93;
34 35	384	n=16 studies) that measured the association using HRs, we again found no difference in the
36	385	magnitude of the HRs (ratio of HRs 1.08 (95% CI 0.99, 1.17)); P=0.12.
37 38	386	
39 40	387	Effect Size, Elevated Blood Pressure / Hypertension: Industry ties v no industry ties,
41 42	388	and industry sponsorship vs no sponsorship
43	389	We found no important difference in the magnitude of the HRs for elevated blood pressure /
44 45	390	hypertension in studies with industry ties, (HR = 0.89 ; n =2) and those studies with no
46 47	391	industry ties, (HR = 0.78; n= 5) (ratio of HRs 1.14 (95% CI 0.88, 1.49); P=0.32
48 49	392	(Supplementary file 8).
50	393	
51 52	394	All of these studies with industry ties also had industry sponsorship, so the ratio of HRs was
53 54	395	the same.
55 56	396	
57	397	Favourable conclusions: Industry ties vs no industry ties; industry sponsorship vs no
58 59	398	sponsorship; COI v no COI
60		

There was no clear evidence of an association between the reporting of favourable conclusions and studies with industry ties (4/14) compared to those with no industry ties (11/29), RR= 0.75 (95% CI 0.29, 1.95; n=43) (Supplementary file 7). When we compared studies only by industry sponsorship, there was no clear evidence of an association between industry sponsored studies (3/8), compared to studies with no sponsorship (12/35), RR = 1.09 (95% CI 0.40, 2.99; n=43). There was again no clear evidence of an association between the reporting of favourable conclusions and studies with an author with a COI (2/10) than those without a COI (13/33), RR= 0.51 (95% CI 0.14, 1.88; n=43 studies). **Risk of Bias Assessment by Industry Ties** As every study had an overall high (serious or critical) risk of bias rating, there was no difference in the proportion of studies at a high risk of bias between those with industry ties, industry sponsorship or COI and those without industry ties, sponsorship or COI. Concordance between study results and conclusions Six (of 43) studies, all with unfavorable results, overemphasized the benefits of the dairy exposure in their conclusions and thus were coded as 'favourable' conclusions. There was no clear evidence of an association between discordant results and conclusions and studies with industry ties (3/14) than those with no industry ties (3/29), RR = 2.07 (95% CI 0.48, 8.99; n=43) (Supplementary file 7). There was no clear evidence of an association when comparing studies with industry sponsorship (2/8) to those with no industry sponsorship (4/35), RR = 2.19 (95% CI 0.48-9.94). There was again no clear evidence of an association between studies with an author with a COI (2/10) than those with no COI (4/33), RR = 1.65 (95% CI 0.35, 7.72; n=43). DISCUSSION There was no clear evidence of an association between studies with food industry ties and the reporting of favourable results and conclusions of observational studies measuring the associations of dairy foods with cardiovascular disease outcomes. The 'mixed' group of funders we identified in the industry sponsored studies may influence these results, as the

funding effect may be diluted by this heterogeneous group of sponsors. Unlike in drug

Page 17 of 88

1

BMJ Open

2	
3 4	430
5	431
6 7	432
8	752
9 10	433
11	434
12 13	435
14	436
15 16	437
17	438
18 19	
20	439
21 22	440
23 24	441
25	442
26 27	
28	443
29 30	444
31	445
32 33	446
34	447
35 36	448
37	
38 39	449
40	450
41 42	451
43 44	
44 45	452
46 47	453
48	454
49 50	455
51	456
52 53	457
54	458
55 56	
57	459
58 59	460

studies, ¹² the funders in the studies included in this review were extremely diverse, with Big
Food and trade association jointly sponsoring several studies. Thus, dairy foods are not their
sole interest.

3 The meta-analysis of hazard ratios of CVD outcomes found that studies with industry sponsorship showed a greater benefit from dairy than studies without industry sponsorship, 4 and this difference was statistically significant. The meta-analysis of risk ratios of CVD 5 6 outcomes found a similar estimate; however, this was not statistically significant. The likely reason for this was that the meta-analysis of RRs had fewer studies, and so the ratio of RRs 7 could not be as precisely estimated. We found no evidence of a clinically important 8 difference in the magnitude of effect between studies with industry ties or authors with a COI 9 compared to those with no industry ties or no COI for other outcomes. 0

For every study, the overall risk of bias was classified as high (meaning either serious or critical). Therefore, differences in the risk of bias across studies with and without industry ties would not seem to provide an explanation for our findings. However, the version of the ROBINS-E tool that we used may not have been able to adequately discriminate across the studies, as perhaps is indicated by the uniformity in risk of bias classification.²⁶ Therefore, we cannot rule out the possibility that differences in bias across studies with and without industry ties may partly explain our findings.

450 Strengths and limitations of this review

451 Our review was prospectively registered in Prospero.¹⁹ We followed explicit inclusion and
452 exclusion criteria, conducted a comprehensive search across multiple databases and hand
453 searched reference lists for the included studies.

For those studies missing a funding or author COI disclosure, we did not contact the authors and we therefore may be underestimating the number of studies with industry ties. The tool that we used to assess the risk of bias is still under development, however it is unlikely any future changes to the tool will affect the risk of bias ratings.²² We did not analyse studies of low and full fat dairy or other types of dairy products separately. Industry ties may have different effects on studies of low or full fat dairy foods or other foods and drinks. **Agreements and disagreements with other studies or reviews**

The observed greater benefit of dairy on CVD outcomes in industry sponsored studies compared to non-industry sponsored studies corroborates previous research that has demonstrated studies sponsored by the food industry reported smaller harmful effect sizes for soft drink consumption, compared with non-industry sponsored studies.¹⁷ It is not consistent, however, with a recent meta-analysis funded by the Israel Dairy Board that found non statistically significant differences in the estimated associations between industry and non-industry funded studies.¹⁸ The differences in the results of our current review and this previous study can be attributed to a number of important factors in how the studies were conducted, including how the exposures were classified, the outcomes selected for the meta-analyses and the analysis method used. For the exposures, our review included yogurt and cheese, as well as 'total dairy' and milk, whereas the Dairy Board study included only 'total dairy' and milk as exposures. We included all outcomes related to CVD, and the Dairy Board study included only CVD and stroke, as well as Type 2 diabetes. For the analysis method, we fitted separate meta-analyses for studies that had measured the association using HRs and those that had used either RRs or ORs, while the Dairy Board study only measured the associations using RRs.

The lack of difference in the risks of bias between studies with industry ties and those with no industry ties, is consistent with a previous review that examined the association of industry ties with outcomes of studies examining the effect of wholegrain foods on CVD and mortality that used the same tool to assess risk of bias.¹⁶ These findings have also been shown in pharmaceutical and tobacco research that have demonstrated industry sponsored studies are of equal or better internal validity than studies with no sponsorship.^{12, 13, 15, 27, 28}

Implications for clinicians, policy makers and future research

As dietary guidelines depend on an evidence base that should be as free as possible of bias, the difference in the magnitude of effects between industry sponsored studies compared to non-industry sponsored studies is concerning. Therefore, the dairy intake recommendations made in dietary guidelines should account for the potential influence of industry sponsorship on evidence of health effects. Nutrition studies included in systematic reviews used in the development of dietary guidelines should be assessed using empirical methods to identify factors associated with study results. Current risk of bias tools should therefore be amended or supplemented to include industry sponsorship and author COI as a separate risk of bias

Page 19 of 88

BMJ Open

domain. The University of California, San Francisco's Navigation Guide assesses both author
conflicts of interest and funding sources as a risk of bias in human and animal studies. ²⁹ As
the study designs used in nutrition are the same as those used to evaluate the harms of an
exposure in environmental health, dietary guideline committees could consider adopting this
tool to evaluate the risk of bias of the studies included in the systematic reviews used to
develop dietary guidelines.

Industry sponsors may bias research via different mechanisms, including the design and conduct of a study, the selective reporting of results, how they code events, analyse data, by spinning conclusions,¹¹ as well as framing how the questions are asked.^{30–32} It has been suggested that the dairy industry may preferentially fund research on topics which will provide them with more favourable outcomes.³³ The influence of the food industry on the research agenda has been demonstrated in an examination of research topics covered by samples of randomised controlled trials included in systematic reviews of nutrition studies and obesity.³⁴ It was shown that most food industry studies focused on the manipulations of specific nutrients, and not on dietary behaviours, therefore limiting the public health relevance of rigorous evidence available for use in both systematic reviews and dietary guidelines.³⁴ The topics examined in cohort studies on the relationship of nutrition and obesity, which tend to focus on more complex exposures than trials, did not demonstrate a similar influence of funding source. However, the disclosure of food industry sponsorship was low, making a comparison difficult.³⁵

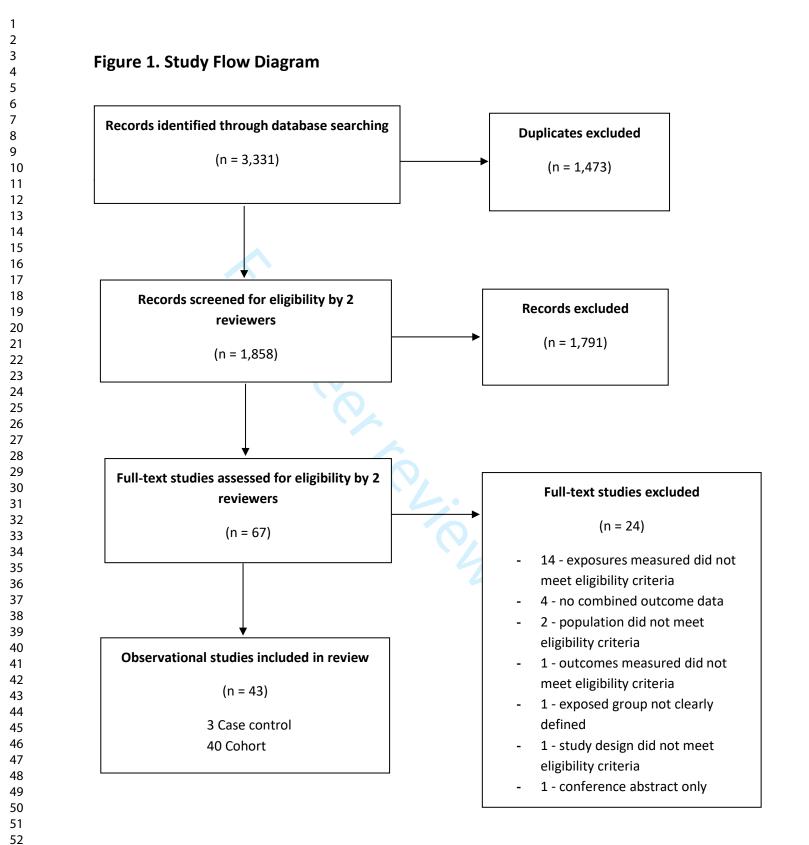
This present study has also demonstrated that there is significant funding for nutrition research that comes from non-industry sources, including academia and government. In this study, only eight studies had food industry sponsorship, while 34 had a non-food industry sponsorship. A similar rate was seen in a study that assessed the association of industry ties with outcomes of studies examining the effect of wholegrain foods on cardiovascular disease and mortality, with only five industry sponsored studies and 17 non-industry sponsored studies.¹⁶ To eliminate this risk of bias from nutrition research, investigators should use only non-industry sources to fund their research.

56 525 58 526

⁵⁹ 527 **Conclusion**

3 4	528	There was no clear evidence of an association between studies with food industry ties and the
5	529	reporting of favourable results and conclusions compared with studies without industry ties.
6 7	530	However, the statistically significant difference in the magnitude of effects identified in
8 9	531	industry sponsored studies compared to non-industry sponsored studies is important in
10	532	quantifying industry influence on studies included in dietary guidelines.
11 12		
13 14		
15		
16 17		
18 19		
20 21		
22		
23 24		
25 26		
27		
28 29		
30 31		
32 33		
34		
35 36		
37 38		
39		
40 41		
42 43		
44 45		
46		
47 48		
49 50		
51		
52 53		
54 55		
56		
57 58		
59 60		

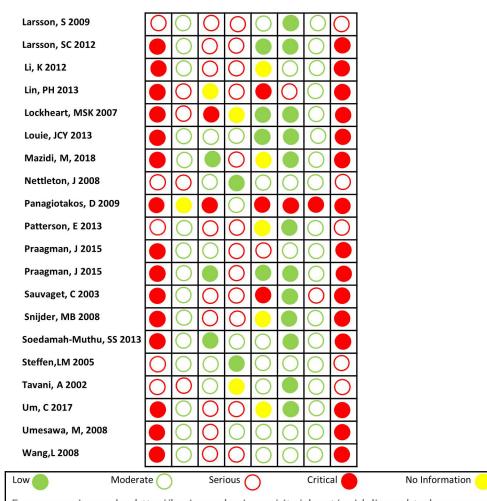
1


BMJ Open

2		
3 4	533	Acknowledgements: We thank Agnes Lau, University of California, San Francisco, for her
5 6	534	assistance with data collection.
7 8	535	
9 10	536	Contributors: NC, AF and LB designed and wrote the review protocol. NC wrote the search
11	537	strategy and undertook the literature search. NC, AF and SMc, conducted the title and
12 13	538	abstract screening and full article screening for final study inclusion. NC, AF, JD, AL and
14 15	539	SMc conducted data collection and cleaning, LB supervised. NC and JMc undertook all data
16	540	analysis. LB advised on methods, statistical analyses, and interpretation of findings. All
17 18	541	authors contributed to the final manuscript. NC and LB are guarantors.
19 20 21	542	
22 23	543	Funding: This work was supported by Australian Health and Medical Research Council
24	544	Project Grant APP 1139997. Nicholas Chartres is a recipient of the James Millner PhD
25 26 27	545	Scholarship in Pharmacy from the University of Sydney.
28 29	546	
30 31 32	547	Competing interests: None declared.
33 34	548	
35 36	549	Data sharing statement: Available from The University of Sydney data repository. DOI to
37 38	550	be determined.
39 40 41	551	
42 43	552	Patient consent for publication: Not required.
44 45		
46		
47 48		
49		
50 51		
52		
53		
54		
55 56		
57		
58		
59 60		
00		

1 2		
3	FF0	Defenences
4	553	References
5	554	1. Qin LQ, Xu JY, Han SF, et al. Dairy consumption and risk of cardiovascular disease: an
6	555	updated meta-analysis of prospective cohort studies. <i>Asia Pac J Clin Nutr.</i> 2015;24(1):90-100.
7	556	2. Alexander DD, Bylsma LC, Vargas AJ, et al. Dairy consumption and CVD: a systematic review
8	557	and meta-analysis. Br J Nutr. 2016;115(4):737-50.
9	558	3. Gholami F, Khoramdad M, Esmailnasab N, et al. The effect of dairy consumption on the
10	559	prevention of cardiovascular diseases: A meta-analysis of prospective studies. J Cardiovasc Thorac
11	560	Res. 2017;9(1):1-11.
12	561	4. Drouin-Chartier JP, Brassard D, Tessier-Grenier M, et al. Systematic Review of the
13 14	562	Association between Dairy Product Consumption and Risk of Cardiovascular-Related Clinical
15	563	Outcomes. <i>Adv Nutr</i> . 2016;7(6):1026-40.
16	564	5. Lee M, Lee H, Kim J. Dairy food consumption is associated with a lower risk of the metabolic
17	565	syndrome and its components: a systematic review and meta-analysis. Br J Nutr. 2018;120(4):373-
18	566	84.
19	567	6. National Health and Medical Research Council: Department of Health and Ageing. Australian
20	568	Dietary Guidelines. Canberra, Commonwealth of Australia: NHMRC; 2013.
21	569	7. Public Health England. The Eatwell Guide. [Internet]. 2016. Available from:
22	570	https://www.gov.uk/government/publications/the-eatwell-guide. Acesssed 18 March, 2016.
23	571	8. Lexchin J. Those who have the gold make the evidence: how the pharmaceutical industry
24	572	biases the outcomes of clinical trials of medications. <i>Sci Eng Ethics</i> .18(2):247-61.
25 26	573	9. Sismondo S. How pharmaceutical industry funding affects trial outcomes: causal structures
20	574	and responses. Social science & medicine (1982). 2008;66(9):1909-14.
28	575	10. Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled
29	576	trials with statistically nonsignificant results for primary outcomes. JAMA. 2010;303(20):2058-64.
30	577	11. Odierna DH, Forsyth SR, White J, et al. The cycle of bias in health research: a framework and
31	578	toolbox for critical appraisal training. Account Res. 2013;20(2):127-41.
32	579	12. Lundh A, Lexchin J, Mintzes B, et al. Industry sponsorship and research outcome. <i>Cochrane</i>
33	580	Database Syst Rev. 2017;2:Mr000033.
34	580 581	13. Barnes DE, Bero LA. Industry-funded research and conflict of interest: an analysis of research
35	582	sponsored by the tobacco industry through the Center for Indoor Air Research. J Health Policy
36	583	Law. 1996;21(3):515-42.
37 38		
30 39	584 585	14. Yank V, Rennie D, Bero LA. Financial ties and concordance between results and conclusions
40		in meta-analyses: retrospective cohort study. <i>BMJ</i> .335(7631):1202-5.
41	586	15. Chartres N, Fabbri A, Bero LA. Association of industry sponsorship with outcomes of
42	587	nutrition studies: A systematic review and meta-analysis. JAMA Intern Med. 2016;176(12):1769-77.
43	588	16. Chartres N, Fabbri A, McDonald S, et al. Association of industry ties with outcomes of studies
44	589	examining the effect of wholegrain foods on cardiovascular disease and mortality: systematic review
45	590	and meta-analysis. BMJ Open. 2019;9(5):e022912.
46	591	17. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and
47	592	health: a systematic review and meta-analysis. <i>Am J Public Health</i> . 2007;97(4):667-75.
48	593	18. Mishali M, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption
49 50	594	research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular
50	595	diseases. Int Dairy J. 2019.
52	596	19. National Institute for Health Research. International Prospective Register for Sytematic
53	597	Reviews [Internet]. 2015 [Available from: http://www.crd.york.ac.uk/PROSPERO/ . Acesssed 11
54	598	March, 2016.
55	599	20. Dietitians Association of Australia. A review of the evidence to address targeted questions to
56	600	inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011.
57	601	21. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-
58	602	randomised studies of interventions. BMJ. 2016;355.
59		
60		

1		
2		
3	603	22. University of Bristol. The ROBINS-E tool (Risk Of Bias In Non-randomized Studies - of
4	604	Exposures) 2019 [Available from: https://www.bristol.ac.uk/population-health-
5	605	sciences/centres/cresyda/barr/riskofbias/robins-e/
6	606	23. Harris PA, Taylor R, Thielke R, et al. Research Electronic Data Capture (REDCap) - A
7	607	metadata-driven methodology and workflow process for providing translational research informatics
8	608	support. J Biomed Inform X. 2009;42(2):377-81.
9 10		
10	609	24. Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary time-to-
12	610	event data into meta-analysis. <i>Trials</i> . 2007;8:16.
13	611	25. Review Manager (RevMan) [Computer program]. Version 5.3. Copenhagen: The Nordic
14	612	Cochrane Centre, The Cochrane Collaboration, 2014.
15	613	26. Bero L, Chartres N, Diong J, et al. The risk of bias in observational studies of exposures
16	614	(ROBINS-E) tool: concerns arising from application to observational studies of exposures. Syst Rev.
17	615	2018;7(1):242.
18	616	27. Mandrioli D, Kearns CE, Bero LA. Relationship between Research Outcomes and Risk of Bias,
19	617	Study Sponsorship, and Author Financial Conflicts of Interest in Reviews of the Effects of Artificially
20	618	Sweetened Beverages on Weight Outcomes: A Systematic Review of Reviews. <i>PloS one</i> .
21	619	2016;11(9):e0162198.
22	620	28. Cho MK, Bero LA. The quality of drug studies published in symposium proceedings. Ann
23	621	Intern Med. 1996;124(5):485-9.
24	622	29. Woodruff TJ, Sutton P. The Navigation Guide systematic review methodology: a rigorous and
25		
26	623	transparent method for translating environmental health science into better health outcomes.
27	624	Environ Health Perspect . 2014;122(10):1007-14.
28	625	30. Fabbri A, Lai A, Grundy Q, et al. The Influence of Industry Sponsorship on the Research
29	626	Agenda: A Scoping Review. Am J Public Health. 2018;108(11):e9-e16.
30	627	31. Psaty BM, Prentice RL. Minimizing bias in randomized trials: the importance of blinding.
31	628	JAMA. 2010;304(7):793-4.
32	629	32. Psaty BM, Kronmal RA. Reporting mortality findings in trials of rofecoxib for Alzheimer
33 34	630	disease or cognitive impairment: a case study based on documents from rofecoxib litigation. JAMA.
34 35	631	2008;299(15):1813-7.
36	632	33. Wilde P, Morgan E, Roberts J, et al. Relationship between funding sources and outcomes of
37	633	obesity-related research. Physiol & Behav. 2012;107(1):172-5.
38	634	34. Fabbri A, Chartres N, Bero LA. Study sponsorship and the nutrition research agenda: analysis
39	635	of cohort studies examining the association between nutrition and obesity. <i>Public Health Nutr</i> .
40	636	2017;20(17):3193-9.
41	637	35. Fabbri A, Chartres N, Bero LA. Study sponsorship and the nutrition research agenda: analysis
42		
43	638	of cohort studies examining the association between nutrition and obesity. <i>Public Health Nutr</i> .
44	639	2017;20(17):3193-9.
45	640	
46	641	
47		
48	642	
49		
50	643	
51		
52	644	
53		
54 55	645	
55 56	043	
56 57		
57 58	646	
58 59		
60	647	


2 3 4	648	Figures
5 6	649	Figure 1. Study Flow Diagram
7 8 9	650	Figure 2. Risk of Bias in Included Studies
10 11	651	Figure 3. Effect Size, Cardiovascular Disease: Industry sponsorship vs no industry
12 13	652	sponsorship, Hazard Ratio
14 15	653	
16 17 18 19 20 21 22 32 42 52 26 27 28 29 30 132 33 45 36 37 83 90 41 42 34 45 46 7 89 50 51 25 34 55 56 7 89 60	654	

		E	BW1 (Dpensod			sult	
	ßu	Selection of participants	on of exposures	Deviations from intended exposures	Ita	Measurement of outcomes	Selection of the reported result	S
	Confounding	Selection o	Classificati	Deviations	Missing data	Measurem	Selection o	Overall bias
Aerde, M 2013		0	0	Ο	Ο	0	Ο	
Al-Delaimy, WK 2003	Ο	0	0				0	0
Alonso A, 2005		0	0	0	0	0	0	
Altorf-van der Kuil, W 2012		0	0	0	0	0	0	
Avalos, EE 2013		Ο			0	0	0	
Bernstein, AM 2012	0	0	0		0	0	0	0
Biong, A 2008	Ο		0		0	0	Ο	Ο
Bonthuis, M 2010		Ο		0	0		\bigcirc	
Buendia, JR 2018	Ο	Ο	0		0	Ο	0	Ο
Chen, M 2016		Ο	0				\bigcirc	
Dalmeijer, G 2013		0	0	0	0	0	0	
Dauchet, L 2007		0	0	Ó	•	0	0	
Dehghan, M 2018		0	Ó	0	0	0	Ó	
Elwood, PC 2004		0	0	0	0		0	
Engberink, MF 2009		0	Ο	0	O	0	0	
Farvid, MS 2017		0	0	Ō	Ō		0	
Haring, B 2014		Ō	Ō	Ō	•	0	Õ	
Не, К 2003	Ō	0	0	Ō	•	0	Õ	Õ
Heraclides, A 2012	Ŏ	0	0	Ō	Õ	Ō	0	ŏ
Johansson, I 2018	Õ	Õ	Õ	Õ			Õ	
Johansson, I 2019	Õ	Õ	Ō	Õ	Õ		Õ	
F kim, D 2017 For peer review only - ht	it <mark>p:</mark> //	bmjc	pen.	bmj.		site/a		t <mark>/g</mark> ui

 Page 26 of 88

1 2		
3 4		
5		
6		
7 8		
9		
10		
11 12		
13		
14 15		
16		
17		
18 19		
20 21		
21 22		
23		
24		
25 26		
27		
28 29		
30		
31		
32 33		
34		
35 36		
30 37		
38		
39 40		
41		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 3. Effect Size, Cardiovascular Disease, Industry sponsorship vs no Industry sponsorship, Hazard Ratio

Church and Carling	In the second second	-		Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Industry Sponsored					
Dehghan, M 2018	-0.2614	0.1384	2.8%	0.77 [0.59, 1.01]	1000
Louie, JCY 2013	-0.2744	0.1501	2.5%	0.76 [0.57, 1.02]	
Praadman, J 2015 a	-0.1054	0.2433	1.0%	0.90 [0.56, 1.45]	
Subtotal (95% CI)			6.3%	0.78 [0.65, 0.94]	•
Heterogeneity: Tau ² = 0.00; C	:hi ^z = 0.38 df = 2 (P =	0.83) 17:			-
Test for overall effect: Z = 2.59		0.03),1 -	- 0 %		
restion overall ellect. Z = 2.5	5 (F = 0.010)				
Non-Industry Sponsore	d				
Aerde, M 2013		0.1002	4.7%	1.06 [0.87, 1.29]	
Bonthuis, M 2010	-0.2614		0.3%	0.77 [0.32, 1.85]	
Chen, M 2016	0	0.0249	14.8%	1.00 [0.95, 1.05]	+
Dalmeijer,G 2013	-0.0101	0.03	13.9%	0.99 [0.93, 1.05]	+
Elwood, PC 2004	-0.4155	0.5147	0.2%	0.66 [0.24, 1.81]	· · · · · ·
Farvid, MS 2017	-0.3285	0.0907	5.4%	0.72 [0.60, 0.86]	
Haring, B 2014		0.1099	4.1%	1.04 [0.84, 1.29]	
		0.0565	9.3%	1.11 [0.99, 1.24]	
Johansson, I 2019					
Li, K 2012		0.2043	1.4%	1.30 [0.87, 1.94]	
Lin, PH 2013	-0.3011		1.2%	0.74 [0.48, 1.14]	
Mazidi, M, 2018	-0.0101	0.0152	16.3%	0.99 [0.96, 1.02]	1
Panagiotakos, D 2009	-0.0305	0.1375	2.8%	0.97 [0.74, 1.27]	
Patterson, E 2013	-0.2614	0.1072	4.2%	0.77 [0.62, 0.95]	
Praagman, J 2015 b		0.1101	4.1%	1.08 [0.87, 1.34]	_ -
Sauvaget, C 2003	-0.3147		3.2%	0.73 [0.57, 0.94]	
Soedamah-Muthu, SS 2013	-0.0943		2.5%	0.91 [0.68, 1.22]	
Um, C 2017		0.1148	3.8%	1.03 [0.82, 1.29]	
Umesawa, M, 2008	0.0862	0.2022		1.09 [0.73, 1.62]	
Subtotal (95% CI)			93.7%	0.97 [0.93, 1.02]	•
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.09			,,	-	
Total (95% CI)			100.0%	0.96 [0.91, 1.01]	•
Total (95% CI) Heterogeneity: Tau ² = 0.00; C		P = 0.004	100.0%); I ² = 519	0.96 [0.91, 1.01]	
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n ananan); I² = 519	6	
Heterogeneity: Tau ² = 0.00; C	7 (P = 0.09)	n ananan); I² = 519	6	
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n ananan); I² = 519	6	
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n ananan); I² = 519	6	
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n ananan); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n ananan); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n ananan); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n ananan); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n ananan); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n ananan); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n ananan); I² = 519	6	
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n a na na na); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n a na na na); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n a na na na); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n a na na na); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n a na na na); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n a na na na); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n a na na na); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n a na na na); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n a na na na); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n a na na na); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n a na na na); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n a na na na); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n a na na na); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n ananan); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n ananan); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n ananan); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n ananan); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n ananan); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n ananan); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n ananan); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n ananan); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n ananan); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n ananan); I² = 519	6	Favourable to Dairy Unfavourable to D
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.67	7 (P = 0.09)	n ananan); I² = 519	6	Favourable to Dairy Unfavourable to D

PROSPERO

International prospective register of systematic reviews

UNIVERSITY of York Centre for Reviews and Dissemination

Systematic review

Please complete all mandatory fields below (marked with an asterisk *) and as many of the non-mandatory fields as you can then click *Submit* to submit your registration. You don't need to complete everything in one go, this record will appear in your *My PROSPERO* section of the web site and you can continue to edit it until you are ready to submit. Click *Show help* below or click on the icon

to see guidance on completing each section.

This record cannot be edited because it has been rejected

1. * Review title.

Give the working title of the review, for example the one used for obtaining funding. Ideally the title should state succinctly the interventions or exposures being reviewed and the associated health or social problems. Where appropriate, the title should use the PI(E)COS structure to contain information on the Participants, Intervention (or Exposure) and Comparison groups, the Outcomes to be measured and Study designs to be included.

The association of food industry ties with findings of studies examining the effect of dairy foods intake with

cardiovascular disease and mortality: Systematic review and Meta-analysis: protocol registration:

2. Original language title.

For reviews in languages other than English, this field should be used to enter the title in the language of the review. This will be displayed together with the English language title.

3. * Anticipated or actual start date.

Give the date when the systematic review commenced, or is expected to commence.

01/09/2016

4. * Anticipated completion date.

Give the date by which the review is expected to be completed.

01/06/2019

5. * Stage of review at time of this submission.

Indicate the stage of progress of the review by ticking the relevant Started and Completed boxes. Additional information may be added in the free text box provided.

Please note: Reviews that have progressed beyond the point of completing data extraction at the time of initial registration are not eligible for inclusion in PROSPERO. Should evidence of incorrect status and/or completion date being supplied at the time of submission come to light, the content of the PROSPERO record will be removed leaving only the title and named contact details and a statement that inaccuracies in the stage of the review date had been identified.

This field should be updated when any amendments are made to a published record and on completion and publication of the review. If this field was pre-populated from the initial screening questions then you are not able to edit it until the record is published.

The review has not yet started: No

PROSPERO	
International prospective register of systematic reviews	

Review stage		Started	Completed
Preliminary searches		Yes	No
Piloting of the study selection proces	S	Yes	No
Formal screening of search results a	gainst eligibility criteria	Yes	No
Data extraction		Yes	No
Risk of bias (quality) assessment		Yes	No
Data analysis		No	No

Provide any other relevant information about the stage of the review here (e.g. Funded proposal, protocol not yet finalised).

6. * Named contact.

The named contact acts as the guarantor for the accuracy of the information presented in the register record.

Nicholas Chartres

Email salutation (e.g. "Dr Smith" or "Joanne") for correspondence:

Mr Chartres

7. * Named contact email.

Give the electronic mail address of the named contact.

ngar0960@uni.sydney.edu.au

Named contact address

Give the full postal address for the named contact.

The University of Sydney, D17, the Hub, 6th Floor, Charles Perkins Centrel the University of Sydney | Nsw |

9. Named contact phone number.

Give the telephone number for the named contact, including international dialling code.

02 8627 4328

10. * Organisational affiliation of the review.

Full title of the organisational affiliations for this review and website address if available. This field may be completed as 'None' if the review is not affiliated to any organisation.

University of Sydney

Organisation web address:

11. * Review team members and their organisational affiliations.

PROSPERO

International prospective register of systematic reviews

Give the personal details and the organisational affiliations of each member of the review team. Affiliation refers to groups or organisations to which review team members belong. **NOTE: email and country are now mandatory fields for each person.**

Mr Nicholas Chartres. University of Sydney

Dr Alice Fabbri. The University of Sydney

- Agnes Lau. University of California
- Dr Joanna Diong. The University of Sydney
 - Assistant/Associate Professor Joanne Mckenzie. Monash University
 - Professor Lisa Bero. The University of Sydney

12. * Funding sources/sponsors.

Give details of the individuals, organizations, groups or other legal entities who take responsibility for initiating, managing, sponsoring and/or financing the review. Include any unique identification numbers assigned to the review by the individuals or bodies listed.

Nicholas Chartres is a scholarship recipient (James Milner PhD scholarship in Pharmacy) from the University

of Sydney.

Grant number(s)

13. * Conflicts of interest.

List any conditions that could lead to actual or perceived undue influence on judgements concerning the main topic investigated in the review.

None

14. Collaborators.

Give the name and affiliation of any individuals or organisations who are working on the review but who are not listed as review team members. **NOTE: email and country are now mandatory fields for each person.**

15. * Review question.

State the question(s) to be addressed by the review, clearly and precisely. Review questions may be specific or broad. It may be appropriate to break very broad questions down into a series of related more specific questions. Questions may be framed or refined using PI(E)COS where relevant.

The objective of this study is to determine if the presence of food industry sponsorship in primary nutrition

studies examining the association of dairy foods with cardiovascular outcomes is associated with effect

sizes, statistical significance of results and/ or conclusions that are favorable to the sponsor. We will also

determine whether primary nutrition studies assessing the association of dairy foods with cardiovascular

outcomes with industry sponsorship differ in their risk of bias compared with studies with no or other sources

of sponsorship.

16. * Searches.

State the sources that will be searched. Give the search dates, and any restrictions (e.g. language or publication period). Do NOT enter the full search strategy (it may be provided as a link or attachment.)

We will search the following databases from 2000-March 2019: Ovid MEDLINE; CINAHL; PubMed;

Cochrane Library; and ScienceDirect. No language restrictions will be applied

PROSPERO International prospective register of systematic reviews

17. URL to search strategy.

Give a link to a published pdf/word document detailing either the search strategy or an example of a search strategy for a specific database if available (including the keywords that will be used in the search strategies), or upload your search strategy.Do NOT provide links to your search results.

https://www.crd.york.ac.uk/PROSPEROFILES/129659_STRATEGY_20190322.pdf

Alternatively, upload your search strategy to CRD in pdf format. Please note that by doing so you are consenting to the file being made publicly accessible.

Do not make this file publicly available until the review is complete

18. * Condition or domain being studied.

Give a short description of the disease, condition or healthcare domain being studied. This could include health and wellbeing outcomes.

To determine whether industry sponsorship and/or study methods are associated with the results and/or

conclusions of primary nutrition studies assessing the association of dairy foods and cardiovascular

outcomes.

19. * Participants/population.

Give summary criteria for the participants or populations being studied by the review. The preferred format includes details of both inclusion and exclusion criteria.

We will include primary research studies of any design that quantitatively examine the association of dairy

foods with cardiovascular outcomes in healthy adults.

20. * Intervention(s), exposure(s).

Give full and clear descriptions or definitions of the nature of the interventions or the exposures to be reviewed.

- •The study quantitatively measures the effects of dairy consumption in humans.
- •The study evaluates the effectiveness, efficacy or harms of dairy consumption.
- The study compares dairy food to control OR dairy food to other foods OR different levels of dairy

consumption

• The study evaluates cow, goat or sheep milk, yogurt, cheese or custard. We will include and use the

studies definition of dairy it is broader than milk, yogurt, cheese or custard.

- The study evaluates skim, low or full fat dairy products
- The study evaluates the effect of nutrients, e.g calcium and vitamin D when consumed within a dairy

product

21. * Comparator(s)/control.

Where relevant, give details of the alternatives against which the main subject/topic of the review will be compared (e.g. another intervention or a non-exposed control group). The preferred format includes details of both inclusion and exclusion criteria.

Dairy vs Dairy (different doses) Dairy vs Dairy (different fat content) Dairy vs No dairy Dairy vs Other food

PROSPERO

International prospective register of systematic reviews

Other (mixed intervention)

22. * Types of study to be included.

Give details of the types of study (study designs) eligible for inclusion in the review. If there are no restrictions on the types of study design eligible for inclusion, or certain study types are excluded, this should be stated. The preferred format includes details of both inclusion and exclusion criteria.

RCTs, Controlled Trials, Cohort, Case-control, Pre/Post, Other/Various

23. Context.

Give summary details of the setting and other relevant characteristics which help define the inclusion or exclusion criteria.

• The study basia test climites hours some se (ategd risk castion/hascaultaratio easters ratio (RR/HR/OR) of cardiovascular

mortality, nonfatal heart attack, stroke, etc.) and/or the surrogate outcomes of Blood Pressure (mmHg)

24. * Main outcome(s).

Give the pre-specified main (most important) outcomes of the review, including details of how the outcome is defined and measured and when these measurement are made, if these are part of the review inclusion criteria.

a. Primary Outcome 1 and 2

o Statistical significance of results

o Effect size of outcomes

For each study, the result reported for each primary outcome will be categorized as:

(1) Favourable if the result are statistically significant (p 0.05 or 95% confidence interval [CI] excluding no difference) and in the direction of dairy being more efficacious, less harmful or no more harmful than the comparator;

(2) Unfavourable if the result was statistically significant (e.g. P 0.05 or 95% confidence interval including the possibility of no difference) in the direction of the comparator being more efficacious or less harmful.

We will also extract the effect estimates for primary outcomes.

We will classify the results of the study as favourable if the stated primary outcome is reported as favourable. If the study has multiple primary outcomes we will report the study as favourable if at least one of the outcomes is reported as favourable.

b. Primary Outcome 3 (Conclusions)

The conclusions reported in the published papers will be categorized as:

(1) Favourable if the dairy intervention was preferred to comparator

(2) Unfavourable if the comparator intervention was preferred to the test one OR if the test intervention

PROSPERO International prospective register of systematic reviews

National Institute for Health Research

showed a risk increase.

* Measures of effect

Please specify the effect measure(s) for you main outcome(s) e.g. relative risks, odds ratios, risk difference, and/or 'number needed to treat.

As this is not relevant to our study, we have nothing to include.

25. * Additional outcome(s).

List the pre-specified additional outcomes of the review, with a similar level of detail to that required for main outcomes. Where there are no additional outcomes please state 'None' or 'Not applicable' as appropriate to the review

WSactbousterthe Contracted Risthood Biagitabritisk calibration) ised studies (15) to measure the methodological

quality of randomized controlled trials. The tool assesses bias across 7 domains and each of these will be

reported separately. To measure methodological quality in observational studies we will use the ROBINS-I

tool for non-randomized studies (ROBINS-I)(16), which also measures bias across 7 domains.

d. Secondary Outcome 2 (Concordance between results and conclusions)

We will classify concordance between study results and conclusions as 'yes' if the authors' conclusions are

supported by all outcomes. This will include the reporting of all significant and non-significant results.

Otherwise, concordance will be classified as 'no'

* Measures of effect

Please specify the effect measure(s) for you additional outcome(s) e.g. relative risks, odds ratios, risk difference, and/or 'number needed to treat.

As this is not relevant to our study, we have nothing to include.

26. * Data extraction (selection and coding).

Describe how studies will be selected for inclusion. State what data will be extracted or obtained. State how this will be done and recorded.

Selection Process

Two investigators (NC & AF) will independently screen the titles and abstracts of all retrieved records for obvious exclusions. Two investigators (NC & AF) will then assess the remaining papers based on full text, applying the aforementioned inclusion criteria for included studies. Agreement will be reached on any discrepancies by consensus between the two assessors. If agreement cannot be reached, a third assessor (LB) will make a decision. The reasons for the eligible papers being excluded will be described in

 PROSPERO

International prospective register of systematic reviews 'Characteristics of excluded papers' table. Data collection process a) Title of the paper b) Year of publication c) Study design d) Comparisons: e) Sample size of study f) Mean age of participants g) Intervention or observation period h) Definition of intervention and exposure i) Risk of Bias i) Primary Hypothesis of the study (Verbatim) k) Primary outcomes measures I) Conclusion m) Concordance between conclusions and results n)Industry Sponsorship o) Role of the Funder: Information about the role of the sponsor as stated in the study p) The institutional affiliation of the corresponding author will be obtained from the article and classified into the following categories q) Country of origin (verbatim) r) Author COI 27. * Risk of bias (quality) assessment. Describe the method of assessing risk of bias or quality assessment. State which characteristics of the studies will be assessed and any formal risk of bias tools that will be used. We will use the Cochrane Risk of Bias tool for randomised studies (15) to measure the methodological

quality of randomized controlled trials. The tool assesses bias across 7 domains and each of these will be

reported separately. To measure methodological quality in observational studies we will use the ROBINS-I

tool for non-randomized studies (ROBINS-I)(16), which also measures bias across 7 domains.

28. * Strategy for data synthesis.

Provide details of the planned synthesis including a rationale for the methods selected. This **must not be generic text** but should be **specific to your review** and describe how the proposed analysis will be applied to your data.

To test our hypothesis that studies with dairy industry sponsorship will be more likely to have favourable

PROSPERO International prospective register of systematic reviews

National Institute for Health Research

results, we will compare the risk of dairy industry sponsored studies having a favourable result with the risk of non-dairy industry funded studies having a favorable result. Using Rev Manager we will calculate the pooled risk ratio (RR) and its 95% confidence interval using the Mantel-Haenszel fixed-effect model. However, when substantial heterogeneity is observed, we will use an inverse variance DerSimonian-Laird random-effects model. We will assess heterogeneity using l² and use a random-effects model when statistical heterogeneity is substantial, defined as an l² 50%.

To test our hypothesis that effect estimates will differ between studies with dairy industry sponsorship and those without sponsorship, we will compare the pooled effect estimates from dairy vs. non-dairy sponsored studies. We will pool the effect estimates of homogenous studies measuring dichotomous outcomes, (e.g. RR, HR, OR for all-cause mortality, CVD mortality, cardiovascular events, etc) calculating pooled risk ratios as described above. Blood pressure is a continuous outcome, so we will attempt to pool homogenous studies and measure the mean difference from baseline measures.

To test our hypothesis that studies with dairy industry sponsorship would be more likely to have favourable conclusions we will compare the risk of dairy industry sponsored studies having favourable conclusions with the risk of non-dairy industry funded studies having a favorable conclusion. We will calculate the pooled risk ratio (RR) and its 95% confidence interval using the Mantel-Haenszel fixed-effect model. However, when substantial heterogeneity is observed, we will use an inverse variance DerSimonian-Laird random-effects model. We will assess heterogeneity using l² and use a random-effects model when statistical heterogeneity is substantial, defined as an l² 50%.

29. * Analysis of subgroups or subsets.

State any planned investigation of 'subgroups'. Be clear and specific about which type of study or participant will be included in each group or covariate investigated. State the planned analytic approach. We will conduct an a priori subgroup analysis on low fat and full fat dairy products to determine if studies measuring the effects of low fat products have different results from studies that measure full fat dairy products.

We will conduct an a priori subgroup analysis by the risks of bias of the included studies to determine if studies that have a high risk of bias have different results from studies that have a low risk of bias. We hypothesize that industry sponsored studies will have the same level of risk of bias as non-industry sponsored studies.

30. * Type and method of review.

Select the type of review and the review method from the lists below. Select the health area(s) of interest for your review.

Type of review

Cost effectiveness

2 3

4 5

6

BMJ Open **PROSPERO** International prospective register of systematic reviews No Diagnostic No

~	
7	Epidemiologic
8	No
9	Individual patient data (IPD) meta-analysis
10	No
11	Intervention
12	No
13 14	Meta-analysis
15	Yes
16	Methodology
17	No
18	Narrative synthesis
19	No
20	Notwork meta analyzia
21	Network meta-analysis
22	No
23	Pre-clinical
24	No
25	Prevention
26	No
27	Prognostic
28	No
29 30 31	Nerrodology No Narrative synthesis No Network meta-analysis No Pre-clinical No Prevention No Prognostic No Prospective meta-analysis (PMA) No Prospective meta-analysis (PMA) No Review of reviews No Service delivery No Synthesis of qualitative studies No Systematic review Yes Other No
32	Review of reviews
33	No
34	Service delivery
35	No
36 37 38	Synthesis of qualitative studies No
39	Systematic review
40	Yes
41	Other
42	No
43 44	
45 46	Health area of the review
47	Alcohol/substance misuse/abuse
48	No
49	Blood and immune system
50	No
51	Cancer
52	No
53	Cardiovascular
54	Yes
55 56 57	Care of the elderly No
57	Child health

- Child health 58
- No 59
- 60 Complementary therapies

National Institute for Health Research

Ν	0
C	rime and justice
N	o
D	ental
N	o
D	igestive system
N	o
E	ar, nose and throat
N	o
E	ducation
N	o
E N	ndocrine and metabolic disorders
E	ye disorders
N	o
G	eneral interest
N	o
G N	o o
H	ealth inequalities/health equity
N	o
In N	ifections and infestations
In N	ternational development
M N	lental health and behavioural conditions
M	lusculoskeletal
N	o
N	eurological
N	o
N	ursing
N	o
O N	bstetrics and gynaecology
O N	bstetrics and gynaecology o rral health o
P N	alliative care
P	erioperative care
N	o
P	hysiotherapy
N	o
P	regnancy and childbirth
N	o
P	ublic health (including social determinants of health)
Y	es
R	ehabilitation
N	o
	espiratory disorders o

2 3

4

5

6

7

8

9

10

11 12

13

14

15

16

17

18 19

24

25

26 27

28 29 30

31

32

33

34 35 36

37 38

39

40

41

42

43 44

45

46 47

48 49

50

51

52 53

54

55 56

57 58

59

60

PROSPERO International prospective register of systematic reviews

Service delivery No Skin disorders No Social care No Surgery No Tropical Medicine No Urological No Wounds, injuries and accidents No Violence and abuse

No

31. Language.

Select each language individually to add it to the list below, use the bin icon to remove any added in error. English

There is not an English language summary

32. * Country.

Select the country in which the review is being carried out from the drop down list. For multi-national collaborations select all the countries involved.

Australia

33. Other registration details.

Give the name of any organisation where the systematic review title or protocol is registered (such as with The Campbell Collaboration, or The Joanna Briggs Institute) together with any unique identification number assigned. (N.B. Registration details for Cochrane protocols will be automatically entered). If extracted data will be stored and made available through a repository such as the Systematic Review Data Repository (SRDR), details and a link should be included here. If none, leave blank.

34. Reference and/or URL for published protocol.

Give the citation and link for the published protocol, if there is one

Give the link to the published protocol.

Alternatively, upload your published protocol to CRD in pdf format. Please note that by doing so you are consenting to the file being made publicly accessible.

No I do not make this file publicly available until the review is complete

Please note that the information required in the PROSPERO registration form must be completed in full even if access to a protocol is given.

35. Dissemination plans.

Give brief details of plans for communicating essential messages from the review to the appropriate audiences.

PROSPERO International prospective register of systematic reviews

National Institute for Health Research

Do you intend to publish the review on completion?

Yes

36. Keywords.

Give words or phrases that best describe the review. Separate keywords with a semicolon or new line. Keywords will help users find the review in the Register (the words do not appear in the public record but are included in searches). Be as specific and precise as possible. Avoid acronyms and abbreviations unless these are in wide use.

Nutrition, Industry Sponsorship, Conflict of Interest, Bias, Food Industry

37. Details of any existing review of the same topic by the same authors.

Give details of earlier versions of the systematic review if an update of an existing review is being registered, including full bibliographic reference if possible.

CRD42017055841 The association of industry sponsorship with outcomes of studies examining the effect of

intake of wholegrain foods with cardiovascular disease and mortality: protocol

38. * Current review status.

Review status should be updated when the review is completed and when it is published. For newregistrations the review must be Ongoing. Please provide anticipated publication date

Review_Ongoing

39. Any additional information.

Provide any other information the review team feel is relevant to the registration of the review.

40. Details of final report/publication(s).

This field should be left empty until details of the completed review are available.

Give the link to the published review.

BMJ Open

	Strategy OVID Medline: Dairy, CVD,
1. Randomized controlled trial*	.tw.
2. experimental design.tw.	
3. intervention*.tw.	
4. (RCT* or rct*).tw.	
5. random* control* trial*.tw.	
5. clinical trial*.tw.	
7. field trial*.tw.	
3. community trial*.tw.	
9. controlled clinical trial*.tw.	
10. pragmatic trial*.tw.	
1. observational stud*.tw.	
12. cohort stud*.tw.	
13. prospective cohort*.tw.	
14. retrospective cohort*.tw.	
15. case control*.tw.	
16. ecological stud*.tw.	
17. time series analys?s*.tw.	
18. before-after stud*.tw.	
19. pre-post stud*.tw.	
20. follow up stud*.tw.	
21. comparative stud*.tw.	
22. evaluation stud*.tw.	
23. dairy.mp.	
24. dairy intake*.mp.	

25. dairy consumption.mp.

26. dairy food*.mp.

27. Dairy Products/ or dairy product*.mp.

28. dairy serv*.mp.

29. dairy type*.mp.

30. dairy source*.mp.

31. (calcium adj15 food sourc*).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]

32. (vitamin D adj15 food sourc*).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]

33. (milk and (cow or goat or sheep)).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]

4.04

34. yogurt.mp. or Yogurt/

35. cheese.mp. or Cheese/

36. custard.mp.

37. (milk and (skim or full fat or low fat)).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]

38. (yogurt and (skim or full fat or low fat)).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]

39. Milk/

40. 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39

41. cardiovascular disease.mp. or exp Cardiovascular Diseases/

42. coronary*.tw.

1	
2	
3	43. heart*.tw.
4	
5	44. cardia*.tw.
6	
7	15 condict two
8	45. cardio*.tw.
9	
10	46. myocard*.tw.
11	
12	47. isch?em*.tw.
13	
14	48. angina*.tw.
15	-o. angina .tw.
16	
17	49. ventric*.tw.
18	
19	50. tachycardi*.tw.
20	 50. tachycardi*.tw. 51. pericard*.tw. 52. endocardi*.tw. 53. atrial fibrillat*.tw. 54. arrhythmi*.tw. 55. athero*.tw. 56. arterio*.tw. 56. arterio*.tw. 57. exp Atherosclerosis/ 58. exp Arteriosclerosis/ 59. HDL.tw.
21	
22	52. endocardi*.tw.
23	
24	52 striel fibrillet* try
25	53. atrial fibrillat*.tw.
26	
27	54. arrhythmi*.tw.
28	
29	55. athero*.tw.
30	
31	56. arterio*.tw.
32	
33	57. exp Atherosclerosis/
34	57. exp / theroselerosis/
35	50 and Antonio a lange is (
36	58. exp Arteriosclerosis/
37	
38	59. HDL.tw.
39	
40	60. LDL.tw.
41	60. LDL.tw.
42	61. VLDL.tw.
43	
44	62. lipid*.tw.
45	oz. npra .tw.
46	(2) linemestein * tou
47	63. lipoprotein*.tw.
48	
49	64. triacylglycerol*.tw.
50	
51	65. exp Hyperlipidemias/
52	
53	66. hyperlipid*.tw.
54	
55	67. hypercholesterol*.tw.
56	
57	
58	

- 68. hypercholester?emia*.tw.
- 69. hypertriglycerid?emia*.tw.
- 70. exp Cholesterol/
- 71. cholesterol*.tw.
- 72. exp Stroke/
- 73. stroke*.tw.

- Trox CVA.tw. cerebrovasc*.tw. "vascular accident".tw. . TIA.tw. 3. cerebral vascular.tw. 9. thrombo*.tw. 30. emboli*.tw. 81. apoplexy.tw. 82. (brain adj2 accident*).tw. 83. ((brain* or cerebral or lacunar) adj2 infarct*).tw. 84. Hypertension/

- 87. blood pressure*.tw.
- 88. systolic blood pressure.tw.
- 89. diastolic blood pressure.tw.
- 90. peripheral arter* disease*.tw.
- 91. (coronar\$ adj5 (bypas\$ or graft\$ or disease\$ or event\$)).tw.
- 92. (cerebrovasc\$ or cardiovasc\$ or mortal\$ or angina\$ or stroke or strokes).tw.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
12 13 14 15 16 17	
10	
16	
17	
18	
19	
20	
21	
22	
25	
∠_) ^ /	
24	
25	
26	
23 24 25 26 27	
28	
29	
30	
31	
27	
32	
33	
34	
35	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
58 59	
5 U	

60

93. (myocardi\$ adj5 (infarct\$ or revascular\$ or ischaemi\$ or ischemi\$)).tw.

94. (morbid\$ adj5 (heart\$ or coronar\$ or ischaem\$ or ischem\$ or myocard\$)).tw.

95. (vascular\$ adj5 (peripheral\$ or disease\$ or complication\$)).tw.

96. (heart\$ adj5 (disease\$ or attack\$ or bypass\$)).tw.

97. 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56 or 57 or 58 or 59 or 60 or 61 or 62 or 63 or 64 or 65 or 66 or 67 or 68 or 69 or 70 or 71 or 72 or 73 or 74 or 75 or 76 or 77 or 78 or 79 or 80 or 81 or 82 or 83 or 84 or 85 or 86 or 87 or 88 or 89 or 90 or 91 or 92 or 93 or 94 or 95 or 96

98. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22

99. 40 and 97 and 98

100. limit 99 to yr="2000 - 2019"

101. limit 100 to humans

102. limit 101 to "all adult (19 plus years)"

Supplementary File 3. List of confounders

Outcome	Confounders	Confounders (all outcomes)
1. CVD mortality	Fibre supplement (p)	Age
	Red Meat (h)	Sex
	Sodium (Na+) (h)	BMI
2. CVD events	Fibre supplement (p)	Smoking
	Magnesium supplement (p)	Alcohol intake
3. CHD mortality	Fibre supplement (p)	History of co-morbidities
(incident CVD)	Trans Fat (h)	Parenteral/Fhx MI < 60 yrs
	Polyunsaturated fat (n-6) (p)	PA levels
	Sodium (+Na) (h)	SES
4. CHD events (incident	Fibre supplement (p)	Total energy intake
CHD)	Trans fat (h)	Fruit & Vegetable intake
	Magnesium supplement (p)	
	Polyunsaturated fat (n-6) (p)	Specialised Confounders
5. Total MI	Aspirin (p)	Hormone therapy
	Vitamin E supplement (p)	
5. Fatal MI	Vitamin E supplement (p)	
7. Non-fatal MI	Aspirin (p)	en onl
Total stroke	Potassium supplement (p)	
	Red Meat (h)	
	Sodium (+Na) (h)	
9. Ischemic stroke	Aspirin (p)	
	Polyunsaturated fat (LC n-3) (p)	
	Red meat (h)	
10. Haemorrhagic stroke	Aspirin (h)	
11. Systolic BP	Magnesium supplement (p)	
	Sodium (-Na) (p)	
	Polyunsaturated fat (supplement) (LC n-3) (p)	
	Potassium supplement (p)	
12. Diastolic BP	Magnesium supplement (p)	
	Sodium (-Na) (p)	
	Polyunsaturated fat (supplement) (LC n-3) (p)	
	Potassium supplement (p)	
		p = protective, h = harm

1	
2	
3	
4	
5	
6	
7 8	
0	
10	
10	
11	
12	
13	
14	
15 16	
10	
9 10 11 12 13 14 15 16 17 18 19 20	
18	
19	
20	
21	
22 23 24 25	
23	
24	
25	
20	
26 27 28	
20	
29	
30	
31 32	
32 22	
33	
34 35	
35 36	
30 37	
38	
39	
40	
41	
42	
43	
44	
45	

a) Not Confounders (inconclusive evidence)

Outcome	Not a confounder (inconclusive)	
1. CVD mortality	Aspirin	
	Dietary Saturated Fat	
	Folate supplement	
	Monounsaturated Fat	
	Multivitamin	
	Polyunsaturated Fat	
	Total Dietary Fat	
	Vitamin E supplement	
2. CVD events	Folate supplement	
	Monounsaturated Fat	
	Multivitamin	
	Polyunsaturated Fat	
	Sodium	
	Total Dietary Fat	
	Vitamin E supplement	
3. CHD mortality	Dietary Saturated Fat	
	Magnesium supplement	
4. CHD events	Dietary Saturated Fat	
	Sodium	
	Red Meat	
5. Total MI	Dietary Saturated Fat	
	Folate supplement	
	Magnesium supplement	
	Multivitamin	
	Polyunsaturated Fat	
	Total Dietary Fat	
6. Fatal MI	Folate supplement	
	Multivitamin	
7. Non-fatal MI	Dietary Saturated Fat	
	Folate supplement	
	Multivitamin	
	Polyunsaturated Fat	
	Total Dietary Fat	
	Vitamin E supplement	

BMJ Open

8. Total stroke	Aspirin		
	Dietary Saturated Fat		
	Folate supplement		
	Monounsaturated Fat		
	Multivitamin		
	Polyunsaturated Fat		
	Total Dietary Fat		
	Vitamin E supplement		
9. Ischemic stroke	Dietary Saturated Fat		
	Trans Fat		
10. Haemorrhagic stroke	Polyunsaturated Fat		
	Red Meat		
11. Systolic BP	Polyunsaturated Fat (dietary)		
12. Diastolic BP	Polyunsaturated Fat (dietary)		

Supplementary file 4:	List of excluded	studies and reason	ns for exclusion

Author	Title	Reason for Exclusion
Akbaraly, T	Does overall diet in midlife predict future	Dietary patterns only were
2013 ¹	aging phenotypes? A cohort study	assessed, not dairy foods
Anderson, LA	Dietary Patterns and Survival of Older Adults	No relevant outcomes were
2011^2		measured
Baylin, A 2003 ³	High 18:2 trans-fatty acids in adipose tissue are associated with increased risk of nonfatal acute myocardial infarction in Costa Rican adults	Effects of dairy foods not measured
Beydoun, MA 2018 ⁴	Dairy product consumption and its association with metabolic disturbance in a prospective study of urban adults	Groups exposed to dairy not clearly defined
Biong, AS 2006 ⁵	Intake of milk fat, reflected in adipose tissue fatty acids and risk of myocardial infarction: a case–control study	Effects of dairy foods not measured
Chen, y 2013 ⁶	Prospective investigation of major dietary patterns and risk of cardiovascular mortality in Bangladesh	Dietary patterns only were assessed, not dairy foods
Ding, M 2017 ⁷	Dairy consumption, systolic blood pressure, and risk of hypertension: Mendelian randomization study	Not an observational design study
Eguchi, E 2012 ⁸	Healthy lifestyle behaviours and cardiovascular mortality among Japanese men and women: the Japan collaborative cohort study	Dietary patterns only were assessed, not dairy foods
Geleijnse, JM 2017 ⁹	Dietary Patterns in Relation to Cardiovascular Disease Incidence and Risk Markers in a Middle-Aged British Male Population: Data from the Caerphilly Prospective Study	Dietary patterns only were assessed, not dairy foods
Goldbohm, RA 2011 ¹⁰	Dairy consumption and 10-y total and cardiovascular mortality: a prospective cohort study in the Netherlands	No combined outcome data
Julián- Almárcegui, C 2016 ¹¹	Association of heart rate and blood pressure among European adolescents with usual food consumption: The HELENA study	Participants were adolescents, not adults
Larsson, SC 2018 ¹²	Dietary patterns, food groups, and incidence of aortic valve stenosis: A prospective cohort study	Dietary patterns only were assessed, not dairy foods
Lupton, BS 2003 ¹³	The Finnmark Intervention Study: is it possible to change CVD risk factors by community-based intervention in an Arctic village in crisis?	No combined outcome data
Meyer, J 2011 ¹⁴	Dietary patterns, subclinical inflammation,	Dietary patterns only were
-	incident coronary heart disease and mortality	assessed, not dairy foods

	in middle-aged men from the MONICA/KORA Augsburg cohort study	
Michaelsson, K 2013 ¹⁵	Long term calcium intake and rates of all cause and cardiovascular mortality: community based prospective longitudinal cohort study	Dietary calcium only was assessed, not dairy foods
Oomen, CM 2000 ¹⁶	Arginine intake and risk of coronary heart disease mortality in elderly men	Effects of dairy foods not measured
Paillard, F 2015 ¹⁷	Cardiovascular risk and lifestyle habits of consumers of a phytosterol-enriched yogurt in a real-life setting	Yogurt was enriched with phytosterols
Praagman, J 2016 ¹⁸	The association between dietary saturated fatty acids and ischemic heart disease depends on the type and source of fatty acid in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort	Effects of dairy foods not measured
Streppel, MT 2014 ¹⁹	Nutrient-rich foods, cardiovascular diseases and all-cause mortality: the Rotterdam study	Dietary patterns only were assessed, not dairy foods
Umesawa, M 2006 ²⁰	Dietary intake of calcium in relation to mortality from cardiovascular disease: the JACC Study	No combined outcome data
van der Pols, J C 2009 ²¹	Childhood dairy and calcium intake and cardiovascular mortality in adulthood: 65- year follow-up of the Boyd Orr cohort	Participants were children, not adults
Warensjo, E 2009 ²²	Stroke and plasma markers of milk fat intake – a prospective nested case-control study	Effects of dairy foods not measured
Warensjo, E 2009 ²³	Milk Fat Biomarkers and the Risk of a First Ever Acute Myocardial Infarction - A Prospective Nested Case-Control Study. Journal of the American Dietetic Association. 2009;1	Poster presentation only, full study not available
Warensjo, E 2010 ²⁴	Biomarkers of milk fat and the risk of myocardial infarction in men and women: a prospective, matched case-control study	No combined outcome data

1. Akbaraly T, Sabia S, Hagger-Johnson G, et al. Does overall diet in midlife predict future aging phenotypes? A cohort study. *The American journal of medicine*. 2013;126(5):411-419.e413.

- 2. Anderson AL, Harris TB, Tylavsky FA, et al. Dietary Patterns and Survival of Older Adults. *Journal of the American Dietetic Association.* 2011;111(1):84-91.
- 3. Baylin A, Kabagambe EK, Ascherio A, et al. 18:2 trans-fatty acids in adipose tissue are associated with increased risk of nonfatal acute myocardial infarction in costa rican adults. *Journal of Nutrition*. 2003;133(4):1186-1191.
- 4. Beydoun MA, Fanelli-Kuczmarski MT, Beydoun HA, et al. Dairy product consumption and its association with metabolic disturbance in a prospective study of urban adults. *British Journal of Nutrition.* 2018;119(6):706-719.

3 4

BMJ Open

2		
3	5.	Biong AS, Veierod MB, Ringstad J, et al. Intake of milk fat, reflected in adipose tissue fatty acids
4		and risk of myocardial infarction: a case-control study. European Journal of Clinical Nutrition.
5		2006;60(2):236-244.
6	6.	Chen Y, McClintock TR, Segers S, et al. Prospective investigation of major dietary patterns and
7		risk of cardiovascular mortality in Bangladesh. International Journal of Cardiology.
8 9		2013;167(4):1495-1501.
9 10	7.	Ding M, Huang T, Bergholdt HK, et al. Dairy consumption, systolic blood pressure, and risk of
10		hypertension: Mendelian randomization study. Bmj. 2017;356:j1000.
12	8.	Eguchi E, Iso H, Tanabe N, et al. Healthy lifestyle behaviours and cardiovascular mortality
13		among Japanese men and women: the Japan collaborative cohort study. European heart journal.
14		2012;33(4):467-477.
15	9.	Geleijnse JM, Mertens E, Markey O, et al. Dietary Patterns in Relation to Cardiovascular Disease
16		Incidence and Risk Markers in a Middle-Aged British Male Population: Data from the Caerphilly
17		Prospective Study. Nutrients. 2017;9(1):75.
18	10.	Goldbohm RA, Chorus AMJ, Galindo Garre F, et al. Dairy consumption and 10-y total and
19		cardiovascular mortality: a prospective cohort study in the Netherlands. American Journal of
20		Clinical Nutrition. 2011;93(3):615-627 613p.
21	11.	Julián-Almárcegui C, Vandevijvere S, Gottrand F, et al. Association of heart rate and blood
22		pressure among European adolescents with usual food consumption: The HELENA study.
23		Nutrition, Metabolism & Cardiovascular Diseases. 2016;26(6):541-548.
24	12.	Larsson SC, Wolk A, Bäck M. Dietary patterns, food groups, and incidence of aortic valve
25		stenosis: A prospective cohort study. International Journal of Cardiology. 2018.
26	13.	Lupton BS, Fonnebo V, Sogaard AJ, et al. The Finnmark Intervention Study: is it possible to
27		change CVD risk factors by community-based intervention in an Arctic village in crisis?
28		Scandinavian Journal of Public Health. 2003;31(3):178-186.
29	14.	Meyer J, Doring A, Herder C, et al. Dietary patterns, subclinical inflammation, incident coronary
30 31		heart disease and mortality in middle-aged men from the MONICA/KORA Augsburg cohort
32		study. European journal of clinical nutrition. 2011;65(7):800-807.
33	15.	Michaelsson K, Melhus H, Warensjo E, et al. Long term calcium intake and rates of all cause and
34		cardiovascular mortality: community based prospective longitudinal cohort study. <i>Bmj</i> .
35		2013;346:f228.
36	16.	Oomen CM, van Erk MJ, Feskens EJ, et al. Arginine intake and risk of coronary heart disease
37		mortality in elderly men. Arteriosclerosis, thrombosis, and vascular biology. 2000;20(9):2134-
38		2139.
39	17.	Paillard F, Bruckert E, Naelten G, et al. Cardiovascular risk and lifestyle habits of consumers of a
40		phytosterol-enriched yogurt in a real-life setting. Journal of Human Nutrition & Dietetics.
41		2015;28(3):226-235 210p.
42	18.	Praagman J, Beulens JW, Alssema M, et al. The association between dietary saturated fatty acids
43		and ischemic heart disease depends on the type and source of fatty acid in the European
44		Prospective Investigation into Cancer and Nutrition-Netherlands cohort. American Journal of
45		Clinical Nutrition. 2016;103(2):356-365.
46	19.	Streppel MT, Sluik D, van Yperen JF, et al. Nutrient-rich foods, cardiovascular diseases and all-
47		cause mortality: the Rotterdam study. European journal of clinical nutrition. 2014;68(6):741-747.
48	20.	Umesawa M, Iso H, Date C, et al. Dietary intake of calcium in relation to mortality from
49		cardiovascular disease: the JACC Study. Stroke. 2006;37(1):20-26.
50 51	21.	van der Pols JC, Gunnell D, Williams GM, et al. Childhood dairy and calcium intake and
51 52		cardiovascular mortality in adulthood: 65-year follow-up of the Boyd Orr cohort. <i>Heart</i> .
53		2009;95(19):1600-1606.
55	22.	Warensjo E, Smedman A, Stegmayr B, et al. Stroke and plasma markers of milk fat intakea
55	•	prospective nested case-control study. <i>Nutrition Journal</i> . 2009;8:21.
56		1 1
57		
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 23. Warensjo E, Sjogren P, Cederholm T, et al. Milk Fat Biomarkers and the Risk of a First Ever Acute Myocardial Infarction - A Prospective Nested Case-Control Study. *Journal of the American Dietetic Association*. 2009;109(9, Supplement):A51.
 - 24. Warensjö E, Jansson JH, Cederholm T, et al. Biomarkers of milk fat and the risk of myocardial infarction in men and women: a prospective, matched case-control study. *American Journal of Clinical Nutrition*. 2010;92(1):194-202 199p.

For beer terien only

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclose author conflicts of intere
Aerde, M 2013 ⁽¹⁾	Cohort	12.4 years	1,956 men & women	61.6 years	Total Dairy, 271 g/day per SD of the mean intake for Total dairy (all dairy products except butter)		Fatal CVD	Non- Industry ¹	Yes ^a
Al-Delaimy, WK 2003 ⁽²⁾	Cohort	12 years	39,800 men	40-75 years	Dairy Calcium Q5, 819 mg/day (median) (dairy calcium intake summed the calcium intake from whole milk, skim or low- fat milk, yogurt, ice cream, cottage cheese, and other cheese was summed)	Q1, 106 mg/day	Fatal Ischemic Heart Disease	Non Industry ²	No ^b
Alonso A, 2005 ⁽³⁾	Cohort	27 months	5,880 men & women	37 years	Dairy Q 5, 798.8 g/day (whole-fat milk, partially skim milk, skim milk, condensed milk, whipped cream, yogurt, skim yogurt, milk- shake, cottage cheese or junket, petit Suisse cheese, spreadable cheese wedges, soft unripened cheese, other cheese, custard, and ice cream)	Q 1, 155.6 g/day	Hypertension	Non- industry ³	No ^c

1 2 3
4 5
6 7
8
9
10 11
12
13 14
15
16 17
18
19 20
21
22 23
24
25
26 27
28
29 30
29 30 31
32 33
33 34
34 35 36 37
36 37
38
39 40
41
42
43 44
45
46 47
77

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interest
Altorf-van der Kuil, W2012 ⁽⁴⁾	Cohort	Mean follow up 7.5 years	3,588 men & women	44 years	Dairy Protein T3, ≥ 27 g/day (dairy protein was calculated as protein from milk, yogurt, coffee creamer, curd, pudding, porridge, custard, whipped cream and cheese)	T1, ≤ 19 g/day	Hypertension	Industry ⁴	Yes ^d
Avalos, EE 2013 ⁽⁵⁾	Cohort	Mean follow up 16.2 years	1,759 men & women	70.6 years men, 70.1 women	Whole Milk, Non-Fat Milk, Yogurt & Cheese, Sometimes/often (included daily, 4–6 times/week, 1–3 times/week and 1–3 times/months)	Rarely/never (included never & 1–11 times/year)	Incident CHD	Non- industry ⁵	No ^e
,	2 Cohorts	26 and 22 years of follow-up in women and men, respectively	127,160 (43 150 men 84 010 women)	Men 40 to 75 years, Woman 30 to 55 years	Whole Fat Q 5, Men 2.55 servings/day, Woman 2.81 servings/day (whole milk, ice cream, hard cheese, full fat cheese, cream, sour cream, cream cheese, butter)	Q 1, Men 0.21 servings/day, Woman 0.34 servings/day.	Total Stroke	Non- industry ⁶	Yes ^f
					Low Fat Q5, Men 2.64 servings/day, Women 2.20 servings/day (skim/low-fat milk, 1% and 2% milk, yogurt, cottage and ricotta cheeses, low-fat cheese, sherbet)	Low Fat Q1, Men 0.11 servings/day, Women 0.07 servings/day			
Biong, A 2008 ⁽⁷⁾	Case Control		218 men & women	62.4 years	Dairy Fat, > 34.1 g/day	<14.6 g/day	First Myocardial Infarction	Industry ⁷	Yes ^g

Page	55	of	88
------	----	----	----

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interes
Bonthuis, M 2010 ⁽⁸⁾	Cohort	Mean 14.4 years	1,529 men & women	25–78 years	Total Dairy T3, 599 g/day (median) ('low-fat dairy products was computed by adding daily servings (in grams) of skim milk, low-fat milk, low-fat yoghurt, cottage or ricotta cheese, whereas the food group 'high- fat/unmodified dairy' included whole milk, cream, ice cream, yoghurt, full-fat cheese and custard. Total dairy intake was the sum of intake of all these dairy foods)	T1, 174 g/day	Cardiovascular Disease Mortality	Non- Industry ⁸	No ^h
Buendia, JR 2018 ⁽⁹⁾	3 Cohorts	30 years of follow-up in NHS, 20 years in NHS II, 24 years in the HPFS	NHS (N=69298), NHS II (N=84368), HPFS (N=30512)	Mean baseline ages in the 3 cohorts were 44.6, 35.8, and 50.7 years, respectively	Total Dairy Q4, 3 - <6 servings/day (total dairy intake included: milk (skim, low-fat, whole), ice cream, sherbet/ frozen yogurt, cheese (cottage, ricotta, hard, sliced), and yogurt (all types)	Q1, <0.5 servings/day	High Blood Pressure	Industry ⁹	No ⁱ
Chen, M 2016 ⁽¹⁰⁾	3 Cohorts	24 years in the HPFS, 32 years NHS, 20 years in NHS II	222,234 - 43,652 men HPFS, 87,907 women NHS, 90,675 women NHS II	40–75 years HPFS, 30– 55 years NHS, 25– 42 y NHS II	Dairy Fat, Q5	Q1	CVD	Non- Industry ¹⁰	No ^j

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interes
Dalmeijer,G 2013 ⁽¹¹⁾	Cohort	13 years	33,625 men & women	49.0 years	Total dairy and its subtypes were evaluated as continuous variables per standard deviation of the mean intake which is 265 g/d for total dairy (total dairy included all dairy food products except for butter and ice cream. Milk and milk products included all kinds of milk, yogurt, coffee creamers, curd, pudding, porridge, custard, and whipping cream)		Incident of Coronary Heart Disease & Incident Stroke	Non- Industry ¹¹	Yes ^k
Dauchet, L 2007 ⁽¹²⁾	Cohort	5.4 years	2,341 men & women	Men 52.7 years, Women 46.9 years	Dairy Q4, 456 g/day (dairy products including milk, cheese, yogurt, and other dairy products)	Q1, 84 g/day	Systolic & Diastolic Blood Pressure	Non- Industry ¹²	No ¹

Page	57	of	88
------	----	----	----

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interes
Dehghan, M 2018 ⁽¹³⁾	Cohort	9.1 yrs	136,384 men & women	50-1 years	Dairy Q4, >2 servings/ day (median) (dairy comprised milk, yoghurt, various types of cheese, yoghurt drink, and mixed dishes prepared with dairy. Mixed dishes prepared with dairy were dis- aggregated into their constituents and a proportional weight was assigned to each component. Then each component was included in the related dairy group.	Q1, 0 servings/day	Cardiovascular Mortality or Major Events	Industry ¹³	No ^m
Elwood, PC 2004 ⁽¹⁴⁾	Cohort	20-24 years	2,403 men	45-59 years	Milk O4, >1 pint per day	Q1, None	Vascular Event	Non- Industry ¹⁴	No disclosure

1 2 3 4 5 6 7 8	
9 10 11 12 13 14 15 16 17	
18 19 20 21 22 23 24 25	
26 27 28 29 30 31 32 33	
33 34 35 36 37 38 39 40 41	
42 43 44 45 46 47	

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interes
Engberink, MF 2009 ⁽¹⁵⁾	Cohort	6 years	2,245 men & women	>55 years	Dairy Q4, 691 g/day (i.e. 4.5 servings/day) (median intake) (calculated total dairy intake by summing the intake of individual dairy items, except butter and ice cream. The category "milk and milk products" included all kinds of milk, yogurt, coffee creamer, curd, pudding, porridge, custard, and whipped cream. The category "cheese" included all kinds of cheese products, ie, soft cheese, hard cheese, and cheese spreads)	Q1, 164 g/day (i.e. 1 serving/day) (median intake)	Hypertension	No disclosure	No ⁿ
Farvid, MS 2017 ⁽¹⁶⁾	Cohort	8 years	42,403 men & women	51.6 years	Total Dairy Q5, 2.4 servings/day (median) (total dairy product items listed in the food frequency questionnaire included milk, cheese, yogurt, liquid yogurt (doogh), dried yogurt paste (kashk), and cream)	Q1, 0.4 servings/day (median)	Cardiovascular Disease Mortality	Non- Industry ¹⁵	Noº
Haring, B 2014 ⁽¹⁷⁾	Cohort	22 years (median)	12,066 men & women	45-64 years	Dairy Protein Q5, 2.9 servings/day	Q1, 0.1 median servings/day	Coronary Heart Disease	Non- Industry ¹⁶	No ^p
He, K 2003 ⁽¹⁸⁾	Cohort	14 years	43,732 men	40-75 years	High Fat Dairy Q5, ≥1/day	Q1, <1/week	Ischaemic & Haemorrhagic Stroke	Non- Industry ¹⁷	Noq

Page	59	of	88
------	----	----	----

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile	Comparison (lowest tertile/quartile/quintile	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interest
					or 'yes' to dairy foods)	or 'no' to dairy foods)			of interest
Heraclides, A 2012 ⁽¹⁹⁾	Cohort	10 years	1,750 men & women	Men 43 years, Women 53 years	Total Dairy T3, 309.0 g/day (median) (full-fat milk; semi-skimmed milk; skimmed milk; milk-containing beverages (full fat, semi- skimmed and skimmed); full-fat cheese; low-fat cheese; full-fat yoghurt; low-fat yoghurt; fruit- flavoured yoghurt (full fat and low fat); and milk- based puddings)	T1, 224.1 g/day	Incident Hypertension	Non- Industry ¹⁸	Yes ^r
Johansson, I 2018 ⁽²⁰⁾	Cohort	8-12 years	27,682 men & women	29-65 years	Dairy Q 5, 7.1 servings/day (median)	Q1, 1.6 servings/day (median)	Blood Pressure	Non- Industry ¹⁹	No ^s
Johansson, I 2019 ⁽²¹⁾	Cohort	14.2 years	108,065 men & women	calculated mean = 52.5 years *	High Fat & Low Fat Non- Fermented Milk & Cheese Q 4, high dose	Q1, low dose	Myocardial Infarction & Stroke	Non- Industry ²⁰	No ^t
Kim, D 2017 ⁽²²⁾	Cohort	67.4 months	4,335 men & women	40-69 years	Total Dairy Q 5, >7 servings/week	Q 1, <1 servings/week	Blood Pressure	Non- Industry ²¹	No ^u
Larsson,S 2009 ⁽²³⁾	Cohort	13.6 years	26,556 men	50-69 years	Dairy Q5, 1295.6 g/day (median) (including low- fat milk, whole milk, sour milk, yogurt, cheese, cream, ice cream, and butter)	Q1 286.5 g/day	Cerebral Infarction, Intracerebral Haemorrhage, Subarachnoid Hemorrhage	Non- Industry ²²	No disclosure

1 2	
3	
4 5	
6 7	
7 8	
8 9	
10	
11 12	
13	
14 15	
16	
17	
18 19	
19 20	
20 21 22	
23	
24	
25 26	
27	
28 29	
30	
31	
32 33	
34	
34 35 36 37	
37	
38 39	
39 40	
41	
42 43	
44	
45	
46 47	

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interest
Larsson, SC 2012 ⁽²⁴⁾	Cohort	10.2 years	74,961 men & women	45-83 years	Dairy Q5, 9.3 servings/day (median) (dairy foods included low-fat milk (0.5% fat), medium-fat milk (1.5% fat), full-fat milk (3% fat), milk in pancakes, low-fat sour milk/yogurt (0.5% fat), full-fat sour milk/ yogurt (3% fat), cottage cheese (4% fat), low-fat cheese (10%-17% fat), full-fat cheese (approximately 28% fat), ice cream, cream, and creme fraiche)	Q1, 2.3 servings/day	Total Stroke	Non- Industry ²³	No ^v
Li, K 2012 ⁽²⁵⁾	Cohort	11 years	23,980 men & women	35-64 years	Dairy Calcium Q4, 780 mg/day	Q1, 188 mg/day	CVD Mortality	Non- Industry ²⁴	No ^w
Lin, PH 2013 ⁽²⁶⁾	Cohort	12 years	2,061 men & women	45.8 years (no information for stroke group)	Dairy T3, (dairy milk of any kind, cheese, yogurt).		Total Stroke	Non- Industry ²⁵	No ^x
Lockheart, MSK 2007 ⁽²⁷⁾	Case Control		211 men & women	62.5 years cases and 62.2 years controls	Low Fat Dairy T3, 618 g/day (Low-fat milk, skimmed milk, light sour cream)	T 1, 48 g/day	First Myocardial Infarction	Industry ²⁶	No disclosure
Louie, JCY 2013 ⁽²⁸⁾	Cohort	15 years	2,625 men & women	49–97 years	Total Dairy T3, 2.9 servings/day (median) (included all dairy foods)	T1, 0.6 servings/day	Total CVD	Industry ²⁷	No disclosure
Mazidi, M, 2018 ⁽²⁹⁾	Cohort	76.4 months	24,474 men & women	47.6 years	Total Dairy Q4, 3.08 cup equivalent servings/day (total dairy, milk, cheese, and yogurt)	Q1, 0.25 cup equivalent servings/day	CHD Mortality & Cerebrovascular Disease mortality	Non- Industry ²⁸	No ^y

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interes
Ness, AR 2001 ⁽³⁰⁾	Cohort	25 years	5,765 men	35-64 years	Milk T3, > 1 pint (= 0.568 liters)	T1, None	Cardiovascular Disease Deaths	Non- Industry ²⁹	No ^z
Nettleton, J 2008 ⁽³¹⁾	Cohort	13.3 years	14,153 men & women	45 to 64 years	High Fat Dairy, per 1 daily serving difference in food group intake		Incident Heart Failure	Non Industry ³⁰	No ^{aa}
Panagiotakos, D 2009 ⁽³²⁾	Cohort	5 years	3,042 men & women	18-89 years	Low Fat Dairy, 1-unit increase in components' scores (0%, 2% or total fat), like cheese, yogurt, milk)		CVD Events	Non- Industry ³¹	No disclosure
Patterson, E 2013 ⁽³³⁾	Cohort	11.6 years	33,636 women	48-83 years	Total Dairy, Q5 8.4 servings/day (median) (total dairy intake was the sum of milk [full-fat (\geq 3.0% fat), semi- skimmed (\leq 1.5% fat), skimmed (0.5% fat), and pancakes], cultured milk/yogurt [full-fat (\geq 3.0% fat) and low-fat (\leq 1.5% fat)], cheese [full- fat (>17% fat), low-fat (\leq 17% fat), and cottage cheese/ quark], cream and creme fariche (full fat and low fat) intakes)	Q1, 2.2 servings/day	Myocardial Infarction	Non Industry ³²	No ^{bb}
Praagman, J 2015 (a) ⁽³⁴⁾	Cohort	13.3 years (median)	4,235 men & women	66.9 years	Total Dairy, T3 >400g/day (total dairy included milk, buttermilk, yogurt, coffee creamer, curd, pudding, porridge, custard, whipped cream, ice cream, and cheese, but not butter)	Total Dairy, T 1 <200 g/day	Fatal Stroke & Fatal CHD	Industry ³³	Yes ^{cc}

1 2 3	
4 5 6	
7 8	
9 10	
11 12	
13 14	
15 16	
17 18	
19 20	
21 22	
22 23 24	
25 26	
27 28	
29	
30 31 32	
33	
34 35 36	
37 38	
39 40	
41 42	
43 44	
45 46	
47	

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interest
Praagman, J 2015 (b) ⁽³⁵⁾	Cohort	15 years	34,409 men & women	Men 51 years & women 43 years	Total Yogurt & Cheese Q4, (fermented dairy foods)	Q1	CVD Mortality	Non- Industry ³⁴	Yes ^{dd}
Sauvaget, C 2003 ⁽³⁶⁾	Cohort	16 years	37,130 men & women	56 years	Dairy Q4, Almost Daily (dairy products (butter and cheese, excluding margarine))	Q1, Never	Total Stroke	Non- Industry ³⁵	No disclosure
Snijder, MB 2008 ⁽³⁷⁾	Cohort	6.4 years	1,124 men & women	50–75 years	Dairy Q4, 5.75-17.24 servings/day (range) (total dairy consumption was categorized as low-fat dairy (≤2% fat) or high- fat dairy (>2% fat). The variable dairy desserts included yoghurt, curds, and custard. The variable milk included low-fat, skim, and, whole milk. The variable yoghurt included all low- fat, skim, and whole yoghurts)	Q1 0-2.97 servings/day (range)	Systolic & Diastolic Blood Pressure	Industry ³⁶	Yes ^{ee}
Soedamah- Muthu, SS 2013 ⁽³⁸⁾	Cohort	10.8 years	4,255 men & women	56 years	Dairy, T3 575 g/day (median) (all dairy products, except butter and ice cream)	T1, 246 g/day (median)	Fatal & Non- Fatal CHD	Non- Industry ³⁷	Yes ^{ff}
Steffen, LM 2005 ⁽³⁹⁾	Cohort	15 years	4,304 men & women	18-30 years	Dairy Foods Q5, >3.4 times/day (dairy foods, including milk, cheese, yogurt, and dairy desserts)	Q1, <1.1 times/day	Blood Pressure	Non- Industry ³⁸	No ^{gg}

Page	63	of	88
------	----	----	----

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interest
Tavani, A 2002 ⁽⁴⁰⁾	Case Control		985 men & women	61 years (median)	Total milk >7 cups/week, Yogurt >= 7 portions/week, Cheese >=350g/week	Total milk 0 cups/week, Yogurt 0 portions/week, Cheese <200g/week	Acute Myocardial Infarction	Non- Industry ³⁹	No ^{hh}
Um, C 2017 ⁽⁴¹⁾	Cohort	5.7 years of follow-up	21,427 men & women	calculated mean = 64.8 years**	Total Dairy Q5, 17.8 servings/day (dairy products (milk, cream, fermented dairy products, ice cream, butter, cheeses))	Q1, 0.9 servings/day	CVD Mortality	Non- Indutry ⁴⁰	No ⁱⁱ
Umesawa, M, 2008 ⁽⁴²⁾	Cohort	12.9-year follow-up	41,526 men & women	40-59 years	Dairy Calcium, Q5, 116 mg/day (median) (to calculate dairy calcium intake, we specified 2 kinds of dairy products, ie, cheese and dairy products except cheese, for the baseline questionnaire, and 4 kinds, ie, whole milk, low fat milk, cheese, and yogurt, for the 5-year follow-up questionnaire)	Q1, 0 mg/day	Total Stroke & CHD	Non- Industry ⁴¹	No ^{ij}

2	
3	Study ID
4	-
5	
6 7	
7 8	Wang,L
8 9	2008(43)
9 10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	* We ca
23	**We ca
24 25	them by
25 26	
20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39 40	
40 41	
41	
43	
44	
45	
46	
47	

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interest
Wang,L 2008 ⁽⁴³⁾	Cohort	10 years	28,886 women	53.8 years	Total Diary Q5, 3.69 servings/day (median) (total dairy product intake was calculated by summing the intake of individual dairy items: low-fat dairy items include skim or low-fat milk, sherbet, yogurt, and cottage/ricotta cheese, high-fat dairy items include whole milk, cream, sour cream, ice cream, cream cheese, and other cheese)	Q1, 0.56 servings/day (median)	Hypertension	Non- Industry ⁴²	No ^{kk}

* We calculated the mean age score of participants by summing Non-cases, T2D, MI and stroke cases at baseline and dividing them by 4 **We calculated the mean age score of participants by summing all quintiles 1, 3, & 5 (they were the only ones available) at baseline and dividing them by 5

Description of Funding Source (Verbatim)

- 1. The Hoorn Study has been made possible by the Vrije Universiteit Amsterdam and the VU University Medical Center, and by grants from the Dutch Diabetes Research Foundation, the Dutch Organization for Scientific Research, the Netherlands Heart Foundation, and the Health Research and Development Council of the Netherlands.
- 2. Supported by research grants HL24074, HL34594, DK36798, and CA87969 from the National Institutes of Health.
- 3. Supported by the Spanish Ministry of Health (grants PI040233 and G03-140), the Navarra Regional Government (PI41-2005), and the University of Navarra (línea especial Nutricio LE-97). AA was supported partially by a Fulbright fellowship and an MMA Foundation grant.
- 4. The Doetinchem Cohort Study was financially supported by the Ministry of Health, Welfare and Sport of the Netherlands and the National Institute for Public Health and the Environment. For the present analysis, Wageningen University was supported by the Top Institute Food and Nutrition, which is a public/private partnership that generates vision on scientific breakthroughs in food and nutrition, resulting in the development of innovative products and technologies. Partners are major Dutch Food companies and research organisations.
- 5. The study was supported by grants AG007181 and AG028507 from the National Institutes of Health/National Institute on Aging, and by grant DK31801 from the National Institute of Diabetes and Digestive and Kidney Diseases.
- 6. This study was supported by grant P01CA087969 from the National Institutes of Health, Department of Health and Human Services. A.M.B. was supported through the Harvard Human Nutrition Program.
- 7. The study was supported financially by the Research Council of Norway, Throne Holst's Foundation for Nutrition Research, The Norwegian Association of Margarine Producers, DeNoFa Fabrikker A/S and Tine BA. Tine BA is a dairy company.
- 8. This study was supported by the National Health and Medical Research Council of Australia.
- 9. Funding sources: The Nurses' Health Study and Health Professionals Follow-up Study cohorts are supported by grants UM1 CA186107, UM1 CA176726, and UM1 CA167552 from the National Institutes of Health. The current analyses were supported by small grants from the National Dairy Council, the General Mills Bell Institute for Health and Nutrition, and the Boston Nutrition and Obesity Research Center.
- 10. Supported by the NIH (grants R01 HL034594, UM1 CA176726, UM1 CA186107, R01 HL35464, R01 HL088521, R01 CA67262, HL60712, and UM1 CA167552).
- 11. This research was supported by a personal Dr. Dekker postdoctoral grant (2008T062) from The Netherlands Heart Foundation (JWJ Beulens).
- 12. The SU.VI.MAX study is supported by the Direction Générale de la Santé, the Ministère de la Santé, and the Institut Virtuel de Recherche en Santé Publique (groupe cohorte) INSERM.
- 13. The PURE Study is an investigator-initiated study that is funded by the Population Health Research Institute, the Canadian Institutes of Health Research (CIHR), Heart and Stroke Foundation of Ontario, support from CIHR's Strategy for Patient Oriented Research (SPOR) through the Ontario SPOR Support Unit, as well as the Ontario Ministry of Health and Long-Term Care and through unrestricted grants from several pharmaceutical companies, with major contributions from AstraZeneca (Canada), Sanofi-Aventis (France and Canada), Boehringer Ingelheim (Germany and Canada), Servier, and GlaxoSmithKline, and additional contributions from Novartis and King Pharma and from various

national or local organisations in participating countries. These include Brazil: Unilever Health Institute, Brazil; South Africa: The SA Sugar Association (SASA).

- 14. The Medical Research Council, the University of Wales College of Medicine and Bristol University, Food Standards Agency.
- 15. This work was supported by Tehran University of Medical Sciences (grant 82-603); Cancer Research UK (grant C20/A5860); the Intramural Research Program of the National Cancer Institute, US National Institutes of Health (grant Z01 CP000185-03); and various collaborative research agreements with the International Agency for Research on Cancer. M.F. was supported by a Takemi Fellowship from the Japan Pharmaceutical Manufacturers Association.
- 16. The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C).
- 17. This work was supported by the research grant HL35464 and CA55075 from the National Institutes of Health.
- 18. The study was funded by the Medical Research Council, and some aspects of the analysis were funded by The European Commission, Quality of Life and Management of Living Resources Programme, contract number QLG1-CT-2000–01643.
- 19. The present study was supported by the Swedish Research Council for Health, Working Life and Welfare (FORTE).
- 20. This research was funded by The Swedish Research Council for Health, Working Life and Welfare (FORTE), grant number 2016-00960. The Northern Sweden Diet Database has been supported by the Swedish Research Council for Health, Working Life and Welfare (FORTES) and The Swedish Research Council.
- 21. This research was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science, and Technology (NRF2016R1D1A1B03931307).
- 22. The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study was supported by Public Health Service contracts N01-CN-45165, N01-RC-45035 and N01-RC-37004 from the US National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Md. Dr. Larsson's research at the National Public Health Institute in Helsinki, Finland, was supported by a grant from the Swedish Council for Working Life and Social Research.
- 23. This study was supported by a research grant from the Swedish Council for Working Life and Social Research (FAS), the Swedish Research Council, and by a Research Fellow grant from Karolinska Institutet (to Dr Larsson).
- 24. This work was supported by supported by the Deutsche Krebshilfe (grant-No70-488-Ha I) and the Graduiertenkolleg 793: Epidemiology of communicable and chronic non-communicable disease and their inter-relationships.
- 25. Data collection was supported by the Department of Health in Taiwan.
- 26. The present study was supported by NIH NRSA T32HL007779, CVD Epidemiology and Prevention, American Heart Association Greater Midwest Affiliate, Throne Holst's Foundation for Nutrition Research, The Norwegian Association of Margarine Producers, DeNoFa Fabriker A/S and Tine Norwegian Dairies.
- 27. This study was funded by Dairy Australia.

- 28. This manuscript was written independently; no company or institution supported it financially.
- 29. Funding: this study was provided with funding by a grant from the NHS Management Executive Cardiovascular Disease and Stroke Research and Development Initiative.
- 30. This research was supported by the National Institutes of Health grant HL73366, training grant T32 HL07779, and contracts N01-HC-55015, N01-HC-55016, N01-HC-55018, N01-HC-55019, N01-HC-55020, N01-HC-55021, and N01-HC-55022 from the National Heart, Lung, and Blood Institute.
- 31. The ATTICA study was supported by research grants from the Hellenic Cardiological Society (HCS2002).
- 32. Supported by research grants from the Swedish Council for Working Life and Social Research and from the Swedish Research Council/Infrastructure Medicine.
- 33. This study was supported by an unrestricted grant from the Dutch Dairy Organization (NZO) for epidemiological analyses on dairy intake and cardiovascular diseases.
- 34. The present study was supported by a personal Dr Dekker postdoctoral grant (2008T062) from the Netherlands Heart Foundation (J. W. J. B.).
- 35. This publication is based on research performed at the Radiation Effects Research Foundation (RERF), Hiroshima and Nagasaki, Japan. RERF is a private nonprofit foundation funded equally by the Japanese Ministry of Health, Labor and Welfare and the US Department of Energy through the National Academy of Sciences.
- 36. This particular study has been supported by a grant from the Dutch Dairy Association (NZO).
- 37. The Whitehall II study was supported by grants from the Medical Research Council (G0902037), the British Heart Foundation (RG/07/ 008/23674), the Stroke Association, the National Heart Lung and Blood Institute (5RO1 HL036310), the National Institute on Aging (5RO1AG13196) and the Agency for Health Care Policy Research (5RO1AG034454).
- 38. The CARDIA Study is supported by National Heart, Lung, and Blood Institute contracts N01-HC-48047, N01-HC-48048, N01-HC-48049, N01-HC-48050, and N01-HC-95095.
- 39. Funding: partly supported by the Italian Ministry of Health (Programmi Speciali).
- 40. The REGARDS research project is supported by a cooperative agreement U01 NS041588 from the National Institute of Neu- rological Disorders and Stroke, National Institutes of Health, Department of Health and Human Service. Additional support provided by the Franklin Foundation.
- 41. This study was supported by grants-in-aid for cancer research and by the Third Term Comprehensive Ten-Year Strategy for Cancer Control from the Ministry of Health, Labor and Welfare of Japan.
- 42. This work was supported by research grants CA-047988 and HL-080467 from the National Institutes of Health, Bethesda, Md.

Description of Author Disclosure Statement (Verbatim)

- a) Sabita S. Soedamah-Muthu and Johanna M. Geleijnse obtained an unrestricted grant from the Dutch Dairy Association (NZO) to carry out meta-analyses on the association between dairy products and CVD.
- b) None of the authors had any conflict of interest from a financial, personal, or professional aspect in relation to the findings of this study.
- c) None of the authors had any conflicts of interest.
- d) Altorf-van der Kuil W, Engberink MF, Geleijnse JM Top Institute Food and Nutrition, PO Box 557, 6700 AN, Wageningen, The Netherlands.
- e) The authors have no conflicts of interest.

- f) D.M. received research grants for studying the effects of diet on cardiometabolic diseases from the National Institutes of Health; the Searle Scholar Award from the Searle Funds at The Chicago Community Trust; the Genes and Environment Initiative at the Harvard School of Public Health; and the Gates Foundation/World Health Organization Global Burden of Diseases, Injuries, and Risk Factors Study; and from GlaxoSmithKline, Sigma Tau, Pronova, and the National Institutes of Health for an investigator-initiated, not- for-profit clinical trial of fish oil and postsurgical complications. He also received ad hoc travel reimbursement and/or honoraria for research presentations from the Chicago Council, International Life Sciences Institute, Aramark, Unilever, SPRIM, Nutrition Impact, Norwegian Seafood Export Council, United Nations Food and Agricultural Organization, World Health Organization, US Food and Drug Administration, and several universities. He received ad hoc consulting fees from Foodminds and royalties from UpToDate for an online chapter on fish oil.
- g) A. S. Biong is employed as a Ph.D. student in a research project funded jointly by TINE BA, a Norwegian dairy company, and the Norwegian Research Council.
- h) The authors declare no conflict of interest.
- i) There are no conflicts of interest.
- j) None of the authors reported a conflict of interest related to the study.
- k) SS-Mand MG obtained an unrestricted grant from the Dutch Dairy Association (NZO) to carry out meta-analyses on the association between dairy products and cardiovascular diseases.
- 1) None of the authors had any personal or financial conflicts of interest.
- m) We declare no competing interests.
- n) There were no conflicts of interest.
- o) Conflict of interest: none declared
- p) The authors have declared that no competing interests exist.
- q) Competing interests: None declared.
- r) SSM, JMG and AH and were supported by an unrestricted grant from the Dutch dairy industry (NZO).
- s) The authors declare that they have no competing interests.
- t) The authors declare no conflict of interest
- u) The authors have no conflicts of interest to declare.

v)	Disclosures:	None.
• • •		1,0110.

- w) Competing interests None.
- x) AUTHOR DISCLOSURES None.
- y) All authors have nothing to declare in relation to the subject of this paper.
- z) Conflicts of interest: none.
- aa) The authors have no conflicts of interest to report.
- bb) Author disclosures: E. Patterson, S. C. Larsson, A. Wolk, and A. A kesson, no conflicts of interest.
- cc) J.M.G and S.S.S.M received an unrestricted grant from the Dutch Dairy Organization (NZO) for epidemiological analyses on dairy intake and cardiovascular diseases.
- dd) S. S. S. M. received an unrestricted research grant from the Global Dairy Platform, Dairy Research Institute and Dairy Australia for a metaanalysis project on the effect of cheese on lipids.
- ee) Gerrit J. Hiddink Dutch Dairy Association (NZO), Zoetermeer, The Netherlands.
- ff) S. S. S.-M., L. V. and J. M. G. obtained an unrestricted grant from the Dutch Dairy Association (NZO) to carry out meta-analyses on the association between dairy products. relien only
- gg) None of the authors had any conflicts of interest.
- hh) Conflicts of interest: none.
- ii) Conflict of Interests: None.
- jj) Disclosures: None.
- kk) Disclosures: None.

References

1. Aerde M, Soedamah-Muthu S, Geleijnse J, et al. Dairy intake in relation to cardiovascular disease mortality and all-cause mortality: the Hoorn Study. European Journal of Nutrition. 2013;52(2):609-16 8p.

2. Al-Delaimy WK, Rimm E, Willett WC, et al. A prospective study of calcium intake from diet and supplements and risk of ischemic heart disease among men. American Journal of Clinical Nutrition. 2003;77(4):814-8 5p.

3. Alonso A, Beunza JJ, Delgado-Rodriguez M, et al. Low-fat dairy consumption and reduced risk of hypertension: the Seguimiento Universidad de Navarra (SUN) cohort. American Journal of Clinical Nutrition. 2005;82(5):972-9.

4. Altorf-van der Kuil W, Engberink MF, Geleijnse JM, et al. Sources of dietary protein and risk of hypertension in a general Dutch population. British Journal of Nutrition. 2012;108(10):1897-903 7p.

5. Avalos EE, Barrett-Connor E, Kritz-Silverstein D, et al. Is dairy product consumption associated with the incidence of CHD? Public health nutrition. 2013;16(11):2055-63.

6. Bernstein AM, Pan A, Rexrode KM, et al. Dietary protein sources and the risk of stroke in men and women. Stroke. 2012;43(3):637-44.

7. Biong AS, Rebnord HM, Fimreite RL, et al. Intake of dairy fat and dairy products, and risk of myocardial infarction: A case–control study. International Journal of Food Sciences and Nutrition. 2008;59(2):155-65.

8. Bonthuis M, Hughes MCB, Ibiebele TI, et al. Dairy consumption and patterns of mortality of Australian adults. European journal of clinical nutrition. 2010;64(6):569-77.

9. Buendia JR, Yanping L, Hu FB, et al. Long-term yogurt consumption and risk of incident hypertension in adults. Journal of Hypertension. 2018;36(8):1671-9.

10. Chen M, Li Y, Sun Q, et al. Dairy fat and risk of cardiovascular disease in 3 cohorts of US adults. American Journal of Clinical Nutrition. 2016;104(5):1209-17.

11. Dalmeijer GW, Struijk EA, van der Schouw YT, et al. Dairy intake and coronary heart disease or stroke—A population-based cohort study. International Journal of Cardiology. 2013;167(3):925-9.

12. Dauchet L, Kesse-Guyot E, Czernichow S, et al. Dietary patterns and blood pressure change over 5-y follow-up in the SU.VI.MAX cohort. The American journal of clinical nutrition. 2007;85(6):1650-6.

13. Dehghan M, Mente A, Rangarajan S, et al. Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): a prospective cohort study. Lancet. 2018;392 North American Edition(10161):2288-97.

14. Elwood PC, Pickering JE, Fehily AM, et al. Milk drinking, ischaemic heart disease and ischaemic stroke I. Evidence from the Caerphilly cohort. European Journal of Clinical Nutrition. 2004;58(5):711-7.

15. Engberink MF, Hendriksen MA, Schouten EG, et al. Inverse association between dairy intake and hypertension: the Rotterdam Study. The American journal of clinical nutrition. 2009;89(6):1877-83.

16. Farvid MS, Malekshah AF, Pourshams A, et al. Dairy Food Intake and All-Cause, Cardiovascular Disease, and Cancer Mortality. American Journal of Epidemiology. 2017;185(8):697-711.

Page 71 of 88

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

21

22

23

24

25

26

27

28 29

30

31

32

33

34

35

36

37

38 39

45 46 47 BMJ Open

Haring B, Gronroos N, Nettleton JA, et al. Dietary Protein Intake and Coronary Heart Disease in a Large Community Based Cohort: Results 17. from the Atherosclerosis Risk in Communities (ARIC) Study. PloS one. 2014;9(10):e109552. He K, Merchant A, Rimm EB, Rosner BA, et al. Dietary fat intake and risk of stroke in male US healthcare professionals: 14 year 18. prospective cohort study. BMJ. 2003;327(7418):777-82. Heraclides A, Mishra GD, Hardy RJ, et al. Dairy intake, blood pressure and incident hypertension in a general British population: the 1946 19. birth cohort. European journal of nutrition. 2012;51(5):583-91. Johansson I, Nilsson LM, Esberg A, et al. Dairy intake revisited - associations between dairy intake and lifestyle related cardio-metabolic 20. risk factors in a high milk consuming population. Nutrition Journal. 2018;17(1):N.PAG-N.PAG. Johansson I, Esberg A, Nilsson LM, at al. Dairy Product Intake and Cardiometabolic Diseases in Northern Sweden: A 33-Year Prospective 21. Cohort Study. Nutrients. 2019;11(2):284. 22. Kim D, Kim J. Dairy consumption is associated with a lower incidence of the metabolic syndrome in middle-aged and older Korean adults: the Korean Genome and Epidemiology Study (KoGES). British Journal of Nutrition. 2017;117(1):148-60. Larsson SC, Männistö S, Virtanen MJ, et al. Dairy foods and risk of stroke. Epidemiology (Cambridge, Mass) [Internet]. 2009; 20(3):[355-60 23. pp.]. Available from: http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/629/CN-00701629/frame.html. Larsson SC, Virtamo J, Wolk A. Dairy consumption and risk of stroke in Swedish women and men. Stroke. 2012;43(7):1775-80. 24. Li K, Kaaks R, Linseisen J, et al. Associations of dietary calcium intake and calcium supplementation with myocardial infarction and stroke 25. risk and overall cardiovascular mortality in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition study (EPIC-Heidelberg). Heart. 2012;98(12):920-5. 26. Lin PH, Yeh WT, Svetkey LP, et al. Dietary intakes consistent with the DASH dietary pattern reduce blood pressure increase with age and risk for stroke in a Chinese population. Asia Pacific journal of clinical nutrition. 2013;22(3):482-91. Lockheart MSK, Steffen LM, Rebnord HM, et al. Dietary patterns, food groups and myocardial infarction: a case-control study. British 27. Journal of Nutrition. 2007;98(2):380-7. Louie JCY, Flood VM, Burlutsky G, et al. Dairy consumption and the risk of 15-year cardiovascular disease mortality in a cohort of older 28. Australians. Nutrients. 2013:5(2):441-54. 29. Mazidi M, Mikhailidis DP, Sattar N, et al. Consumption of dairy product and its association with total and cause specific mortality - A population-based cohort study and meta-analysis. Clin Nutr. 2018. Ness AR, Smith GD, Hart C. Milk, coronary heart disease and mortality. Journal of Epidemiology & Community Health. 2001;55(6):379-82. 30. Nettleton JA, Steffen LM, et al. Incident heart failure is associated with lower whole-grain intake and greater high-fat dairy and egg 31. intake in the Atherosclerosis Risk in Communities (ARIC) study. Journal of the American Dietetic Association. 2008;108(11):1881-7. Panagiotakos D, Pitsavos C, Chrysohoou C, et al. Dietary patterns and 5-year incidence of cardiovascular disease: A multivariate analysis 32. of the ATTICA study. Nutrition, Metabolism and Cardiovascular Diseases. 2009;19(4):253-63. Patterson E, Larsson SC, Wolk A, et al. Association between dairy food consumption and risk of myocardial infarction in women differs by 33. type of dairy food. The Journal of nutrition. 2013;143(1):74-9. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

34. Praagman J, Franco OH, Ikram MA, et al. Dairy products and the risk of stroke and coronary heart disease: the Rotterdam Study. European journal of nutrition. 2015;54(6):981-90.

 35. Praagman J, Dalmeijer GW, van der Schouw YT, et al. The relationship between fermented food intake and mortality risk in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort. British Journal of Nutrition. 2015;113(3):498-506.

36. Sauvaget C, Nagano J, Allen N, et al. Intake of animal products and stroke mortality in the Hiroshima/Nagasaki Life Span Study. International journal of epidemiology. 2003;32(4):536-43.

37. Snijder MB, van Dam RM, Stehouwer CD, et al. A prospective study of dairy consumption in relation to changes in metabolic risk factors: the Hoorn Study. Obesity (Silver Spring, Md). 2008;16(3):706-9.

38. Soedamah-Muthu SS, Masset G, Verberne L, Geleijnse JM, et al. Consumption of dairy products and associations with incident diabetes, CHD and mortality in the Whitehall II study. The British journal of nutrition. 2013;109(4):718-26.

39. Steffen LM, Kroenke CH, Yu X, et al. Associations of plant food, dairy product, and meat intakes with 15-y incidence of elevated blood pressure in young black and white adults: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. American Journal of Clinical Nutrition. 2005;82(6):1169-77; quiz 363-4.

40. Tavani A, Gallus S, Negri E, et al. Milk, dairy products, and coronary heart disease. Journal of Epidemiology & Community Health. 2002;56(6):471-2.

41. Um CY, Judd SE, Flanders WD, et al. Associations of Calcium and Dairy Products with All-Cause and Cause-Specific Mortality in the REasons for Geographic and Racial Differences in Stroke (REGARDS) Prospective Cohort Study. Nutrition & Cancer. 2017;69(8):1185-95.

42. Umesawa M, Iso H, Ishihara J, et al. Dietary calcium intake and risks of stroke, its subtypes, and coronary heart disease in Japanese: the JPHC Study Cohort I. Stroke. 2008;39(9):2449-56.

43. Wang L, Manson JE, Buring JE, et al. Dietary intake of dairy products, calcium, and vitamin D and the risk of hypertension in middle-aged and older women. Hypertension. 2008;51(4):1073-9.

Supplementary File 6. Risk of bias in included studies

Funding Source, n (%^a)

			Spon	sorship	C	IOI	Industry Tie	
Characteristic	Category	Total	Industr	Non-	COI	No COI	Industry	Non-
		N = 43	У	Industry	N =10	N=33	/COI	Industry
			N= 8	N=35			N = 14	No COI
								N = 29
Risk of Bias								
Assessment								
	Serious/Critic	43 (100)	8 (100)	35 (100)	10 (100)	33 (100)	14 (100)	29 (100
	al Bias due to	6						
	confounding							
	Serious/Critic	6 (14)	1 (13)	5 (14)	1 (10)	5 (15)	2 (14)	4 (14)
	al Bias in							
	selection of							
	participants		\sim					
	into the study							
	Serious/Critic	16 (37)	3 (38)	13 (37)	2 (20)	14 (42)	3 (21)	13 (44)
	al Bias in							
	classification							
	of exposures							
	Serious/Critic	21 (49)	3 (38)	18 (51)	6 (60)	15 (45)	7 (50)	14 (48)
	al Bias due to							
	deviations							
	from							
	exposures							
	Serious/Critic	10 (23)	2 (25)	8 (23)	3 (30)	7 (21)	3 (21)	7 (24)
	al Bias due to							
	missing data							

al Bias in measurement of outcomesImage: second secon	al Bias in measurement of outcomes Image: construct on the selection of reported results 1 (13) 3 (9) 2 (20) 2 (6) 2 (14) 2 (7) al Bias in selection of reported results Image: construct on the selection of results Image: construct on the selection on the selectio	al Bias in measurement of outcomes Image: selection of reported 1 (13) 3 (9) 2 (20) 2 (6) 2 (14) 2 (7) al Bias in selection of reported results Image: selection of results I	 Serious/Critic	6 (14)	2 (25)	4 (11)	1 (10)	5 (15)	2 (14)	4 (14)
measurement of outcomesmeasurement of outcomesmeasurement of outcomesmeasurement 	measurement of outcomes ne	measurement of outcomes in		- (- ')	- (-0)	. ()	- ()	- ()	- (- ')	. (1.)
of outcomes I <thi< th=""> I</thi<>	of outcomesIII	of outcomes Image: constraint of the selection of reported results 1 (13) 3 (9) 2 (20) 2 (6) 2 (14) 2 (7) Serious/Critic reported results Image: constraint of the selection of of the								
Image: selection of reported results Image: selection of repor	Serious/Critic 4 (9) 1 (13) 3 (9) 2 (20) 2 (6) 2 (14) 2 (7) al Bias in selection of reported results -<	Serious/Critic 4 (9) 1 (13) 3 (9) 2 (20) 2 (6) 2 (14) 2 (7) al Bias in selection of reported results -								
selection of reported results Image: selection of reported reported results Image: selection of reported reported results Image: selection of reported r	selection of reported results selection of reported repo	selection of reported results selection of reported reported results selection of reported repo		4 (9)	1 (13)	3 (9)	2 (20)	2 (6)	2 (14)	2 (7)
reported results Image: second s	reported results reported results lass lass <thlass< th=""> lass <thlass< th=""></thlass<></thlass<>	reported results reported results <thr></thr> reported results reported results </td <td>al Bias in</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	al Bias in							
results Image: constraint of the second	results Image: second seco	results Image: second seco	selection of							
Serious/Critic 43 (100) 8 (100) 35 (100) 10 (100) 33 (100) 14 (100) 29 (100) al overall risk of bias	Serious/Critic 43 (100) 8 (100) 35 (100) 10 (100) 33 (100) 14 (100) 29 (100) al overall risk of bias of bias o	Serious/Critic 43 (100) 8 (100) 35 (100) 10 (100) 33 (100) 14 (100) 29 (100) al overall risk of bias of bias o	reported							
al overall risk of bias Percentages may not add to 100 due to rounding	al overall risk of bias low low low low corounding	al overall risk of bias Percentages may not add to 100 due to rounding	results							
of bias Percentages may not add to 100 due to rounding	Percentages may not add to 100 due to rounding	of bias Percentages may not add to 100 due to rounding	Serious/Critic	43 (100)	8 (100)	35 (100)	10 (100)	33 (100)	14 (100)	29 (100)
Percentages may not add to 100 due to rounding	Percentages may not add to 100 due to rounding	Percentages may not add to 100 due to rounding	al overall risk	5						
			of bias							

 BMJ Open

Supplementary File 7: Favorable Outcomes by Industry Ties v No Industry Ties, Industry Sponsorship v No Industry Sponsorship and Conflicts of Interest v No Conflicts of Interest

Industry Ti Interest	es: Industry	y Sponsorshij	p and/or Author	Conflicts of	No Industry Ties: No Industry Sponsorship and No Author Conflicts of Interest				
Study ID	Funding Source	Disclosed author conflicts of interest	Results Favourable/ Unfavourable	Conclusions Favourable/ Unfavourable	Study ID	Funding Source	Disclosed author conflicts of interest	Results Favourable/ Unfavourable	Conclusions Favourable/ Unfavourable
Aerde, M 2013	Non- Industry	Yes	U	U	Al- Delaimy, WK 2003	Non Industry	No	U	U
Altorf-van der Kuil, W2012	Industry	Yes	U	U	Alonso A, 2005	Non- industry	No	U	U
Bernstein, AM 2012	Non- industry	Yes	U	U	Avalos, EE 2013	Non- industry	No	U	U
Biong, A 2008	Industry	Yes	U	F	Bonthuis, M 2010	Non- Industry	No	U	U
Buendia, JR 2018	Industry	No	F	F	Chen, M 2016	Non- Industry	No	U	F
Dalmeijer, G 2013	Non- Industry	Yes	U	F	Dauchet, L 2007	Non- Industry	No	U	U
Dehghan, M 2018	Industry	No	U	F	Elwood, PC 2004	Non- Industry	No disclosure	U	U
Heraclides, A 2012	Non- Industry	Yes	U	U	Engberink, MF 2009	No disclosure	No	U	F
Lockheart, MSK 2007	Industry	No disclosure	U	U	Farvid, MS 2017	Non- Industry	No	F	F
Louie, JCY 2013	Industry	No disclosure	U	U	Haring, B 2014	Non- Industry	No	U	U
Praagman, J 2015	Industry	Yes	U	U	He, K 2003	Non- Industry	No	U	U

Industry Ti Interest	ndustry Ties: Industry Sponsorship and/or Author Conflicts of nterest					Ties: No In Interest	dustry Spons	orship and No A	uthor
Study ID	Funding Source	Disclosed author conflicts of interest	Results Favourable/ Unfavourable	Conclusions Favourable/ Unfavourable	Study ID	Funding Source	Disclosed author conflicts of interest	Results Favourable/ Unfavourable	Conclusions Favourable/ Unfavourabl
Praagman J, 2015	Non- Industry	Yes	U	U	Johansson, I 2018	Non- Industry	No	U	U
Snijder, MB 2008	Industry	Yes	U	U	Johansson, I 2019	Non- Industry	No	U	U
Soedamah- Muthu, SS Non- Industry Yes U 2013 1 1 1	U	Kim, D 2017	Non- Industry	No	F	F			
	-0-	Larsson,S 2009	Non- Industry	No disclosure	U	U			
				Larsson, SC 2012	Non- Industry	No	U	U	
			Li, K 2012	Non- Industry	No	U	U		
			Lin, PH 2013	Non- Industry	No	U	U		
					Mazidi, M, 2018	Non- Industry	No	F	F
					Ness, AR 2001	Non- Industry	No	U	U
				Nettleton, J 2008	Non Industry	No	U	U	
			Panagiotak os, D 2009	Non- Industry	No disclosure	U	U		
				Patterson, E 2013	Non Industry	No	F	F	
					Sauvaget, C 2003	Non- Industry	No disclosure	F	F
					Steffen, LM 2005	Non- Industry	No	U	U

Study ID	Funding Source	Disclosed author conflicts of interest	Results Favourable/ Unfavourable	Conclusions Favourable/ Unfavourable	Study ID	Funding Source	Disclosed author conflicts of interest	Results Favourable/ Unfavourable	Conclusions Favourable/ Unfavourable
			\sim		Tavani, A 2002	Non- Industry	No	F	F
			0		Um, C 2017	Non- Indutry	No	U	F
			6		Umesawa, M, 2008	Non- Industry	No	F	F
				20.	Wang,L 2008	Non- Industry	No	F	F

Favourable results - Statistical significance: Industry ties vs no industry ties; industry sponsorship vs no sponsorship; COI v no COI

Industry Ties

	Industry/COI	Non-Industry/No COI
Favourable	1	8
Unfavourable	13	21

RR= 0.26 (95% CI 0.04, 1.87)

Industry Sponsorship

	Industry	Non-Industry
Favourable	1	8
Unfavourable	7	27

RR = 0.55 (95% CI 0.08, 3.77)

Conflicts of Interest

	COI	No/COI]
Favourable	0	9	
Unfavourable	10	24	

RR= 0.16 (95% CI 0.01, 2.57)

Favourable conclusions: Industry ties vs no industry ties; industry sponsorship vs no sponsorship; COI v no COI

Industry Ties

	Industry/COI	Non-Industry/NO COI
Favourable	4	11
Unfavourable	10	18

RR = 0.75 (95% CI 0.29, 1.95)

Industry Sponsorship

	Industry	Non-Industry
Favourable	3	12
Unfavourable	5	23

RR= 1.09 (95% CI 0.40, 2.99)

Conflicts of Interest

	COI	No COI
Favourable	2	13
Unfavourable	8	20
RR =0.51 (95%	0.14, 1	1.88)

Concordance between study results and conclusions: Industry ties vs no industry ties; industry sponsorship vs no sponsorship; COI v no review only

COI Industry Ties

Industry Ties

	Industry/COI	Non-Industry/NO COI
Discord	3	3
Concord	11	26

RR = 2.07 (95% CI 0.48, 8.99)

Industry Sponsorship

	Industry	Non-Industry
Discord	2	4
Concord	6	31

RR = 2.19 (95% CI 0.48, 9.94)

Conflicts of Interest

Favourable Unfavourable	COI 2 8	No/COI 4 29	
RR = 1.65 (95%	5 CI 0.3	35, 7.72)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary File 8. Results for each of the meta-analyses conducted

Effect Size, Cardiovascular Disease: Industry ties v no industry ties, Risk Ratio

				Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Industry Sponsor		0.0505	04.00	0 00 10 70 4 001	
Bernstein, AM 2012	-0.1165		21.6%	0.89 [0.79, 1.00]	
Biong, A 2008 Lockheart, MSK 2007	-0.4005 -0.0408	0.5127	1.3% 1.8%	0.67 [0.25, 1.83] 0.96 [0.41, 2.23]	
Subtotal (95% Cl)	-0.0408	0.43	24.7%	0.89 [0.79, 1.00]	•
Heterogeneity: Tau ² = (0.00; Chi² = 0.34, c	lf = 2 (P =		63622	
Test for overall effect: Z	2 = 2.03 (P = 0.04)				
Non-Industry Spo	onsored & NO CO				
Al-Delaimy, WK 2003	0.1398	0.1811	7.8%	1.15 [0.81, 1.64]	
He, K 2003	0.1989	0.4867	1.4%	1.22 [0.47, 3.17]	
Larsson, S 2009		0.1965	6.9%	1.32 [0.90, 1.94]	
Larsson, SC 2012		0.0632		0.91 [0.80, 1.03]	-
Ness, AR 2001	-0.4463		5.5%	0.64 [0.41, 1.00]	
Nettleton, J 2008 Tavani, A 2002		0.0361	25.0%	1.09 [1.02, 1.17] 0.78 [0.54, 1.12]	
Subtotal (95% CI)	-0.2485	0.1840	7.6% 75.3 %	0.78 [0.54, 1.12]	
Heterogeneity: Tau² = (Test for overall effect: 2		df= 6 (P	= 0.02); l ^a	²= 60%	
Total (95% CI)			100.0%	0.96 [0.85, 1.08]	+
Heterogeneity: Tau ² = (df = 9 (P	= 0.01); P	²= 57%	0.1 0.2 0.5 1 2 5
Test for overall effect: Z Test for subgroup diffe	· · /	2 df = 1 /	D = 0.27\	12 - 10 004	Favourable to Dairy Unfavourable to Da
rest for subgroup diffe	rences. Chi= 1.2	3, ui = 1 (F = 0.27	, 17 = 10.0%	

Effect Size, Cardiovascular Disease: Industry ties v no industry ties, Hazard Ratio

Churche an Curkenson land	Useend Datial CE Mainht	Hazard Ratio	Hazard Ratio
		V, Random, 95% Cl	IV, Random, 95% Cl
Industry Sponsored &/OR CC			
Aerde, M 2013	0.0583 0.1002 4.7%	1.06 [0.87, 1.29]	
Dalmeijer,G 2013	-0.0101 0.03 13.9%	0.99 [0.93, 1.05]	*
Dehghan, M 2018	-0.2614 0.1384 2.8%	0.77 [0.59, 1.01]	
Louie, JCY 2013	-0.2744 0.1501 2.5%	0.76 [0.57, 1.02]	
Praagman, J 2015 a	-0.1054 0.2433 1.0%	0.90 [0.56, 1.45]	
Praagman, J 2015 b	0.077 0.1101 4.1%	1.08 [0.87, 1.34]	
Soedamah-Muthu, SS 2013	-0.0943 0.1496 2.5%	0.91 [0.68, 1.22]	
Subtotal (95% CI)	31.4%	0.96 [0.88, 1.05]	•
Heterogeneity: Tau ² = 0.00; Chi ² = 7 Test for overall effect: Z = 0.90 (P =			
Non-Industry Sponsored &/O	R No COI		
Bonthuis, M 2010	-0.2614 0.4472 0.3%	0.77 [0.32, 1.85]	
Chen, M 2016	0 0.0249 14.8%	1.00 [0.95, 1.05]	1
Elwood, PC 2004	-0.4155 0.5147 0.2%	0.66 [0.24, 1.81]	
Farvid, MS 2017	-0.3285 0.0907 5.4%	0.72 [0.60, 0.86]	States and States
Haring, B 2014	0.0392 0.1099 4.1%	1.04 [0.84, 1.29]	
Johansson, I 2019	0.1044 0.0565 9.3%	1.11 [0.99, 1.24]	+
Li, K 2012	0.2624 0.2043 1.4%	1.30 [0.87, 1.94]	
			100 AV
Lin, PH 2013	-0.3011 0.2205 1.2%	0.74 [0.48, 1.14]	
Mazidi, M, 2018	-0.0101 0.0152 16.3%	0.99 [0.96, 1.02]	1
Panagiotakos, D 2009	-0.0305 0.1375 2.8%	0.97 [0.74, 1.27]	
Patterson, E 2013	-0.2614 0.1072 4.2%	0.77 [0.62, 0.95]	
Sauvaget, C 2003	-0.3147 0.129 3.2%	0.73 [0.57, 0.94]	
Um, C 2017	0.0296 0.1148 3.8%	1.03 [0.82, 1.29]	
Umesawa, M, 2008	0.0862 0.2022 1.4%	1.09 [0.73, 1.62]	
Subtotal (95% CI)	68.6%	0.95 [0.89, 1.02]	•
Heterogeneity: Tau ² = 0.01; Chi ² = 3 Test for overall effect: Z = 1.43 (P =			
Test for overall effect. $\Sigma = 1.43$ (P =	J.15)		
Total (95% CI)	100.0%	0.96 [0.91, 1.01]	•
Heterogeneity: Tau ² = 0.00; Chi ² = 4	0.49 df = 20 (P = 0.004); IZ = 51%	F	
		0.1	0.2 0.5 1 2 5
Test for overall effect: Z = 1.67 (P =	· · · · · · · · · · · · · · · · · · ·		Favuorable to Dairy Unfavourable to Da
Test for subgroup differences: Chi ²	= 0.03, df = 1 (P = 0.86), I ² = 0%		
Eornoor	review only - http://bmjop	on hmi com (cito)	

BMJ Open

Effect Size, Cardiovascular Disease: Industry sponsorship vs no industry sponsorship, Risk Ratio

6						
7					Risk Ratio	Risk Ratio
8	Study or Subgroup	log[Risk Ratio]	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
9	Industry Sponsor					
10	Biong, A 2008 Lockheart, MSK 2007	-0.4005 -0.0408	0.5127	1.3% 1.8%	0.67 [0.25, 1.83] 0.96 [0.41, 2.23]	
11	Subtotal (95% CI)	-0.0400	0.43	3.1%	0.83 [0.43, 1.58]	
12	Heterogeneity: Tau ² = (0.00; Chi² = 0.29, d	f=1 (P=			
13	Test for overall effect: Z		80 A			
14	No. Inductor Co.					
15	Non-Industry Spo		0.4.04.4	7.00	4 4 5 10 04 4 5 41	
16	Al-Delaimy, WK 2003 Bernstein, AM 2012	0.1398 -0.1165		7.8% 21.6%	1.15 [0.81, 1.64] 0.89 [0.79, 1.00]	
17	He, K 2003		0.4856	1.4%	1.22 [0.47, 3.16]	
	Larsson, S 2009		0.1965	6.9%	1.32 [0.90, 1.94]	
18	Larsson, SC 2012	-0.0943	0.0632	21.0%	0.91 [0.80, 1.03]	-
19	Ness, AR 2001	-0.4463		5.5%	0.64 [0.41, 1.00]	
20	Nettleton, J 2008	0.0862		24.9%	1.09 [1.02, 1.17]	
21	Tavani, A 2002 Subtotal (95% CI)	-0.2485	0.1846	7.6% 96.9%	0.78 [0.54, 1.12] 0.97 [0.85, 1.09]	
22	Heterogeneity: Tau ² = (0.01 ⁻ Chi ² = 20.15	df = 7 (P			
23	Test for overall effect: Z			0.000/		
24		5 10				
25	Total (95% CI)			100.0%	0.96 [0.85, 1.08]	• • • •
26	Heterogeneity: Tau ² = (df = 9 (P	= 0.01); P	²= 57%	0.1 0.2 0.5 1 2 5 10
27	Test for overall effect: Z Test for subgroup diffe		df = 1	P = 0.66)	12-0%	Favourable to Dairy Unfavourable to Dairy
28	restion subgroup unie	rences. Chr = 0.2	i, ui – i (F = 0.00)	.1 = 0 %	
29						
30						
31						
32						
33						
34						
35						
36						
37						
38						
39						
40						
41						
42						
43						
44						
45						
46						
47						
48						
49						
50						
51						
52						
53						
54						
55						
56						
57						
58						
59						

Effect Size, Cardiovascular Disease: COI vs No COI, Risk Ratio

Study or Subgroup	log[Risk Ratio]	SE	Weight	Risk Ratio IV, Random, 95% Cl	Risk Ratio IV, Random, 95% Cl
COI			00.000	0.00 10.00 0.00	
Bernstein, AM 2012	-0.1165		22.9%	0.89 [0.80, 0.99]	•
Biong, A 2008	-0.4005	0.5238	1.2%	0.67 [0.24, 1.87]	
Subtotal (95% CI)			24.1%	0.89 [0.80, 0.99]	•
Heterogeneity: Tau ² = 0 Test for overall effect: Z		r=1 (P=	0.59); F=	: U%	
No COI					
Al-Delaimy, WK 2003	0.1398		7.5%	1.15 [0.80, 1.65]	
He, K 2003	0.1989	0.4867	1.4%	1.22 [0.47, 3.17]	
Larsson, S 2009	0.2776	0.2011	6.6%	1.32 [0.89, 1.96]	
Larsson, SC 2012	-0.0943	0.0657	21.0%	0.91 [0.80, 1.04]	
Lockheart, MSK 2007	-0.0408		1.8%	0.96 [0.42, 2.19]	
Ness, AR 2001	-0.4463	0.2398	5.0%	0.64 [0.40, 1.02]	
Nettleton, J 2008	0.0862	0.0389	25.3%	1.09 [1.01, 1.18]	•
Tavani, A 2002	-0.2485	0.1876	7.3%	0.78 [0.54, 1.13]	
Subtotal (95% CI)			75.9%	0.99 [0.86, 1.13]	•
Heterogeneity: Tau ² = 0 Test for overall effect: Z		df = 7 (P	= 0.05); l²	= 49%	
Total (95% CI)			100.0%	0.96 [0.86, 1.08]	•
Heterogeneity: Tau ² = 0		df = 9 (P	= 0.02); l ²	= 55%	0.1 0.2 0.5 1 2 5
Test for overall effect: Z					Favourable to Dairy Unfavourable to Dair
Test for subgroup differ	rences: Chi ^z = 1.52	, df = 1 (P = 0.22),	I ^z = 34.1%	

BMJ Open

Effect Size, Cardiovascular Disease: COI vs no COI, Hazard Ratio

Effect Size, Cardio	vascular Disease	e: CC	JI vs r	io COI, Hazai	rd Ratio
				Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
COI	0.0500	0.005	5.000	4 00 10 00 4 001	
Aerde, M 2013 Dalmeijer,G 2013	0.0583 -0.0101 0	0.095	5.0% 14.7%	1.06 [0.88, 1.28] 0.99 [0.94, 1.04]	
Praagman, J 2015 a	-0.1054 0		1.0%	0.90 [0.56, 1.45]	
Praagman, J 2015 b	0.077 0		4.0%	1.08 [0.87, 1.34]	_
Soedamah-Muthu, SS 2013			2.4%	0.91 [0.68, 1.22]	
Subtotal (95% CI)			27.2%	1.00 [0.95, 1.04]	•
Heterogeneity: Tau² = 0.00; (Test for overall effect: Z = 0.1		81); I² =	0%		
No COI					
Bonthuis, M 2010	-0.2614	0.448	0.3%	0.77 [0.32, 1.85]	
Chen, M 2016		.0262	14.8%	1.00 [0.95, 1.05]	+
Dehghan, M 2018	-0.2614 0		2.6%	0.77 [0.58, 1.02]	
Elwood, PC 2004	-0.4155 0	.5161	0.2%	0.66 [0.24, 1.81]	
Farvid, MS 2017		0.093	5.1%	0.72 [0.60, 0.86]	
Haring, B 2014		0.109	4.1%	1.04 [0.84, 1.29]	
Johansson, I 2019	0.1044 0		9.0%	1.11 [0.99, 1.24]	-
Li, K 2012	0.2624 0		1.4%	1.30 [0.87, 1.94]	
Lin, PH 2013	-0.3011 0		1.2%	0.74 [0.48, 1.14]	20 TO 10
Louie, JCY 2013	-0.2744 0		2.3%	0.76 [0.56, 1.03]	
Mazidi, M, 2018 Dependentekoa, D. 2000	-0.0101 0		16.5%	0.99 [0.96, 1.02]	
Panagiotakos, D 2009 Patterson, E 2013	-0.0305 -0.2614 0		2.6% 4.5%	0.97 [0.73, 1.29] 0.77 [0.63, 0.94]	
Sauvaget, C 2003	-0.2014 0		4.0%	0.73 [0.57, 0.93]	
Um, C 2017	0.0296 0		3.7%	1.03 [0.82, 1.29]	
Umesawa, M, 2008	0.0862 0		1.5%	1.09 [0.74, 1.61]	
Subtotal (95% CI)			72.8%	0.93 [0.87, 1.00]	•
Heterogeneity: Tau ² = 0.01; 0	Chi ² = 38.11, df = 15 (P =	0.0009	l); l² = 61 9	6	
Test for overall effect: Z = 2.0)4 (P = 0.04)				
Total (95% CI)			100.0%	0.96 [0.91, 1.01]	•
Heterogeneity: Tau ² = 0.00; (0.005);	² = 50%		0.1 0.2 0.5 1 2 5
Test for overall effect: Z = 1.8		0.400	17 50.00		Favourable to Dairy Unfavourable to Dairy
Test for subgroup difference	IS. UNF= 2.43, UI= 1 (P=	= 0.12),	17 = 58.87	, 🦳	
					te/about/guidelines.xhtml

Effect Size, Elevated Blood Pressure / Hypertension: Industry ties v no industry ties

Study or Subgroup	In addition of the days	05 100	lainkt T	Hazard Ratio	Hazard Ratio
Inductor Contractor	log[Hazard Ratio]	SE W	reight N	/, Random, 95% Cl	IV, Random, 95% Cl
Industry Sponsored					
Altorf-van der Kuil, W2012	0 0	0.1139 1		1.00 [0.80, 1.25]	
Buendia, JR 2018	-0.1393 0	0.0173 2	3.0%	0.87 [0.84, 0.90]	
Subtotal (95% CI)		3	37.0%	0.89 [0.80, 0.99]	•
Heterogeneity: Tau ² = 0.00	$Chi^2 = 1.46 df = 1 (P = 1)$	0.23): 17=	32%		
Test for overall effect: Z = 2		0.20,,.	02.00		
restion overall ellect. Z = 2	. 10 (F = 0.03)				
Non-Industry Spons	ored &/OR No COL				
			1.00	0.75 10 44 4 071	
Alonso A, 2005	-0.2877 (4.9%	0.75 [0.44, 1.27]	
Engberink, MF 2009			6.0%	0.84 [0.70, 1.01]	
Johansson, I 2018	-0.0101	0.072 1	8.4%	0.99 [0.86, 1.14]	
Kim, D 2017	-0.6162 0	0.1101 1	4.3%	0.54 [0.44, 0.67]	
Steffen, LM 2005	-0.1985 0	0.1681	9.4%	0.82 [0.59, 1.14]	
Subtotal (95% CI)			53.0%	0.78 [0.61, 0.99]	•
Heterogeneity: Tau ² = 0.08	Chiz - 21 30 df - 4 (P				-
		- 0.0003),	1 - 01%		
Test for overall effect: Z = 3	2.02 (P = 0.04)				
T-t-L/OEN/ CIV		40	0.0%	0 02 10 72 0 051	
Total (95% CI)			00.0%	0.83 [0.73, 0.95]	· · · · ·
Heterogeneity: Tau ² = 0.02		= 0.0005);	I² = 75%		0.1 0.2 0.5 1 2 5
Test for overall effect: Z = 2					Favourable to Dairy Unavourable to Dairy
Test for subgroup differen	ces: Chi² = 1.00, df = 1 (P = 0.32), I	l² = 0%		ravourable to Daily Onavourable to Daily

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2-3
INTRODUCTION	•	·	
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	3&5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5, Supp file 1
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	7-8
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	8-9
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	8-9
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	7 & 11
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6 & 10
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta malysis. http://bmjopen.bmj.com/site/about/guidelines.xhtml	10 -11

BMJ Open

PRISMA 2009 Checklist

Page	1	of 2	
Page		012	

1			Page 1 of 2	
Sectior	n/topic	#	Checklist item	Reported on page #
Risk of b	bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	11
Addition	al analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	10-11
	TS			
5 Study se	election	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	11, Figure 1, Supp file 4
20 Study ch	naracteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Supp file 5
22 Risk of b 23 24 25	bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	13, Supp File 6, Figure 2
27	of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	13-15
30 31 32	is of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	13-15, Supp file 7 & 8, Figure 3
34 35 36	pias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	13,Supp file 6, Figure 2
Addition	al analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	N/A
	SSION			
10 11 Summar 12	ry of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	15-18
13 Limitatio	ns	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias). For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	16

Page 89 of 88

PRISMA 2009 Checklist

ERIS MAT

3				· · · · · · · · · · · · · · · · · · ·
4 Conclusions	6	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	19
6 FUNDING	FUNDING			
7 Funding		27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the	3&20
9			systematic review.	
10				
11 From: Moher	D, Liberati A, Tetzlaff J	J, Altma	an DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med	6(7): e1000097.
	urnal.pmed1000097		For more information, visit: <u>www.prisma-statement.org</u> .	
13				
14				
15 16				
17				
18				
19				
20				
21				
22				
23				
24 25				
26			Page 2 of 2	
27				
28				
29				
30				
31				
32				
33 34				
35				
36				
37				
38				
39				
40				
41 42				
43				
44				
45			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
46				
47				

BMJ Open

The association of food industry ties with findings of studies examining the effect of dairy foods intake on cardiovascular disease and mortality: Systematic review and Meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039036.R2
Article Type:	Original research
Date Submitted by the Author:	13-Oct-2020
Complete List of Authors:	Chartres, Nicholas; The University of Sydney, Charles Perkins Centre Fabbri, Alice; University of Insubria, Centre for Research in Medical Pharmacology McDonald, Sally ; The University of Sydney, ; the University of Sydney Diong, Joanna; The University of Sydney Faculty of Medicine and Health McKenzie, Joanne; Monash University Bero, Lisa; University of Sydney Faculty of Health Sciences, Pharmacy
Primary Subject Heading :	Research methods
Secondary Subject Heading:	Public health, Epidemiology, Health policy, Nutrition and metabolism
Keywords:	STATISTICS & RESEARCH METHODS, NUTRITION & DIETETICS, PUBLIC HEALTH

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	1	The association of food industry ties with findings of studies examining the effect of
5	2	dairy foods intake on cardiovascular disease and mortality: Systematic review and
6 7 8	3	Meta-analysis
8 9 10	4	
11 12	5	Authors: Nicholas Chartres ¹ , Alice Fabbri ¹ , Sally McDonald ¹ , Joanna Diong ² , Joanne
13 14	6	Mckenzie ³ , Lisa Bero ¹
15	7	
16 17 18	8	1. The University of Sydney, D17, The Hub, 6th floor, Charles Perkins Centre, The
19	9	University of Sydney, New South Wales, 2006, Australia
20 21	10	2. The University of Sydney, School of Medical Sciences, Faculty of Medicine and
22 23	11	Health, The University of Sydney, New South Wales, 2006, Australia
23 24 25	12	3. Monash University, 553 St Kilda Road, Melbourne, Victoria, 3004, Australia
26 27	13	
28	14	Corresponding author: Lisa Bero, The University of Sydney, D17, The Hub, 6th floor,
29 30	15	Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia, email
31 32	16	lisa.bero@sydney.edu.au; Telephone +612 8627
33 34	17	Word Count: 5064
35 36		
37 38	18	Word Count: 5064
39 40	19	
41		
42 43		
44 45		
46		
47 48		
40 49		
50		
51 52		
52 53		
54		
55		
56 57		
58		
59		
60		

2		
3 4	20	Abstract
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	21	Objective: To determine if the association of dairy foods with cardiovascular disease
	22	outcomes differs between studies with food industry ties versus those without industry ties.
	23	To determine whether studies with or without industry ties differ in their risk of bias.
	24	Eligibility criteria: We included cohort and case control studies that estimated the
	25	association of dairy foods with cardiovascular disease (CVD) outcomes in healthy adults.
	26	Information sources: We searched eight databases on February 1, 2019 from 2000-2019 and
	27	hand searched reference lists
	28	Risk of bias: We used the Risk of Bias in Non-Randomized Studies-of Exposure (ROBINS-
	29	E) tool.
20 21	30	Included studies: 43 studies (3 case controls, 40 cohorts).
22 23	31	Synthesis of results: There was no clear evidence of an association between studies with
24	32	industry ties (1/14) vs. no industry ties (8/29) and the reporting of favourable results, RR=
25 26	33	0.26 (95% CI 0.04, 1.87; n=43 studies) and studies with industry ties (4/14) vs. no industry
27 28	34	ties (11/29) and favourable conclusions, RR= 0.75 (95% CI 0.29, 1.95; n=43) Studies with
29	35	industry sponsorship, (HR =0.78; n= 3 studies) showed a decreased magnitude of risk of
30 31	36	CVD outcomes compared to studies with no industry sponsorship (HR=0.97; n=18) (ratio of
32 33	37	HRs 0.80 (95% CI 0.66, 0.97)) P=0.03.
34 35	38	Strengths and Limitations of evidence: Every study had an overall high risk of bias rating;
36	39	this was primarily due to confounding.
37 38	40	Interpretation: There was no clear evidence of an association between studies with food
39 40	41	industry ties and the reporting of favourable results and conclusions compared with studies
41 42	42	without industry ties. The statistically significant difference in the magnitude of effects
43	43	identified in industry sponsored studies compared to non-industry sponsored studies,
44 45	44	however, is important in quantifying industry influence on studies included in dietary
46 47	45	guidelines.
48	46	Funding: This work was supported by Australian Health and Medical Research Council
49 50	47	Project Grant APP 1139997.
51 52	48	Registration: Prospero ID CRD42019129659
53 54	49	
55	50	
56 57	51	Keywords: Industry Sponsorship, Conflicts of Interest, Bias, Dietary Guidelines
58 59	52	
59 60	53	Strengths and limitations of this study

BMJ Open

1		
2 3	54	• This is the first systematic review and meta-analysis to evaluate the association of
4 5	54 55	• This is the first systematic review and meta-analysis to evaluate the association of food industry ties (industry sponsorship and / or author conflicts of interest (COI))
6		
7 8	56	with the results, conclusions and risk of bias of primary nutrition studies examining
9 10	57	the association of dairy foods with cardiovascular disease outcomes and mortality.
11	58	• We conducted a comprehensive search and followed explicit and well-defined
12 13	59	inclusion and exclusion criteria for the included studies.
14	60	• For studies missing a funding or author COI disclosure, we did not contact the
15 16	61	authors; thus we may be underestimating the number of studies with industry ties.
17 18	62	• The tool that we used to assess the risk of bias is still under modification, however it
19	63	is unlikely any future changes to the tool will affect the risk of bias ratings.
20 21	64	• We did not analyse studies of low and full fat dairy separately. Industry ties may have
22 23	65	different effects on studies of low or full fat dairy foods.
24	66	different effects on studies of low or full fat dairy foods.
25 26		
27 28		
29		
30 31		
32		
33 34		
35 36		
30 37		
38 39		
40		
41 42		
43 44		
45		
46 47		
48		
49 50		
51 52		
53		
54 55		
56		
57 58		
59		

60

BMJ Open

67 INTRODUCTION

The effect of dairy foods on cardiovascular disease (CVD) is unclear. Recent systematic reviews and meta-analyses of observational studies have reported conflicting results between the association of total dairy consumption and risk of CVD, with some showing decreased risk and some showing no clear evidence.^{1–4} The beneficial effects of decreasing blood pressure, however, appear more consistent.^{4, 5} Further, dairy intake recommendations made in dietary guidelines around the world vary. Although the Australian Dietary Guidelines concluded that there is a probable association between dairy food consumption and a reduced risk of cardiovascular events,⁶ recent amendments to the Eatwell guidelines by Public Health England recommend a significant reduction in the daily intake of dairy foods.⁷

Food industry sponsors and authors with a conflict of interest (COI) with the food industry may gain financially from finding that dairy foods have health benefits, since such a finding can be used to market dairy products. Such a driver may lead industry sponsors to magnify (or bias) the health benefits of dairy foods by influencing the research agenda, design and conduct of the study, or reporting of the results.⁸⁻¹¹ Prior examinations of pharmaceutical and tobacco research have identified that even when controlling for methodological biases, studies sponsored by industry were more likely to have results that favoured the sponsor than studies with other sources of sponsorship.¹²⁻¹⁴

The effects of food industry sponsorship or author COI with the food industry on study results needs further examination.¹⁵ A systematic review assessing the association of wholegrain foods with CVD and mortality found that studies with food industry ties more often have favourable results and conclusions compared to those with no industry ties, but the association was uncertain.¹⁶ One study has demonstrated an association of food industry sponsorship with the magnitude of effect estimates.¹⁷ In this examination, studies of soft drink consumption sponsored by the food industry reported significantly smaller harm effect estimates than those with no food industry sponsorship. A recent dairy industry funded meta-analysis of observational studies found that studies without food industry sponsorship showed that dairy consumption was associated with a statistically significant decreased risk of developing CVD and Type 2 diabetes, while studies with food industry sponsorship did not.¹⁸

BMJ Open

3	98	The primary objective of this systematic review and meta-analysis is to determine whether:
4 5	99	• Studies of observational design examining the associations of dairy foods with CVD
6 7	100	with food industry ties (industry sponsorship and / or authors with a COI) are more
8 9	101	likely to have results and / or conclusions that are favourable to industry than those
10	102	with no industry ties.
11 12	103	
13 14		
15 16	104	The secondary objectives of this review are to determine whether observational studies with
17	105	food industry ties compared with no industry ties:
18 19	106	I. differ in their risk of bias;
20 21	107	II. have a higher level of discordance between study results and conclusions, with the
22 23	108	conclusions more likely to be favourable compared to the results.
24	109	
25 26		
27 28 29 30 31 32 33 34 35 36 37	110	METHODS
	111	We conducted a systematic review of observational studies examining the effect of dairy
	112	consumption on CVD. Our study is registered with Prospero ID CRD42019129659 (see
	113	Supplementary file 1). ¹⁹
	114	
	115	Search Strategy
38	116	The search included terms to locate observational studies and randomised control trials, the
39 40	117	latter of which are for a separate systematic review. The search used was based on the
41 42	118	Process Manual used to develop the 2013 Australian Dietary Guidelines and the guidance of
43 44	119	an information specialist. ²⁰ The search dates used were to ensure that we identified the
45	120	studies used to inform the recommendations in these guidelines. We therefore searched the
46 47	121	following databases from January 2000-February 2019: MEDLINE; CINAHL; PubMed;
48 49	122	PreMEDLINE; Cochrane Library; PsycINFO; Science Direct; and ERIC. The search strategy
50 51	123	used for Ovid MEDLINE on February 1, 2019 is shown in Supplementary file 2. We adapted
52	124	this strategy for the other databases. We hand searched references lists of the identified
53 54	125	studies and reviews.
55 56	126	
57	127	
58 59	128	
60		

BMJ Open

1 2		
3 4 5	129	Eligibility Criteria
	130	We included studies of cohort or case control designs that estimated the effects of dairy
6 7	131	consumption on CVD outcomes in healthy adults. We focused on these study designs as they
8 9	132	are often used to assess the association of diet with long term health outcomes.
10 11 12 13 14	133	
	134	We included studies with no restriction on the authors' definition of dairy. For example, some
	135	authors' defined dairy as milk, yogurt and cheese, while others defined dairy as 'whole fat'
15 16	136	milk, yogurt and cheese. We included studies that compared dairy foods to other foods or
17	137	compared various levels of dairy consumption.
18 19	138	
20 21	139	We included studies that measured any clinical outcome of CVD, defined as either mortality
22 23	140	related to specific CVD events, and / or CVD events, (e.g., first myocardial infarction, total
24	141	stroke etc.) or incidence of elevated blood pressure / hypertension.
25 26	142	
27 28	143	We excluded conferences presentations, opinion pieces and letters to the editor. We had no
29	144	language restrictions.
30 31	145	
32 33 34 35 36 37 38	146	Types of Outcome Measures
	147	Primary Outcomes
	148	We hypothesized that studies with food industry sponsorship and / or authors with a COI with
	149	the food industry would be more likely to have favourable findings than those with no
39 40	150	industry ties. We assessed three primary outcomes:
41 42	151	1. Statistical significance of results favourable to dairy
43	152	Favourable results were defined as those that were in the direction of showing a health
44 45	153	benefit of dairy product(s), and were statistically significant at the 0.05 level (two tailed),
46 47	154	such as a statistically significant decreased risk of CVD compared to the comparator (i.e.
48 49	155	another food or lower dairy consumption). Otherwise, results were classified as unfavourable.
50	156	In the circumstance where a study reported multiple results (e.g. first myocardial infarction
51 52	157	and total stroke), only one result needed to be 'favourable' for the study as a whole to be
53 54	158	classified as 'favourable'.
55	159	
56 57	160	2. Effect size of results
58 59	161	Effect size was defined as the risk ratio (RR), hazard ratio (HR) or odds ratio (OR) between
60	162	dairy foods tested versus comparator on the CVD outcome.

1 2		
3	163	
4 5 6 7 8 9	164	3. Conclusions
	165	Conclusions that suggested that the dairy consumption was beneficial to health by decreasing
	166	CVD were considered favourable. Otherwise, the conclusions were considered unfavourable.
10	167	In the circumstance where a study reported multiple results (e.g. first myocardial infarction
11 12	168	and total stroke), only one conclusion needed to be 'favourable' for the study as a whole to be
13 14	169	classified as 'favourable'.
15 16	170	
17	171	Secondary Outcomes
18 19 20	172	We assessed two secondary outcomes:
21	173	1. The risk of bias of the included studies
22 23 24 25 26 27 28 29 30 31 32 33 34	174	To evaluate the risk of bias of included observational studies, we used an adapted version of
	175	the Cochrane Collaboration's 'Risk of Bias in Non-Randomized Studies-of Interventions'
	176	(ROBINS-I) tool, ²¹ the ROBINS-E ²² . Bias is assessed across seven domains ('Bias due to
	177	confounding', 'Bias in selection of participants', 'Bias in classification of exposures', Bias
	178	due to deviations from exposures', 'Bias due to missing data', 'Bias in measurement of
	179	outcomes', 'Bias in selection of reported results'), with each domain classified low,
	180	moderate, serious, critical risk of bias, or no information. The first step in using the ROBINS-
35 36	181	E tool is to identify all possible confounders that a study should control. We developed this
37 38	182	list of confounders by searching the literature for the most recent systematic reviews on
39	183	possible confounders and having this list reviewed by expert Professors in nutrition at The
40 41	184	University of Sydney (see Supplementary file 3 for list of confounder). An overall risk of bias
42 43	185	rating for the study is given based on the domain with the highest risk of bias rating. For
44 45	186	example, if a study is rated as being at a 'critical' risk of bias in one domain, the overall risk
46	187	of bias rating is 'critical.' In the circumstance where a study reported multiple results (e.g.
47 48	188	stroke and myocardial infarction), the risk of bias was only assessed for one randomly
49 50	189	selected outcome.
51 52	190	
53	191	2. Concordance between study results and conclusions
54 55	192	Results unfavourable to the sponsor with conclusions favourable to the sponsor, were
56 57	193	considered discordant. Otherwise, the results and conclusions were considered concordant.
58 59	194	
60	195	Selection of studies

BMJ Open

2	
3 4	196
5	197
6 7	198
8 9	199
10	200
11 12	201
13 14	202
15	203
16 17	204
18 19	205
20	206
21 22	207
23 24	208
25 26	209
27	210
28 29	211
30 31	211
32	
33 34	213
35 36	214
37	215
38 39	216
40	217
41 42	218
43 44	219
45 46	220
46 47	221
48 49	222
50 51	223
52	224
53 54	225
55 56	226
57	227
58	

Three investigators (NC, SMc & AF), working independently in pairs, screened the titles and
abstracts of all records for obvious exclusions. If both investigators agreed on excluding the
study, the full text was not retrieved. Three investigators (NC, SMc & AF) working
independently in pairs, assessed the full text of potentially eligible studies against the
inclusion criteria. If agreement could not be reached, a fourth investigator (LB) resolved the
conflict.

203 Selection of results for meta-analysis

If total dairy consumption had been assessed in the study, we included this as our only exposure. If total dairy consumption had not been assessed, we included any type of dairy consumption (e.g. milk, yogurt, and cheese; or low fat, high fat) other than fermented milk as our exposure. We included the results comparing the highest level of dairy consumption to the lowest level of dairy consumption (e.g., 'yes' to dairy consumption vs. 'no' to dairy consumption, tertile 3 vs. tertile 1, quartile 4 vs. quartile 1, quintile 5 vs. quintile 1). For the meta-analyses if our pre-specified rules for selecting results did not allow us to uniquely identify one exposure for inclusion, we randomly selected one result.

If 'cardiovascular disease mortality/death/s' (verbatim) had been assessed, we included this
as our only outcome. If not, we included any type of CVD mortality (e.g., coronary heart
disease mortality, stroke mortality etc.) as our outcome. If there were no mortality outcomes
assessed in the study, we included any CVD event or incidence of elevated blood pressure /
hypertension as our outcome. If a study used a composite outcome, which was a combination
of multiple outcomes, the result pertaining to the composite outcome was selected. For the
meta-analyses if our pre-specified rules for selecting results did not allow us to uniquely
identify one outcome for inclusion, we randomly selected one result.

¹⁸ 222 Data Collection

- 9
- From each study we extracted:
 Year of publication
 - I car of publication
 - Study design (cohort or case control)
 - Sample size of study
 - Age of participants (combined or if reported, separately)
- Exposure duration or observation period

Page 10 of 87

BMJ Open

1							
2 3							
4	229	• How the study defined dairy (verbatim)					
5 6	230	• Disclosure of funding source (no disclosure, yes and there is a sponsor, the authors					
7 8	231	state they received no funding for their work)					
9	232	• Name of the funders of the study (verbatim)					
10 11	233	• Role of the funders (role of the sponsor not mentioned, sponsor not involved in study					
12 13	234	design and analyses, sponsor involved, N/A)					
14 15	235	• Disclosure of author COI (no disclosure, yes (if at least 1 author had a COI), the authors					
16	236	state they had no conflicts of interest to declare)					
17 18	237	Authors COI statement (verbatim)					
19 20	238	• Outcomes assessed in the study (any CVD death and/or event or blood					
21	239	pressure/hypertension)					
22 23	240	• The numerical results of the study (e.g., OR, HR, RR)					
24 25	241						
26 27	242	All extracted data from the included studies was stored in REDcap, a secure web-based					
28	243	application for the collection and management of data. ²³ Five investigators (NC, SMc, AF,					
29 30	244	AL & JD) working independently in pairs extracted data from the included studies.					
31 32	245	Discrepancies in data extraction were resolved by consensus. If agreement could not be					
33 34	246	reached, a sixth investigator (LB) resolved the discrepancy.					
35	247						
36 37	248	Classification of industry sponsorship and author conflicts of interest					
38 39	249	Sponsorship was categorized as 1) industry or 2) non-industry. Industry sponsored studies					
40	250	were defined as those that declared any sponsorship from the food industry, including 'Big					
41 42	251	Food' (i.e. Danone, Kraft, Unilever etc), trade associations (i.e. dairy associations and					
43 44	252	organisations) and dairy industry (i.e. primary producers). Studies with food industry					
45 46	253	sponsorship plus any other sponsorship were classified as industry. Any study that did not					
47	254	contain a funding disclosure statement was classified as 'non-industry'.					
48 49	255						
50 51	256	Studies with at least one author with any disclosed financial tie with the food industry were					
52 53	257	classified as having a conflict of interest (COI). Author COI were categorised as 1) COI or 2)					
54	258	no COI. Studies with no authors with disclosed financial ties with the food industry were					
55 56	259	classified as 'no conflict of interest'.					
57 58	260						
59							
60							

Page 11 of 87

BMJ Open

Since the number of studies with industry sponsorship or author COI was small, we also
categorized studies as having "industry ties" for analysis. Studies classified as having an
industry tie were industry sponsored and / or had an author COI. Otherwise, they were
classified as having no industry ties.

266 Analysis

We report the frequencies and percentages of the study characteristics across all studies, and separately, by sponsorship, COI and industry ties. We visually present the risk of bias rating for each domain and overall across each study.

To quantify the association between industry ties, food industry sponsorship, or authors with
a conflict of interest with the food industry and (i) favourable results, (ii) favourable
conclusions, (iii) overall risk of bias across each study, and (iv) level of concordance, we
calculated RR (and 95% confidence intervals). To analyse the risk of bias rating for each
study, we dichotomised the overall risk of bias ratings as low (low or moderate) or high
(serious or critical).

We conducted meta-analysis to examine whether studies with food industry ties, food industry sponsorship, or authors with a conflict of interest with the food industry modified the magnitude of effect of dairy on CVD outcomes.. For each outcome, we combined effect estimates using a random effects meta-analysis model using the inverse variance method. DerSimonian and Laird's method of moments estimator was used to estimate between study heterogeneity. We fitted separate meta-analyses for studies that had measured the association using HRs and those that had used either RRs or ORs. It is not recommended to combine HRs with RRs and ORs in a meta-analysis, as HRs represent instantaneous risk over the study time period, whereas RRs and ORs estimate risk/odds at a fixed time point.²⁴ We considered that the ORs approximated RRs given CVD events were rare.

We undertook a fixed-effects test for subgroup differences (defined by industry sponsorship / authors conflict of interest) using the Chi2 test and calculated the ratio of RRs (ORs) or HRs along with 95% confidence intervals. Analyses were undertaken in Review Manager 5.3.²⁵ **BMJ** Open

We planned to use sensitivity analysis to assess the influence of risk of bias by restricting the analysis to studies at 'low risk of bias' overall (i.e. an overall risk of bias rating of low or moderate). However, as the overall risk of bias was high across all studies, this was not undertaken. **Patient and Public Involvement** No patient involved RESULTS As shown in Figure 1, there were 1, 858 studies screened for inclusion and 43 studies were included (3 case controls, 40 cohorts). See Supplementary file 4 for 'List of excluded studies and reasons for exclusion'. **Characteristics of included Studies** All studies were published between 2001 and 2019. All but one contained a funding disclosure. Eight studies disclosed food industry sponsorship, but only two of these studies described the role of the sponsor. Six studies did not contain an author COI disclosure statement. Ten studies contained an author with a COI with the food industry. Fourteen studies were classified as having industry ties, disclosing food industry sponsorship and / or an author with a COI. As shown in Table 1, most characteristics were similarly distributed across studies with industry ties or no industry ties. Studies with industry ties (64%) were more likely to have sample sizes <5000 than non-industry sponsored studies (34%). A greater proportion of industry sponsored studies (100%) than non-industry sponsored studies (83%) focused on total dairy intake rather than a specific food. Details of the individual studies are in Supplementary file 5.

325 Table 1. Characteristics of the included studies by sponsorship, author conflict of

326 interest and industry ties

Funding S	Source,	n	(% ^a)
-----------	---------	---	-------------------

			Spor	nsorship	C	OI	Indust	try Ties
Characteristic	Category	Total	Industr	Non-	COI	No	Industry	Non-
		N =	у	Industry	N =10	COI	/COI	Indust
		43	N= 8	N=35		N=33	N = 14	No CC
								N = 29
Sex	Male	5 (12)	0 (0)	5 (14)	0 (0)	5 (15)	0 (0)	5 (17)
	Female	2 (5)	0 (0)	2 (6)	0 (0)	2 (6)	0 (0)	2 (7)
	Both	36	8 (100)	28 (80)	10	26 (79)	14	22 (76)
		(84)			(100)		(100)	
Sample Size	<5000	19	6 (75)	13 (37)	7 (70)	12	9 (64)	10 (34)
		(44)				(36)		
	5000-50,000	18	0 (0)	18 (51)	2 (20)	16 (48)	2 (14)	16 (55)
		(42)	\mathbf{O} .					
	>50,000	6 (14)	2 (25)	4 (11)	1 (10)	5 (15)	3 (21)	3 (10)
Length of	N/A*	3 (7)	2 (25)	1 (3)	1 (10)	2 (6)	2 (14)	1 (3)
Follow up								
	<10 years	11	3 (38)	8 (23)	2 (20)	9 (27)	3 (21)	8 (28)
		(26)						
	10-15 years	21	2 (25)	19 (54)**	6 (60)	15	7 (50)	14 (48)
		(49)				(45)**		
	>15 years	8 (19)	1 (13)	7 (20)	1 (10)	7 (21)	2 (14)	6 (21)
Type of	Total Dairy	37	8 (100)	29 (83)	9 (90)	28 (85)	13 (93)	24 (83)
Dairy	Intake***	(86)						
	Individual Dairy	6 (14)	0 (0)	6 (17)	1 (10)	5 (15)	1 (7)	5 (17)
	Foods****							

328 ^a Percentages may not add to 100 due to rounding

* Follow up is not applicable for case control studies

330 ** Follow up for Johansson, I 2018 described the follow up as '8-12 years', we took the median of 10 years

331 *** This includes studies that looked at nutrients e.g calcium, fat & protein by measuring total dairy intake

332 ****Individual foods included milk, cheese & yogurt

333 Risk of bias in included studies

Every study was classified as having an overall high risk of bias, with 10 assessed as having a serious risk of bias and 33 as having a critical risk of bias (Figure 2). Most studies were assessed as having a critical risk of bias rating for the domain 'Bias due to confounding'. An example of one of the serval confounders we identified that studies needed to control forwas fruit and vegetable intake. If these confounders were not controlled for appropriately when measuring the effect of dairy intake on a CVD outcome, the study was classified as having a risk of bias for the confounding domain.

Studies without industry ties or without an author with a COI were more likely to have a
serious or critical risk of bias rating for 'Bias in classification of exposures'. For example, if a
study did not use a validated food frequency questionnaire to measure the dietary intake of
dairy, the study was classified as having a risk of bias for the domain of classification of
exposures. For all other domains, the risk of bias classifications were similarly distributed
across studies with industry ties, industry sponsorship or COI vs no industry ties, industry
sponsorship or COI, respectively (see Supplementary file 6).

350 Favourable results - Statistical significance: Industry ties vs no industry ties; industry 351 sponsorship vs no sponsorship; COI v no COI

There was no clear evidence of an association between the reporting of favourable results and studies with industry ties (1/14) compared to those with no industry ties (8/29), RR= 0.26 (95% CI 0.04, 1.87; n=43 studies) (Supplementary file 7). When comparing studies with industry sponsorship (1/8) with those with no industry sponsorship (8/35), there was no clear evidence of an association, RR = 0.55 (95% CI 0.08, 3.77; n=43 studies). There was again no clear evidence of an association between the reporting of favourable results and studies with an author with a COI (0/10) than those with no COI (9/33), RR= 0.16 (95% CI 0.01, 2.57); n=43 studies).

51 360

361 Effect Size, Cardiovascular Disease: Industry ties v no industry ties; industry 362 sponsorship vs no industry sponsorship; COI v no COI

For studies that quantified the association between dairy consumption and CVD outcomes using a RR, we found no important difference in the magnitude of the effect in studies with industry ties (RR = 0.89; n=3 studies) compared with those studies with no industry ties, (RR Page 15 of 87

BMJ Open

1		
2 3	366	= 0.99; n=7 studies) (ratio of RRs 0.90 (95% CI 0.74, 1.09)); P=0.27 (Supplementary file 8).
4 5 6 7 8 9	367	For studies that had quantified the association using HRs, we similarly did not find an
	368	important difference in the magnitude of HRs between studies with industry ties, (HR=0.96;
	369	n=7 studies) and those studies with no industry ties, (HR=0.95; n=14 studies) (ratio of HRs
9 10	370	1.01 (95% CI 0.90, 1.13)); P=0.86.
11 12 13 14 15 16 17 18 19 20	371	
	372	In our analysis comparing studies with industry sponsorship, (RR 0.83; n=2 studies) and
	373	those with no industry sponsorship, (RR 0.97; n=8 studies) we again did not find an
	374	important difference in the magnitude of RRs (ratio of RRs 0.86 (95% CI 0.44, 1.66));
	375	P=0.65 (Supplementary file 8). However, when we compared industry sponsored studies,
20	376	(HR =0.78; n=3 studies) and non-industry sponsored studies, (HR=0.97; n=18 studies) that
21 22 23	377	measured the association using HRs, we found a statistically significant difference in the
24	378	magnitude of the HRs (ratio of HRs 0.80 (95%CI 0.66, 0.97)); P=0.03 (Figure 3).
25 26	379	
27 28	380	In our analysis comparing studies with an author with a COI (RR 0.89; n=2 studies) and those
29	381	with no COI, (RR 0.99; n= 8 studies) we found no important difference in the magnitude of
30 31	382	RRs (ratio of RRs 0.90 (95% CI 0.76-1.07)); P=0.22 (Supplementary file 8). When we
32 33	383	compared studies with a COI, (HR =1.00; n= 5 studies) and studies with no COI, (HR=0.93;
34 35	384	n=16 studies) that measured the association using HRs, we again found no difference in the
36 37	385	magnitude of the HRs (ratio of HRs 1.08 (95% CI 0.99, 1.17)); P=0.12.
38	386	
39 40	387	Effect Size, Elevated Blood Pressure / Hypertension: Industry ties v no industry ties,
41 42	388	and industry sponsorship vs no sponsorship
43	389	We found no important difference in the magnitude of the HRs for elevated blood pressure /
44 45	390	hypertension in studies with industry ties, (HR = 0.89 ; n =2) and those studies with no
46 47	391	industry ties, (HR = 0.78; n= 5) (ratio of HRs 1.14 (95% CI 0.88, 1.49); P=0.32
48 49	392	(Supplementary file 8).
50	393	
51 52	394	All of these studies with industry ties also had industry sponsorship, so the ratio of HRs was
53 54	395	the same.
55 56	396	
57	397	Favourable conclusions: Industry ties vs no industry ties; industry sponsorship vs no
58 59	398	sponsorship; COI v no COI
60		

BMJ Open

There was no clear evidence of an association between the reporting of favourable conclusions and studies with industry ties (4/14) compared to those with no industry ties (11/29), RR= 0.75 (95% CI 0.29, 1.95; n=43) (Supplementary file 7). When we compared studies only by industry sponsorship, there was no clear evidence of an association between industry sponsored studies (3/8), compared to studies with no sponsorship (12/35), RR = 1.09 (95% CI 0.40, 2.99; n=43). There was again no clear evidence of an association between the reporting of favourable conclusions and studies with an author with a COI (2/10) than those without a COI (13/33), RR= 0.51 (95% CI 0.14, 1.88; n=43 studies). **Risk of Bias Assessment by Industry Ties** As every study had an overall high (serious or critical) risk of bias rating, there was no difference in the proportion of studies at a high risk of bias between those with industry ties, industry sponsorship or COI and those without industry ties, sponsorship or COI. Concordance between study results and conclusions Six (of 43) studies, all with unfavorable results, overemphasized the benefits of the dairy exposure in their conclusions and thus were coded as 'favourable' conclusions. There was no clear evidence of an association between discordant results and conclusions and studies with industry ties (3/14) than those with no industry ties (3/29), RR = 2.07 (95% CI 0.48, 8.99; n=43) (Supplementary file 7). There was no clear evidence of an association when comparing studies with industry sponsorship (2/8) to those with no industry sponsorship (4/35), RR = 2.19 (95% CI 0.48-9.94). There was again no clear evidence of an association between studies with an author with a COI (2/10) than those with no COI (4/33), RR = 1.65 (95% CI 0.35, 7.72; n=43). DISCUSSION There was no clear evidence of an association between studies with food industry ties and the reporting of favourable results and conclusions of observational studies measuring the associations of dairy foods with cardiovascular disease outcomes. The 'mixed' group of funders we identified in the industry sponsored studies may influence these results, as the

funding effect may be diluted by this heterogeneous group of sponsors. Unlike in drug

Page 17 of 87

BMJ Open

studies, ¹² the funders in the studies included in this review were extremely diverse, with Big Food and trade association jointly sponsoring several studies. Thus, dairy foods are not their sole interest.

The meta-analysis of hazard ratios of CVD outcomes found that studies with industry sponsorship showed a greater benefit from dairy than studies without industry sponsorship, and this difference was statistically significant. The meta-analysis of risk ratios of CVD outcomes found a similar estimate; however, this was not statistically significant. The likely reason for this was that the meta-analysis of RRs had fewer studies, and so the ratio of RRs could not be as precisely estimated. We found no evidence of a clinically important difference in the magnitude of effect between studies with industry ties or authors with a COI compared to those with no industry ties or no COI for other outcomes.

For every study, the overall risk of bias was classified as high (meaning either serious or critical). Therefore, differences in the risk of bias across studies with and without industry ties would not seem to provide an explanation for our findings. However, the version of the ROBINS-E tool that we used may not have been able to adequately discriminate across the studies, as perhaps is indicated by the uniformity in risk of bias classification.²⁶ Therefore, we cannot rule out the possibility that differences in bias across studies with and without industry ties may partly explain our findings.

Strengths and limitations of this review

Our review was prospectively registered in Prospero.¹⁹ We followed explicit inclusion and exclusion criteria, conducted a comprehensive search across multiple databases and hand searched reference lists for the included studies.

For those studies missing a funding or author COI disclosure, we did not contact the authors and we therefore may be underestimating the number of studies with industry ties. The tool that we used to assess the risk of bias is still under development, however it is unlikely any future changes to the tool will affect the risk of bias ratings.²² We did not analyse studies of low and full fat dairy or other types of dairy products separately. Industry ties may have different effects on studies of low or full fat dairy foods or other foods and drinks. A final limitation of our study is that we relied on definitions of exposures and outcomes that were

used in the original studies included in our analyses. Using finer categorizations of exposures and outcomes would not provide a sufficient sample size to do our analyses. However, future studies, using additional data and finer categorizations, may have different results.

Agreements and disagreements with other studies or reviews

The observed greater benefit of dairy on CVD outcomes in industry sponsored studies compared to non-industry sponsored studies corroborates previous research that has demonstrated studies sponsored by the food industry reported smaller harmful effect sizes for soft drink consumption, compared with non-industry sponsored studies.¹⁷ It is not consistent, however, with a recent meta-analysis funded by the Israel Dairy Board that found non statistically significant differences in the estimated associations between industry and non-industry funded studies.¹⁸ The differences in the results of our current review and this previous study can be attributed to a number of important factors in how the studies were conducted, including how the exposures were classified, the outcomes selected for the meta-analyses and the analysis method used. For the exposures, our review included yogurt and cheese, as well as 'total dairy' and milk, whereas the Dairy Board study included only 'total dairy' and milk as exposures. We included all outcomes related to CVD, and the Dairy Board study included only CVD and stroke, as well as Type 2 diabetes. For the analysis method, we fitted separate meta-analyses for studies that had measured the association using HRs and those that had used either RRs or ORs, while the Dairy Board study only measured the associations using RRs.

> The lack of difference in the risks of bias between studies with industry ties and those with no industry ties, is consistent with a previous review that examined the association of industry ties with outcomes of studies examining the effect of wholegrain foods on CVD and mortality that used the same tool to assess risk of bias.¹⁶ These findings have also been shown in pharmaceutical and tobacco research that have demonstrated industry sponsored studies are of equal or better internal validity than studies with no sponsorship.^{12, 13, 15, 27, 28}

Implications for clinicians, policy makers and future research

As dietary guidelines depend on an evidence base that should be as free as possible of bias, the difference in the magnitude of effects between industry sponsored studies compared to non-industry sponsored studies is concerning. Therefore, the dairy intake recommendations

Page 19 of 87

BMJ Open

made in dietary guidelines should account for the potential influence of industry sponsorship on evidence of health effects. Nutrition studies included in systematic reviews used in the development of dietary guidelines should be assessed using empirical methods to identify factors associated with study results. Current risk of bias tools should therefore be amended or supplemented to include industry sponsorship and author COI as a separate risk of bias domain. The University of California, San Francisco's Navigation Guide assesses both author conflicts of interest and funding sources as a risk of bias in human and animal studies. ²⁹ As the study designs used in nutrition are the same as those used to evaluate the harms of an exposure in environmental health, dietary guideline committees could consider adopting this tool to evaluate the risk of bias of the studies included in the systematic reviews used to develop dietary guidelines.

Industry sponsors may bias research via different mechanisms, including the design and conduct of a study, the selective reporting of results, how they code events, analyse data, by spinning conclusions,¹¹ as well as framing how the questions are asked.^{30–32} It has been suggested that the dairy industry may preferentially fund research on topics which will provide them with more favourable outcomes.³³ The influence of the food industry on the research agenda has been demonstrated in an examination of research topics covered by samples of randomised controlled trials included in systematic reviews of nutrition studies and obesity.³⁴ It was shown that most food industry studies focused on the manipulations of specific nutrients, and not on dietary behaviours, therefore limiting the public health relevance of rigorous evidence available for use in both systematic reviews and dietary guidelines.³⁴ The topics examined in cohort studies on the relationship of nutrition and obesity, which tend to focus on more complex exposures than trials, did not demonstrate a similar influence of funding source. However, the disclosure of food industry sponsorship was low, making a comparison difficult.³⁵

49 521

This present study has also demonstrated that there is significant funding for nutrition research that comes from non-industry sources, including academia and government. In this study, only eight studies had food industry sponsorship, while 34 had a non-food industry sponsorship. A similar rate was seen in a study that assessed the association of industry ties with outcomes of studies examining the effect of wholegrain foods on cardiovascular disease and mortality, with only five industry sponsored studies and 17 non-industry sponsored

studies.¹⁶ To eliminate this risk of bias from nutrition research, investigators should use only
non-industry sources to fund their research.

10 532 **Conclusion**

12 533 There was no clear evidence of an association between studies with food industry ties and the

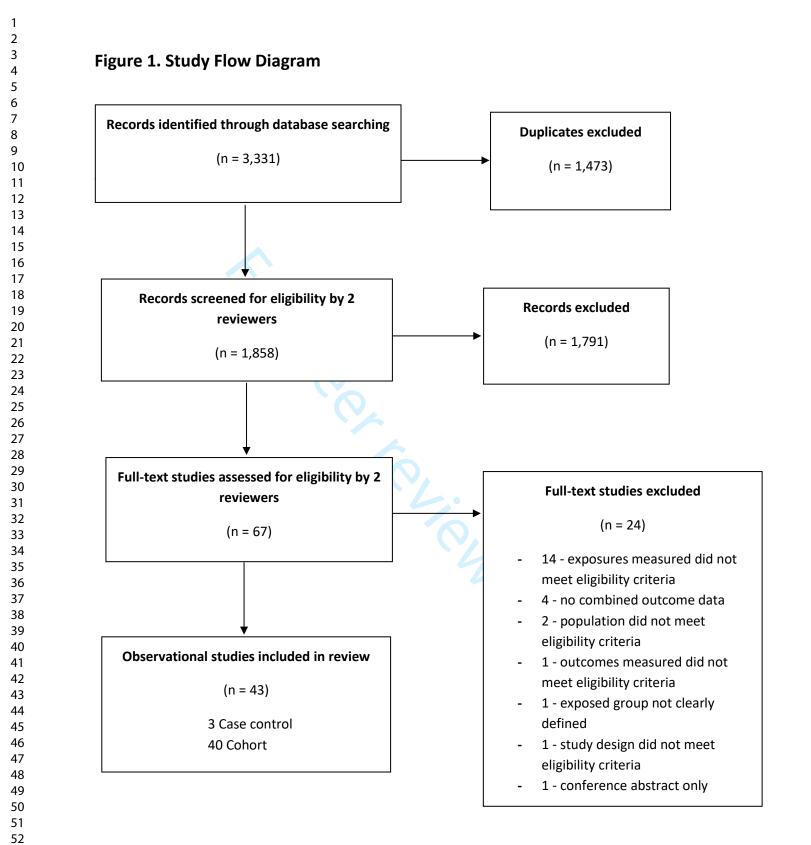
reporting of favourable results and conclusions compared with studies without industry ties.

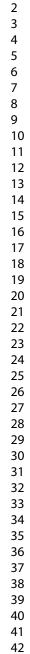
535 However, the statistically significant difference in the magnitude of effects identified in

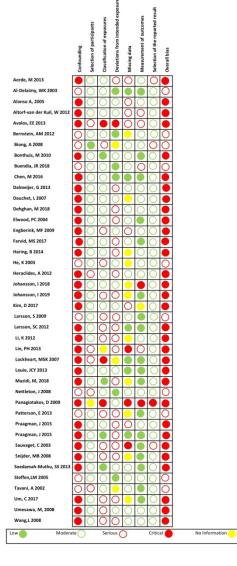
industry sponsored studies compared to non-industry sponsored studies is important in

537 quantifying industry influence on studies included in dietary guidelines.

 rocet teriex only


BMJ Open


2		
3 4 5 6 7 8 9 10 11 12	538	Acknowledgements: We thank Agnes Lau, University of California, San Francisco, for her
	539	assistance with data collection.
	540	
	541	Contributors: NC, AF and LB designed and wrote the review protocol. NC wrote the search
	542	strategy and undertook the literature search. NC, AF and SMc, conducted the title and
12 13	543	abstract screening and full article screening for final study inclusion. NC, AF, JD, AL and
14 15 16 17 18 19 20 21	544	SMc conducted data collection and cleaning, LB supervised. NC and JMc undertook all data
	545	analysis. LB advised on methods, statistical analyses, and interpretation of findings. All
	546	authors contributed to the final manuscript. NC and LB are guarantors.
	547	
22 23	548	Funding: This work was supported by Australian Health and Medical Research Council
24	549	Project Grant APP 1139997. Nicholas Chartres is a recipient of the James Millner PhD
25 26 27 28 29 30 31 32 33 34 25	550	Scholarship in Pharmacy from the University of Sydney.
	551	
	552	Competing interests: None declared.
	553	
35 36	554	Data sharing statement: Available from The University of Sydney data repository. DOI to
37 38 39 40 41	555	be determined.
	556	
42 43	557	Patient consent for publication: Not required.
44 45		
46 47		
47 48		
49 50		
50 51		
52		
53		
54 55		
56		
57		
58		
59 60		


1		
2		
3	558	References
4 5	559	1. Qin LQ, Xu JY, Han SF, et al. Dairy consumption and risk of cardiovascular disease: an
6	560	updated meta-analysis of prospective cohort studies. Asia Pac J Clin Nutr. 2015;24(1):90-100.
7	561	2. Alexander DD, Bylsma LC, Vargas AJ, et al. Dairy consumption and CVD: a systematic review
8	562	and meta-analysis. Br J Nutr. 2016;115(4):737-50.
9	563	3. Gholami F, Khoramdad M, Esmailnasab N, et al. The effect of dairy consumption on the
10	564	prevention of cardiovascular diseases: A meta-analysis of prospective studies. J Cardiovasc Thorac
11	565	Res. 2017;9(1):1-11.
12	566	4. Drouin-Chartier JP, Brassard D, Tessier-Grenier M, et al. Systematic Review of the
13	567	Association between Dairy Product Consumption and Risk of Cardiovascular-Related Clinical
14 15	568	Outcomes. <i>Adv Nutr</i> . 2016;7(6):1026-40.
16	569	5. Lee M, Lee H, Kim J. Dairy food consumption is associated with a lower risk of the metabolic
17	570	syndrome and its components: a systematic review and meta-analysis. Br J Nutr. 2018;120(4):373-
18	571	84.
19	572	6. National Health and Medical Research Council: Department of Health and Ageing. Australian
20	573	Dietary Guidelines. Canberra, Commonwealth of Australia: NHMRC; 2013.
21	574	7. Public Health England. The Eatwell Guide. [Internet]. 2016. Available from:
22	575	https://www.gov.uk/government/publications/the-eatwell-guide. Acesssed 18 March, 2016.
23	576	8. Lexchin J. Those who have the gold make the evidence: how the pharmaceutical industry
24 25	577	biases the outcomes of clinical trials of medications. <i>Sci Eng Ethics</i> .18(2):247-61.
26	578	9. Sismondo S. How pharmaceutical industry funding affects trial outcomes: causal structures
27	579	and responses. Social science & medicine (1982). 2008;66(9):1909-14.
28	580	10. Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled
29	581	trials with statistically nonsignificant results for primary outcomes. JAMA. 2010;303(20):2058-64.
30	582	11. Odierna DH, Forsyth SR, White J, et al. The cycle of bias in health research: a framework and
31	583	toolbox for critical appraisal training. Account Res. 2013;20(2):127-41.
32	584	12. Lundh A, Lexchin J, Mintzes B, et al. Industry sponsorship and research outcome. <i>Cochrane</i>
33 34	585	Database Syst Rev. 2017;2:Mr000033.
35	586	13. Barnes DE, Bero LA. Industry-funded research and conflict of interest: an analysis of research
36	587	sponsored by the tobacco industry through the Center for Indoor Air Research. J Health Polit Policy
37	588	Law. 1996;21(3):515-42.
38	589	14. Yank V, Rennie D, Bero LA. Financial ties and concordance between results and conclusions
39	590	in meta-analyses: retrospective cohort study. BMJ.335(7631):1202-5.
40	591	15. Chartres N, Fabbri A, Bero LA. Association of industry sponsorship with outcomes of
41	592	nutrition studies: A systematic review and meta-analysis. JAMA Intern Med. 2016;176(12):1769-77.
42 43	593	16. Chartres N, Fabbri A, McDonald S, et al. Association of industry ties with outcomes of studies
43	594	examining the effect of wholegrain foods on cardiovascular disease and mortality: systematic review
45	595	and meta-analysis. BMJ Open. 2019;9(5):e022912.
46	596	17. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and
47	597	health: a systematic review and meta-analysis. Am J Public Health. 2007;97(4):667-75.
48	598	18. Mishali M, Kisner M, Avrech T. Funding sources and outcomes of dairy consumption
49	599	research – a meta-analysis of cohort studies: The case of type-2 diabetes and cardiovascular
50	600	diseases. Int Dairy J. 2019.
51 52	601	19. National Institute for Health Research. International Prospective Register for Sytematic
52	602	Reviews [Internet]. 2015 [Available from: http://www.crd.york.ac.uk/PROSPERO/ . Acesssed 11
54	603	March, 2016.
55	604	20. Dietitians Association of Australia. A review of the evidence to address targeted questions to
56	605	inform the revision of the Australian dietary guidelines 2009: Process Manual. 2011.
57	606	21. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-
58	607	randomised studies of interventions. BMJ. 2016;355.
59 60		
60		

1		
2		
3	608	22. University of Bristol. The ROBINS-E tool (Risk Of Bias In Non-randomized Studies - of
4 5	609	Exposures) 2019 [Available from: https://www.bristol.ac.uk/population-health-
6	610	<u>sciences/centres/cresyda/barr/riskofbias/robins-e/</u> .
7	611	23. Harris PA, Taylor R, Thielke R, et al. Research Electronic Data Capture (REDCap) - A
8	612	metadata-driven methodology and workflow process for providing translational research informatics
9	613	support. J Biomed Inform X. 2009;42(2):377-81.
10	614	24. Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary time-to-
11	615	event data into meta-analysis. <i>Trials</i> . 2007;8:16.
12	616	25. Review Manager (RevMan) [Computer program]. Version 5.3. Copenhagen: The Nordic
13	617	Cochrane Centre, The Cochrane Collaboration, 2014.
14 15	618	26. Bero L, Chartres N, Diong J, et al. The risk of bias in observational studies of exposures
15 16	619	(ROBINS-E) tool: concerns arising from application to observational studies of exposures. Syst Rev.
17	620	2018;7(1):242.
18	621	27. Mandrioli D, Kearns CE, Bero LA. Relationship between Research Outcomes and Risk of Bias,
19	622	Study Sponsorship, and Author Financial Conflicts of Interest in Reviews of the Effects of Artificially
20	623	Sweetened Beverages on Weight Outcomes: A Systematic Review of Reviews. <i>PloS one</i> .
21	624	2016;11(9):e0162198.
22	625	28. Cho MK, Bero LA. The quality of drug studies published in symposium proceedings. Ann
23	626	Intern Med. 1996;124(5):485-9.
24	627	29. Woodruff TJ, Sutton P. The Navigation Guide systematic review methodology: a rigorous and
25 26	628	transparent method for translating environmental health science into better health outcomes.
26 27	629	Environ Health Perspect . 2014;122(10):1007-14.
28	630	30. Fabbri A, Lai A, Grundy Q, et al. The Influence of Industry Sponsorship on the Research
29	631	Agenda: A Scoping Review. Am J Public Health. 2018;108(11):e9-e16.
30	632	31. Psaty BM, Prentice RL. Minimizing bias in randomized trials: the importance of blinding.
31	633	JAMA. 2010;304(7):793-4.
32	634	32. Psaty BM, Kronmal RA. Reporting mortality findings in trials of rofecoxib for Alzheimer
33	635	disease or cognitive impairment: a case study based on documents from rofecoxib litigation. JAMA.
34	636	2008;299(15):1813-7.
35	637	33. Wilde P, Morgan E, Roberts J, et al. Relationship between funding sources and outcomes of
36 37	638	obesity-related research. <i>Physiol & Behav</i> . 2012;107(1):172-5.
38	639	34. Fabbri A, Chartres N, Bero LA. Study sponsorship and the nutrition research agenda: analysis
39	640	of cohort studies examining the association between nutrition and obesity. <i>Public Health Nutr</i> .
40	641	2017;20(17):3193-9.
41	642	35. Fabbri A, Chartres N, Bero LA. Study sponsorship and the nutrition research agenda: analysis
42	643	of cohort studies examining the association between nutrition and obesity. <i>Public Health Nutr</i> .
43	644	2017;20(17):3193-9.
44	044	2017,20(17).5193-9.
45	645	
46	646	
47 48	647	
49		
50	648	
51	040	
52	C 4 0	
53	649	
54		
55	650	
56		
57 58	651	
58 59		
60	652	

1 2		
3 4	653	Figures
5 6	654	Figure 1. Study Flow Diagram
7 8 9	655	Figure 2. Risk of Bias in Included Studies
10 11	656	Figure 3. Effect Size, Cardiovascular Disease: Industry sponsorship vs no industry
12 13	657	sponsorship, Hazard Ratio
14 15 16	658	
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 12 33 34 35 36 37 8 9 40 41 22 34 25 26 27 28 9 30 12 33 34 35 36 37 8 9 40 41 22 33 45 26 27 8 9 30 122 33 45 26 27 8 9 30 122 33 45 26 27 8 9 30 122 33 45 26 27 8 9 30 122 33 45 26 27 8 9 30 123 34 25 26 27 8 9 30 123 34 25 26 27 8 9 30 123 34 25 26 27 8 9 30 123 34 25 26 27 8 9 30 123 34 25 26 27 8 9 30 123 34 25 26 27 8 9 30 123 34 25 26 27 8 9 30 123 34 25 26 27 8 9 30 123 34 25 26 27 28 9 30 123 34 25 26 27 28 9 30 123 34 25 26 27 28 9 30 123 34 25 26 27 28 29 30 122 33 45 26 27 8 9 0 122 34 25 26 27 8 9 0 123 34 25 26 27 8 9 0 123 34 25 26 27 8 9 0 123 34 25 26 27 8 9 0 125 34 25 26 27 8 9 0 125 34 25 25 25 25 25 25 25 25 25 25 25 25 25	659	

122x161mm (300 x 300 DPI)

Figure 3. Effect Size, Cardiovascular Disease, Industry sponsorship vs no Industry sponsorship, Hazard Ratio

7							
8					Hazard Ratio	Hazard Ratio	
9	Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl	
10	Industry Sponsored	0.000					
11	Dehghan, M 2018	-0.2614		2.8%	0.77 [0.59, 1.01]		
12	Louie, JCY 2013 Praagman, J 2015 a	-0.2744 -0.1054		2.5% 1.0%	0.76 [0.57, 1.02] 0.90 [0.56, 1.45]		
13	Subtotal (95% Cl)	-0.1034	0.2433	6.3%	0.78 [0.65, 0.94]	•	
	Heterogeneity: Tau ² = 0.00; C	:hi² = 0.38, df = 2 (P =	0.83); I ^z	= 0%			
14	Test for overall effect: Z = 2.5	Test for overall effect: Z = 2.59 (P = 0.010)					
15	New Industry Company						
16	Non-Industry Sponsore Aerde, M 2013		0.1002	4.7%	1 06 10 07 1 201		
17	Bonthuis, M 2010		0.1002		1.06 [0.87, 1.29] 0.77 [0.32, 1.85]		
18	Chen, M 2016		0.0249		1.00 [0.95, 1.05]	+	
19	Dalmeijer G 2013	-0.0101	0.03	13.9%	0.99 [0.93, 1.05]	+	
20	Elwood, PC 2004		0.5147	0.2%	0.66 [0.24, 1.81]		
21	Farvid, MS 2017		0.0907	5.4%	0.72 [0.60, 0.86]		
	Haring, B 2014 Johansson, I 2019		0.1099	4.1% 9.3%	1.04 [0.84, 1.29] 1.11 [0.99, 1.24]		
22	Li, K 2012		0.2043	1.4%	1.30 [0.87, 1.94]		
23	Lin, PH 2013		0.2205		0.74 [0.48, 1.14]		
24	Mazidi, M, 2018	-0.0101	0.0152	16.3%	0.99 [0.96, 1.02]	•	
25	Panagiotakos, D 2009		0.1375		0.97 [0.74, 1.27]		
26	Patterson, E 2013	-0.2614			0.77 [0.62, 0.95]		
27	Praagman, J 2015 b Sauvaget, C 2003	-0.3147	0.1101	4.1% 3.2%	1.08 [0.87, 1.34] 0.73 [0.57, 0.94]		
28	Soedamah-Muthu, SS 2013		0.129	2.5%	0.91 [0.68, 1.22]		
29	Um, C 2017		0.1148	3.8%	1.03 [0.82, 1.29]		
30	Umesawa, M, 2008	0.0862	0.2022		1.09 [0.73, 1.62]		
	Subtotal (95% CI)			93.7%	0.97 [0.93, 1.02]	•	
31	Heterogeneity: Tau ² = 0.00; C		P = 0.008); If = 50%	b		
32	Test for overall effect: Z = 1.0	9 (F = 0.27)					
33	Total (95% CI)			100.0%	0.96 [0.91, 1.01]	•	
34	Heterogeneity: Tau ² = 0.00; C	hi² = 40.49, df = 20 (f	P = 0.004); I ² = 519			
35	Test for overall effect: Z = 1.6			ur Na Nativia		Favourable to Dairy Unfavourable to Dairy	
36	Test for subgroup differences	s: Chi ^z = 4.93, df = 1 (P = 0.03	, I² = 79.7	%		
37							
38							
39							
40							
41							
42							
43							
44							
45							
46							
47							
48							
49							
50							
51							
52							
53							
54							
55							
56							
57							
58							
59							

PROSPERO International prospective register of systematic reviews

National Institute for Health Research

UNIVERSITY of York Centre for Reviews and Dissemination

Systematic review

Please complete all mandatory fields below (marked with an asterisk *) and as many of the non-mandatory fields as you can then click *Submit* to submit your registration. You don't need to complete everything in one go, this record will appear in your *My PROSPERO* section of the web site and you can continue to edit it until you are ready to submit. Click *Show help* below or click on the icon

to see guidance on completing each section.

This record cannot be edited because it has been rejected

1. * Review title.

Give the working title of the review, for example the one used for obtaining funding. Ideally the title should state succinctly the interventions or exposures being reviewed and the associated health or social problems. Where appropriate, the title should use the PI(E)COS structure to contain information on the Participants, Intervention (or Exposure) and Comparison groups, the Outcomes to be measured and Study designs to be included.

The association of food industry ties with findings of studies examining the effect of dairy foods intake with

cardiovascular disease and mortality: Systematic review and Meta-analysis: protocol registration:

2. Original language title.

For reviews in languages other than English, this field should be used to enter the title in the language of the review. This will be displayed together with the English language title.

3. * Anticipated or actual start date.

Give the date when the systematic review commenced, or is expected to commence.

01/09/2016

4. * Anticipated completion date.

Give the date by which the review is expected to be completed.

01/06/2019

5. * Stage of review at time of this submission.

Indicate the stage of progress of the review by ticking the relevant Started and Completed boxes. Additional information may be added in the free text box provided.

Please note: Reviews that have progressed beyond the point of completing data extraction at the time of initial registration are not eligible for inclusion in PROSPERO. Should evidence of incorrect status and/or completion date being supplied at the time of submission come to light, the content of the PROSPERO record will be removed leaving only the title and named contact details and a statement that inaccuracies in the stage of the review date had been identified.

This field should be updated when any amendments are made to a published record and on completion and publication of the review. If this field was pre-populated from the initial screening questions then you are not able to edit it until the record is published.

The review has not yet started: No

	bith open			
PROSPERO International prospective registe	PROSPERO International prospective register of systematic reviews			
Review stage		Started	Completed	
Preliminary searches		Yes	No	
Piloting of the study selection process	3	Yes	No	
Formal screening of search results ag	ainst eligibility criteria	Yes	No	
Data extraction		Yes	No	

Risk of bias (quality) assessment	Yes	No
Data analysis	No	No

Provide any other relevant information about the stage of the review here (e.g. Funded proposal, protocol not yet finalised).

6. * Named contact.

The named contact acts as the guarantor for the accuracy of the information presented in the register record.

Nicholas Chartres

Email salutation (e.g. "Dr Smith" or "Joanne") for correspondence:

Mr Chartres

7. * Named contact email.

Give the electronic mail address of the named contact.

ngar0960@uni.sydney.edu.au

8. Named contact address

Give the full postal address for the named contact.

The University of Sydney, D17, the Hub, 6th Floor, Charles Perkins Centre the University of Sydney | Nsw |

9. Named contact phone number.

Give the telephone number for the named contact, including international dialling code.

02 8627 4328

10. * Organisational affiliation of the review.

Full title of the organisational affiliations for this review and website address if available. This field may be completed as 'None' if the review is not affiliated to any organisation.

University of Sydney

Organisation web address:

11. * Review team members and their organisational affiliations.

PROSPERO International prospective register of systematic reviews

National Institute for Health Research

Give the personal details and the organisational affiliations of each member of the review team. Affiliation refers to groups or organisations to which review team members belong. **NOTE: email and country are now mandatory fields for each person.**

Mr Nicholas Chartres. University of Sydney

Dr Alice Fabbri. The University of Sydney

Agnes Lau. University of California

- Dr Joanna Diong. The University of Sydney
- Assistant/Associate Professor Joanne Mckenzie. Monash University

Professor Lisa Bero. The University of Sydney

12. * Funding sources/sponsors.

Give details of the individuals, organizations, groups or other legal entities who take responsibility for initiating, managing, sponsoring and/or financing the review. Include any unique identification numbers assigned to the review by the individuals or bodies listed.

Nicholas Chartres is a scholarship recipient (James Milner PhD scholarship in Pharmacy) from the University

of Sydney.

Grant number(s)

13. * Conflicts of interest.

List any conditions that could lead to actual or perceived undue influence on judgements concerning the main topic investigated in the review.

None

14. Collaborators.

Give the name and affiliation of any individuals or organisations who are working on the review but who are not listed as review team members. **NOTE: email and country are now mandatory fields for each person.**

15. * Review question.

State the question(s) to be addressed by the review, clearly and precisely. Review questions may be specific or broad. It may be appropriate to break very broad questions down into a series of related more specific questions. Questions may be framed or refined using PI(E)COS where relevant.

The objective of this study is to determine if the presence of food industry sponsorship in primary nutrition

studies examining the association of dairy foods with cardiovascular outcomes is associated with effect

sizes, statistical significance of results and/ or conclusions that are favorable to the sponsor. We will also

determine whether primary nutrition studies assessing the association of dairy foods with cardiovascular

outcomes with industry sponsorship differ in their risk of bias compared with studies with no or other sources

of sponsorship.

16. * Searches.

State the sources that will be searched. Give the search dates, and any restrictions (e.g. language or publication period). Do NOT enter the full search strategy (it may be provided as a link or attachment.)

We will search the following databases from 2000-March 2019: Ovid MEDLINE; CINAHL; PubMed;

Cochrane Library; and ScienceDirect. No language restrictions will be applied

PROSPERO

International prospective register of systematic reviews

17. URL to search strategy.

Give a link to a published pdf/word document detailing either the search strategy or an example of a search strategy for a specific database if available (including the keywords that will be used in the search strategies), or upload your search strategy.Do NOT provide links to your search results.

https://www.crd.york.ac.uk/PROSPEROFILES/129659_STRATEGY_20190322.pdf

Alternatively, upload your search strategy to CRD in pdf format. Please note that by doing so you are consenting to the file being made publicly accessible.

Do not make this file publicly available until the review is complete

18. * Condition or domain being studied.

Give a short description of the disease, condition or healthcare domain being studied. This could include health and wellbeing outcomes.

To determine whether industry sponsorship and/or study methods are associated with the results and/or

conclusions of primary nutrition studies assessing the association of dairy foods and cardiovascular

outcomes.

19. * Participants/population.

Give summary criteria for the participants or populations being studied by the review. The preferred format includes details of both inclusion and exclusion criteria.

We will include primary research studies of any design that quantitatively examine the association of dairy

foods with cardiovascular outcomes in healthy adults.

20. * Intervention(s), exposure(s).

Give full and clear descriptions or definitions of the nature of the interventions or the exposures to be reviewed.

- •The study quantitatively measures the effects of dairy consumption in humans.
- •The study evaluates the effectiveness, efficacy or harms of dairy consumption.
- The study compares dairy food to control OR dairy food to other foods OR different levels of dairy

consumption

• The study evaluates cow, goat or sheep milk, yogurt, cheese or custard. We will include and use the

studies definition of dairy it is broader than milk, yogurt, cheese or custard.

- The study evaluates skim, low or full fat dairy products
- The study evaluates the effect of nutrients, e.g calcium and vitamin D when consumed within a dairy

product

21. * Comparator(s)/control.

Where relevant, give details of the alternatives against which the main subject/topic of the review will be compared (e.g. another intervention or a non-exposed control group). The preferred format includes details of both inclusion and exclusion criteria.

Dairy vs Dairy (different doses) Dairy vs Dairy (different fat content) Dairy vs No dairy Dairy vs Other food

PROSPERO International prospective register of systematic reviews

National Institute for Health Research

Other (mixed intervention)

22. * Types of study to be included.

Give details of the types of study (study designs) eligible for inclusion in the review. If there are no restrictions on the types of study design eligible for inclusion, or certain study types are excluded, this should be stated. The preferred format includes details of both inclusion and exclusion criteria.

RCTs, Controlled Trials, Cohort, Case-control, Pre/Post, Other/Various

23. Context.

Give summary details of the setting and other relevant characteristics which help define the inclusion or exclusion criteria.

• The study baalaatestclonice hoedsomeense (ategd risk caadio/hascaudaradio/easteds ratio (RR/HR/OR) of cardiovascular

mortality, nonfatal heart attack, stroke, etc.) and/or the surrogate outcomes of Blood Pressure (mmHg)

24. * Main outcome(s).

Give the pre-specified main (most important) outcomes of the review, including details of how the outcome is defined and measured and when these measurement are made, if these are part of the review inclusion criteria.

a. Primary Outcome 1 and 2

o Statistical significance of results

o Effect size of outcomes

For each study, the result reported for each primary outcome will be categorized as:

(1) Favourable if the result are statistically significant (p 0.05 or 95% confidence interval [CI] excluding no difference) and in the direction of dairy being more efficacious, less harmful or no more harmful than the comparator;

(2) Unfavourable if the result was statistically significant (e.g. P 0.05 or 95% confidence interval including the possibility of no difference) in the direction of the comparator being more efficacious or less harmful.

We will also extract the effect estimates for primary outcomes.

We will classify the results of the study as favourable if the stated primary outcome is reported as favourable. If the study has multiple primary outcomes we will report the study as favourable if at least one of the outcomes is reported as favourable.

b. Primary Outcome 3 (Conclusions)

The conclusions reported in the published papers will be categorized as:

(1) Favourable if the dairy intervention was preferred to comparator

(2) Unfavourable if the comparator intervention was preferred to the test one OR if the test intervention

PROSPERO

International prospective register of systematic reviews

showed a risk increase.

* Measures of effect

Please specify the effect measure(s) for you main outcome(s) e.g. relative risks, odds ratios, risk difference, and/or 'number needed to treat.

As this is not relevant to our study, we have nothing to include.

25. * Additional outcome(s).

List the pre-specified additional outcomes of the review, with a similar level of detail to that required for main outcomes. Where there are no additional outcomes please state 'None' or 'Not applicable' as appropriate to the review

WSexibuserthe Coomane (Risthood Biasi to abritish calibitation) is d studies (15) to measure the methodological

quality of randomized controlled trials. The tool assesses bias across 7 domains and each of these will be

reported separately. To measure methodological quality in observational studies we will use the ROBINS-I

tool for non-randomized studies (ROBINS-I)(16), which also measures bias across 7 domains.

d. Secondary Outcome 2 (Concordance between results and conclusions)

We will classify concordance between study results and conclusions as 'yes' if the authors' conclusions are

supported by all outcomes. This will include the reporting of all significant and non-significant results.

Otherwise, concordance will be classified as 'no'

* Measures of effect

Please specify the effect measure(s) for you additional outcome(s) e.g. relative risks, odds ratios, risk difference, and/or 'number needed to treat.

As this is not relevant to our study, we have nothing to include.

26. * Data extraction (selection and coding).

Describe how studies will be selected for inclusion. State what data will be extracted or obtained. State how this will be done and recorded.

Selection Process

Two investigators (NC & AF) will independently screen the titles and abstracts of all retrieved records for obvious exclusions. Two investigators (NC & AF) will then assess the remaining papers based on full text, applying the aforementioned inclusion criteria for included studies. Agreement will be reached on any discrepancies by consensus between the two assessors. If agreement cannot be reached, a third assessor (LB) will make a decision. The reasons for the eligible papers being excluded will be described in

National Institute for Health Research

'Characteristics of excluded papers' table.

Data collection process

- a) Title of the paper
- b) Year of publication
- c) Study design
- d) Comparisons:
- e) Sample size of study
- f) Mean age of participants
- g) Intervention or observation period
- h) Definition of intervention and exposure
- i) Risk of Bias
- j) Primary Hypothesis of the study (Verbatim)
- k) Primary outcomes measures
- I) Conclusion
- m) Concordance between conclusions and results
- n)Industry Sponsorship
- o) Role of the Funder: Information about the role of the sponsor as stated in the study
- p) The institutional affiliation of the corresponding author will be obtained from the article and classified into

the following categories

- q) Country of origin (verbatim)
- r) Author COI

27. * Risk of bias (quality) assessment.

Describe the method of assessing risk of bias or quality assessment. State which characteristics of the studies will be assessed and any formal risk of bias tools that will be used.

We will use the Cochrane Risk of Bias tool for randomised studies (15) to measure the methodological

quality of randomized controlled trials. The tool assesses bias across 7 domains and each of these will be

reported separately. To measure methodological quality in observational studies we will use the ROBINS-I

tool for non-randomized studies (ROBINS-I)(16), which also measures bias across 7 domains.

28. * Strategy for data synthesis.

Provide details of the planned synthesis including a rationale for the methods selected. This **must not be generic text** but should be **specific to your review** and describe how the proposed analysis will be applied to your data.

To test our hypothesis that studies with dairy industry sponsorship will be more likely to have favourable

1

PROSPERO

International prospective register of systematic reviews

results, we will compare the risk of dairy industry sponsored studies having a favourable result with the risk of non-dairy industry funded studies having a favorable result. Using Rev Manager we will calculate the pooled risk ratio (RR) and its 95% confidence interval using the Mantel-Haenszel fixed-effect model. However, when substantial heterogeneity is observed, we will use an inverse variance DerSimonian-Laird random-effects model. We will assess heterogeneity using l² and use a random-effects model when statistical heterogeneity is substantial, defined as an l² 50%.

To test our hypothesis that effect estimates will differ between studies with dairy industry sponsorship and those without sponsorship, we will compare the pooled effect estimates from dairy vs. non-dairy sponsored studies. We will pool the effect estimates of homogenous studies measuring dichotomous outcomes, (e.g. RR, HR, OR for all-cause mortality, CVD mortality, cardiovascular events, etc) calculating pooled risk ratios as described above. Blood pressure is a continuous outcome, so we will attempt to pool homogenous studies and measure the mean difference from baseline measures.

To test our hypothesis that studies with dairy industry sponsorship would be more likely to have favourable conclusions we will compare the risk of dairy industry sponsored studies having favourable conclusions with the risk of non-dairy industry funded studies having a favorable conclusion. We will calculate the pooled risk ratio (RR) and its 95% confidence interval using the Mantel-Haenszel fixed-effect model. However, when substantial heterogeneity is observed, we will use an inverse variance DerSimonian-Laird random-effects model. We will assess heterogeneity using l² and use a random-effects model when statistical heterogeneity is substantial, defined as an l² 50%.

29. * Analysis of subgroups or subsets.

State any planned investigation of 'subgroups'. Be clear and specific about which type of study or participant will be included in each group or covariate investigated. State the planned analytic approach. We will conduct an a priori subgroup analysis on low fat and full fat dairy products to determine if studies measuring the effects of low fat products have different results from studies that measure full fat dairy products.

We will conduct an a priori subgroup analysis by the risks of bias of the included studies to determine if studies that have a high risk of bias have different results from studies that have a low risk of bias. We hypothesize that industry sponsored studies will have the same level of risk of bias as non-industry sponsored studies.

30. * Type and method of review.

Select the type of review and the review method from the lists below. Select the health area(s) of interest for your review.

Type of review

Cost effectiveness

NHS

National Institute for

Health Research

PROSPERO International prospective register of systematic reviews

	bective register of systematic reviews
No	
Diagnostic No	
Epidemiologic No	
Individual patient data No	(IPD) meta-analysis
Intervention No	
Meta-analysis Yes	
Methodology No	
Narrative synthesis No	
Network meta-analysis No	s
Pre-clinical No	
Prevention No	
Prognostic No	s Ilysis (PMA) e studies
Prospective meta-ana No	lysis (PMA)
Review of reviews No	
Service delivery No	
Synthesis of qualitative	e studies
Systematic review Yes	
Other No	
Health area of the Alcohol/substance mis No	review
Blood and immune sys	stem
Cancer No	
Cardiovascular Yes	
Care of the elderly	

58 Child health 59 No

No

- 59 ľ 60 (
 - Complementary therapies

1	PROSPERO International prospective register of systematic reviews	Na
2 3	No	
4 5 6	Crime and justice No	
7 8	Dental No	
9 10	Digestive system No	
11 12 13	Ear, nose and throat No	
14 15	Education No	
16 17	Endocrine and metabolic disorders No	
18 19	Eye disorders No	
20 21 22	General interest No	
23 24	Genetics No	
25 26	Health inequalities/health equity	
27 28	Infections and infestations	
29 30 31	International development	
32 33	Mental health and behavioural conditions	
34 35	Musculoskeletal No	
36 37	Musculoskeletal No Neurological No Nursing No Obstetrics and gynaecology No Oral health No Palliative care	
38 39 40	Nursing No	
41 42	Obstetrics and gynaecology No	
43 44	Oral health No	
45 46	Palliative care No	
47 48 49	Perioperative care No	
49 50 51	Physiotherapy No	
52 53	Pregnancy and childbirth No	
54 55	Public health (including social determinants of health) Yes	
56 57	Rehabilitation No	
58 59 60	Respiratory disorders No	

NHS National Institute for Health Research

PROSPERO International prospective register of systematic reviews

Service delivery No Skin disorders No Social care No Surgery No Tropical Medicine No Urological No Wounds, injuries and accidents

No Violence and abuse

No

1

2 3

4

5

6

7

8

9

10

11 12

13

14

15

16

17

18 19

24

25

26 27

31. Language.

Select each language individually to add it to the list below, use the bin icon to remove any added in error. English

There is not an English language summary

32. * Country.

Select the country in which the review is being carried out from the drop down list. For multi-national collaborations select all the countries involved.

Australia

33. Other registration details.

Give the name of any organisation where the systematic review title or protocol is registered (such as with The Campbell Collaboration, or The Joanna Briggs Institute) together with any unique identification number assigned. (N.B. Registration details for Cochrane protocols will be automatically entered). If extracted data will be stored and made available through a repository such as the Systematic Review Data Repository (SRDR), details and a link should be included here. If none, leave blank.

34. Reference and/or URL for published protocol.

Give the citation and link for the published protocol, if there is one

Give the link to the published protocol.

Alternatively, upload your published protocol to CRD in pdf format. Please note that by doing so you are consenting to the file being made publicly accessible.

No I do not make this file publicly available until the review is complete

Please note that the information required in the PROSPERO registration form must be completed in full even if access to a protocol is given.

35. Dissemination plans.

Give brief details of plans for communicating essential messages from the review to the appropriate audiences.

PROSPERO International prospective register of systematic reviews

Do you intend to publish the review on completion?

Yes

36. Keywords.

Give words or phrases that best describe the review. Separate keywords with a semicolon or new line. Keywords will help users find the review in the Register (the words do not appear in the public record but are included in searches). Be as specific and precise as possible. Avoid acronyms and abbreviations unless these are in wide use.

Nutrition, Industry Sponsorship, Conflict of Interest, Bias, Food Industry

37. Details of any existing review of the same topic by the same authors.

Give details of earlier versions of the systematic review if an update of an existing review is being registered, including full bibliographic reference if possible.

CRD42017055841 The association of industry sponsorship with outcomes of studies examining the effect of

intake of wholegrain foods with cardiovascular disease and mortality: protocol

38. * Current review status.

Review status should be updated when the review is completed and when it is published. For newregistrations the review must be Ongoing. Please provide anticipated publication date

Review_Ongoing

39. Any additional information.

Provide any other information the review team feel is relevant to the registration of the review.

40. Details of final report/publication(s).

This field should be left empty until details of the completed review are available.

Give the link to the published review.

Supplementary file 2. Search Strategy OVID Medline: Dairy, CVD, Adults

- 1. Randomized controlled trial*.tw.
- 2. experimental design.tw.
- 3. intervention*.tw.
- 4. (RCT* or rct*).tw.
- 5. random* control* trial*.tw.
- 6. clinical trial*.tw.
- 7. field trial*.tw.
- 8. community trial*.tw.
- w. t*.tw. 9. controlled clinical trial*.tw.
- 10. pragmatic trial*.tw.
- 11. observational stud*.tw.
- 12. cohort stud*.tw.
- 13. prospective cohort*.tw.
- 14. retrospective cohort*.tw.
- 15. case control*.tw.
- 16. ecological stud*.tw.
- 17. time series analys?s*.tw.
- 18. before-after stud*.tw.
- 19. pre-post stud*.tw.
- 20. follow up stud*.tw.
- 21. comparative stud*.tw.
- 22. evaluation stud*.tw.
- 23. dairy.mp.
- 24. dairy intake*.mp.

25. dairy consumption.mp.

- 26. dairy food*.mp.
- 27. Dairy Products/ or dairy product*.mp.
- 28. dairy serv*.mp.
- 29. dairy type*.mp.
- 30. dairy source*.mp.

31. (calcium adj15 food sourc*).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]

32. (vitamin D adj15 food sourc*).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]

33. (milk and (cow or goat or sheep)).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]

2.02

34. yogurt.mp. or Yogurt/

35. cheese.mp. or Cheese/

36. custard.mp.

37. (milk and (skim or full fat or low fat)).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]

38. (yogurt and (skim or full fat or low fat)).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]

39. Milk/

40. 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39

41. cardiovascular disease.mp. or exp Cardiovascular Diseases/

42. coronary*.tw.

2
3
4
5 6
7
8
9
10
11 12
12
14
15
16
17 18
19
20
21
22 23
23 24
25
26
27
28
29 30
31
32
33
34 35
35 36
37
38
39
40 41
41
43
44
45
46 47
47
49
50
51
52 53
55 54
55
56
57
58 59
59 60

43. heart*.tw.

44. cardia*.tw.

45. cardio*.tw.

46. myocard*.tw.

47. isch?em*.tw.

48. angina*.tw.

49. ventric*.tw.

50. tachycardi*.tw.

51. pericard*.tw.

52. endocardi*.tw.

54. arrhythmi*.tw.

55. athero*.tw.

56. arterio*.tw.

59. HDL.tw.

60. LDL.tw.

61. VLDL.tw.

62. lipid*.tw.

63. lipoprotein*.tw.

66. hyperlipid*.tw.

64. triacylglycerol*.tw.

65. exp Hyperlipidemias/

67. hypercholesterol*.tw.

53. atrial fibrillat*.tw.

57. exp Atherosclerosis/

58. exp Arteriosclerosis/

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

v. .lat*.tw.

1	
2 3	68. hypercholester?emia*.tw.
4 5 6	69. hypertriglycerid?emia*.tw.
7	70. exp Cholesterol/
8 9	
10 11	71. cholesterol*.tw.
12	72. exp Stroke/
13 14 15	73. stroke*.tw.
16 17	74. CVA.tw.
18 19	75. cerebrovasc*.tw.
20 21	76. "vascular accident".tw.
22 23	77. TIA.tw.
24 25	78. cerebral vascular.tw.
26 27 28	79. thrombo*.tw.
28 29 30	80. emboli*.tw.
31 32	81. apoplexy.tw.
33 34	82. (brain adj2 accident*).tw.
35 36	83. ((brain* or cerebral or lacunar) adj2 infarct*).tw.
37 38	84. Hypertension/
39 40 41	85. exp Blood Pressure/
41 42 43	86. hypertensi*.tw.
44 45	87. blood pressure*.tw.
46 47	88. systolic blood pressure.tw.
48 49	89. diastolic blood pressure.tw.
50 51	90. peripheral arter* disease*.tw.
52 53	91. (coronar\$ adj5 (bypas\$ or graft\$ or disease\$ or event\$)).tw.
54 55	92. (cerebrovasc\$ or cardiovasc\$ or mortal\$ or angina\$ or stroke or strokes).tw.
56 57	
58 59	

93. (myocardi\$ adj5 (infarct\$ or revascular\$ or ischaemi\$ or ischemi\$)).tw.

94. (morbid\$ adj5 (heart\$ or coronar\$ or ischaem\$ or ischem\$ or myocard\$)).tw.

95. (vascular\$ adj5 (peripheral\$ or disease\$ or complication\$)).tw.

96. (heart\$ adj5 (disease\$ or attack\$ or bypass\$)).tw.

97. 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56 or 57 or 58 or 59 or 60 or 61 or 62 or 63 or 64 or 65 or 66 or 67 or 68 or 69 or 70 or 71 or 72 or 73 or 74 or 75 or 76 or 77 or 78 or 79 or 80 or 81 or 82 or 83 or 84 or 85 or 86 or 87 or 88 or 89 or 90 or 91 or 92 or 93 or 94 or 95 or 96

98. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22

99. 40 and 97 and 98

100. limit 99 to yr="2000 - 2019"

101. limit 100 to humans

101. limit 100 to numans 102. limit 101 to "all adult (19 plus years)"

 BMJ Open

Supplementary File 3. List of confounders

Outcome	Confounders	Confounders (all outcomes)			
1. CVD mortality	Fibre supplement (p)	Age			
	Red Meat (h)	Sex			
	Sodium (Na+) (h)	BMI			
2. CVD events	Fibre supplement (p)	Smoking			
	Magnesium supplement (p)	Alcohol intake			
3. CHD mortality	Fibre supplement (p)	History of co-morbidities			
(incident CVD)	Trans Fat (h)	Parenteral/Fhx MI < 60 yrs			
	Polyunsaturated fat (n-6) (p) PA levels				
	Sodium (+Na) (h)	SES			
4. CHD events (incident	Fibre supplement (p)	Total energy intake			
CHD)	Trans fat (h)	Fruit & Vegetable intake			
	Magnesium supplement (p)				
	Polyunsaturated fat (n-6) (p)	Specialised Confounders			
5. Total MI	Aspirin (p)	Hormone therapy			
	Vitamin E supplement (p)				
6. Fatal MI	Vitamin E supplement (p)				
7. Non-fatal MI	Aspirin (p)	ien onl			
8. Total stroke	Potassium supplement (p)				
	Red Meat (h)				
	Sodium (+Na) (h)				
9. Ischemic stroke	Aspirin (p)				
	Polyunsaturated fat (LC n-3) (p)				
	Red meat (h)				
10. Haemorrhagic stroke	Aspirin (h)				
11. Systolic BP	Magnesium supplement (p)				
	Sodium (-Na) (p)				
	Polyunsaturated fat (supplement) (LC n-3) (p)				
	Potassium supplement (p)				
12. Diastolic BP	Magnesium supplement (p)				
	Sodium (-Na) (p)				
	Polyunsaturated fat (supplement) (LC n-3) (p)				
	Potassium supplement (p)				
		p = protective, h = harm			

a) Not Confounders (inconclusive evidence)

Dutcome	Not a confounder (inconclusive)
L. CVD mortality	Aspirin
	Dietary Saturated Fat
	Folate supplement
	Monounsaturated Fat
	Multivitamin
	Polyunsaturated Fat
	Total Dietary Fat
	Vitamin E supplement
2. CVD events	Folate supplement
	Monounsaturated Fat
	Multivitamin
	Polyunsaturated Fat
	Sodium
	Total Dietary Fat
	Vitamin E supplement
CHD mortality	Dietary Saturated Fat
	Magnesium supplement
 CHD events 	Dietary Saturated Fat
	Sodium
	Red Meat
5. Total MI	Dietary Saturated Fat
	Folate supplement
	Magnesium supplement
	Multivitamin
	Polyunsaturated Fat
	Multivitamin Polyunsaturated Fat Sodium Total Dietary Fat Vitamin E supplement Dietary Saturated Fat Magnesium supplement Dietary Saturated Fat Sodium Red Meat Dietary Saturated Fat Folate supplement Magnesium supplement Magnesium Supplement Magnesium Supplement Multivitamin Polyunsaturated Fat Total Dietary Fat
5. Fatal MI	Folate supplement
	Multivitamin
7. Non-fatal MI	Dietary Saturated Fat
	Folate supplement
	Multivitamin
	Polyunsaturated Fat
	Total Dietary Fat
	Vitamin E supplement

 BMJ Open

8. Total stroke	Aspirin		
	Dietary Saturated Fat		
	Folate supplement		
	Monounsaturated Fat		
	Multivitamin		
	Polyunsaturated Fat		
	Total Dietary Fat		
	Vitamin E supplement		
9. Ischemic stroke	Dietary Saturated Fat		
	Trans Fat		
10. Haemorrhagic stroke	Polyunsaturated Fat		
	Red Meat		
11. Systolic BP	Polyunsaturated Fat (dietary)		
12. Diastolic BP	Polyunsaturated Fat (dietary)		

2	
2	
4	
5	
6	
7	
8	
9	
	0
1	1
1	2
1	
	3 4
	5
1	5 6
1	7
	/ 8
1	o 9
	0
2	1 2
2	2 3
2	3
2	4
	5
2	6
2	7
2	8
2	9
	0
3	1
3	
	3
3	4
	5
3	6
3	7
3	7 8 0
3	9
4	0
4	
4	2
4	3
4	4
4	5
4	6
4	7
4	8
	9
	0
5	
5	
5	
	4
	5
	6
5	
	, 8
	0 9
	9
0	U

Supplementary file 4: List of excluded studies and reasons for exclusion

Author	Title	Reason for Exclusion
Akbaraly, T	Does overall diet in midlife predict future	Dietary patterns only were
2013 ¹	aging phenotypes? A cohort study	assessed, not dairy foods
Anderson, LA	Dietary Patterns and Survival of Older Adults	No relevant outcomes were
2011 ²		measured
Baylin, A 2003 ³	High 18:2 trans-fatty acids in adipose tissue are associated with increased risk of nonfatal acute myocardial infarction in Costa Rican adults	Effects of dairy foods not measured
Beydoun, MA 2018 ⁴	Dairy product consumption and its association with metabolic disturbance in a prospective study of urban adults	Groups exposed to dairy not clearly defined
Biong, AS 2006 ⁵	Intake of milk fat, reflected in adipose tissue fatty acids and risk of myocardial infarction: a case–control study	Effects of dairy foods not measured
Chen, y 2013 ⁶	Prospective investigation of major dietary patterns and risk of cardiovascular mortality in Bangladesh	Dietary patterns only were assessed, not dairy foods
Ding, M 2017 ⁷	Dairy consumption, systolic blood pressure, and risk of hypertension: Mendelian randomization study	Not an observational design study
Eguchi, E 2012 ⁸	Healthy lifestyle behaviours and cardiovascular mortality among Japanese men and women: the Japan collaborative cohort study	Dietary patterns only were assessed, not dairy foods
Geleijnse, JM 2017 ⁹	Dietary Patterns in Relation to Cardiovascular Disease Incidence and Risk Markers in a Middle-Aged British Male Population: Data from the Caerphilly Prospective Study	Dietary patterns only were assessed, not dairy foods
Goldbohm, RA 2011 ¹⁰	Dairy consumption and 10-y total and cardiovascular mortality: a prospective cohort study in the Netherlands	No combined outcome data
Julián- Almárcegui, C 2016 ¹¹	Association of heart rate and blood pressure among European adolescents with usual food consumption: The HELENA study	Participants were adolescents, not adults
Larsson, SC 2018 ¹²	Dietary patterns, food groups, and incidence of aortic valve stenosis: A prospective cohort study	Dietary patterns only were assessed, not dairy foods
Lupton, BS 2003 ¹³	The Finnmark Intervention Study: is it possible to change CVD risk factors by community-based intervention in an Arctic village in crisis?	No combined outcome data
Meyer, J 2011 ¹⁴	Dietary patterns, subclinical inflammation,	Dietary patterns only were
	incident coronary heart disease and mortality	assessed, not dairy foods

	in middle-aged men from the MONICA/KORA Augsburg cohort study	
Michaelsson, K 2013 ¹⁵	Long term calcium intake and rates of all cause and cardiovascular mortality: community based prospective longitudinal cohort study	Dietary calcium only was assessed, not dairy foods
Oomen, CM 2000 ¹⁶	Arginine intake and risk of coronary heart disease mortality in elderly men	Effects of dairy foods not measured
Paillard, F 2015 ¹⁷	Cardiovascular risk and lifestyle habits of consumers of a phytosterol-enriched yogurt in a real-life setting	Yogurt was enriched with phytosterols
Praagman, J 2016 ¹⁸	The association between dietary saturated fatty acids and ischemic heart disease depends on the type and source of fatty acid in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort	Effects of dairy foods not measured
Streppel, MT 2014 ¹⁹	Nutrient-rich foods, cardiovascular diseases and all-cause mortality: the Rotterdam study	Dietary patterns only were assessed, not dairy foods
Umesawa, M 2006 ²⁰	Dietary intake of calcium in relation to mortality from cardiovascular disease: the JACC Study	No combined outcome data
van der Pols, J C 2009 ²¹	Childhood dairy and calcium intake and cardiovascular mortality in adulthood: 65- year follow-up of the Boyd Orr cohort	Participants were children, not adults
Warensjo, E 2009 ²²	Stroke and plasma markers of milk fat intake – a prospective nested case-control study	Effects of dairy foods not measured
Warensjo, E 2009 ²³	Milk Fat Biomarkers and the Risk of a First Ever Acute Myocardial Infarction - A Prospective Nested Case-Control Study. Journal of the American Dietetic Association. 2009;1	Poster presentation only, full study not available
Warensjo, E 2010 ²⁴	Biomarkers of milk fat and the risk of myocardial infarction in men and women: a prospective, matched case-control study	No combined outcome data

1. Akbaraly T, Sabia S, Hagger-Johnson G, et al. Does overall diet in midlife predict future aging phenotypes? A cohort study. *The American journal of medicine*. 2013;126(5):411-419.e413.

- 2. Anderson AL, Harris TB, Tylavsky FA, et al. Dietary Patterns and Survival of Older Adults. *Journal of the American Dietetic Association.* 2011;111(1):84-91.
- 3. Baylin A, Kabagambe EK, Ascherio A, et al. 18:2 trans-fatty acids in adipose tissue are associated with increased risk of nonfatal acute myocardial infarction in costa rican adults. *Journal of Nutrition*. 2003;133(4):1186-1191.
- 4. Beydoun MA, Fanelli-Kuczmarski MT, Beydoun HA, et al. Dairy product consumption and its association with metabolic disturbance in a prospective study of urban adults. *British Journal of Nutrition.* 2018;119(6):706-719.

BMJ Open

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36 37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

60

5. Biong AS, Veierod MB, Ringstad J, et al. Intake of milk fat, reflected in adipose tissue fatty acids and risk of myocardial infarction: a case-control study. European Journal of Clinical Nutrition. 2006;60(2):236-244. 6. Chen Y, McClintock TR, Segers S, et al. Prospective investigation of major dietary patterns and risk of cardiovascular mortality in Bangladesh. International Journal of Cardiology. 2013;167(4):1495-1501. 7. Ding M, Huang T, Bergholdt HK, et al. Dairy consumption, systolic blood pressure, and risk of hypertension: Mendelian randomization study. Bmj. 2017;356;j1000. Eguchi E, Iso H, Tanabe N, et al. Healthy lifestyle behaviours and cardiovascular mortality 8. among Japanese men and women: the Japan collaborative cohort study. European heart journal. 2012:33(4):467-477. 9. Geleijnse JM, Mertens E, Markey O, et al. Dietary Patterns in Relation to Cardiovascular Disease Incidence and Risk Markers in a Middle-Aged British Male Population: Data from the Caerphilly Prospective Study. Nutrients. 2017;9(1):75. 10. Goldbohm RA, Chorus AMJ, Galindo Garre F, et al. Dairy consumption and 10-y total and cardiovascular mortality: a prospective cohort study in the Netherlands. American Journal of *Clinical Nutrition.* 2011;93(3):615-627 613p. Julián-Almárcegui C, Vandevijvere S, Gottrand F, et al. Association of heart rate and blood 11. pressure among European adolescents with usual food consumption: The HELENA study. Nutrition, Metabolism & Cardiovascular Diseases. 2016;26(6):541-548. 12. Larsson SC, Wolk A, Bäck M. Dietary patterns, food groups, and incidence of aortic valve stenosis: A prospective cohort study. International Journal of Cardiology. 2018. 13. Lupton BS, Fonnebo V, Sogaard AJ, et al. The Finnmark Intervention Study: is it possible to change CVD risk factors by community-based intervention in an Arctic village in crisis? Scandinavian Journal of Public Health. 2003;31(3):178-186. 14. Meyer J, Doring A, Herder C, et al. Dietary patterns, subclinical inflammation, incident coronary heart disease and mortality in middle-aged men from the MONICA/KORA Augsburg cohort study. European journal of clinical nutrition. 2011:65(7):800-807. Michaelsson K, Melhus H, Warensjo E, et al. Long term calcium intake and rates of all cause and 15. cardiovascular mortality: community based prospective longitudinal cohort study. Bmj. 2013;346:f228. Oomen CM, van Erk MJ, Feskens EJ, et al. Arginine intake and risk of coronary heart disease 16. mortality in elderly men. Arteriosclerosis, thrombosis, and vascular biology. 2000;20(9):2134-2139. Paillard F, Bruckert E, Naelten G, et al. Cardiovascular risk and lifestyle habits of consumers of a 17. phytosterol-enriched yogurt in a real-life setting. Journal of Human Nutrition & Dietetics. 2015;28(3):226-235 210p. Praagman J, Beulens JW, Alssema M, et al. The association between dietary saturated fatty acids 18. and ischemic heart disease depends on the type and source of fatty acid in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort. American Journal of Clinical Nutrition. 2016;103(2):356-365. Streppel MT, Sluik D, van Yperen JF, et al. Nutrient-rich foods, cardiovascular diseases and all-19. cause mortality: the Rotterdam study. European journal of clinical nutrition. 2014;68(6):741-747. Umesawa M, Iso H, Date C, et al. Dietary intake of calcium in relation to mortality from 20. cardiovascular disease: the JACC Study. Stroke. 2006;37(1):20-26. van der Pols JC, Gunnell D, Williams GM, et al. Childhood dairy and calcium intake and 21. cardiovascular mortality in adulthood: 65-year follow-up of the Boyd Orr cohort. Heart. 2009;95(19):1600-1606. 22. Warensjo E, Smedman A, Stegmayr B, et al. Stroke and plasma markers of milk fat intake--a prospective nested case-control study. Nutrition Journal. 2009;8:21.

1		
2		
3	23.	V
4 5		A
6		A
7	24.	V
8		i
9		(
10		
11		
12 13		
14		
15		
16		
17		
18 10		
19 20		
20		
22		
23		
24		
25 26		
26 27		
28		
29		
30		
31		
32 33		
34		
35		
36		
37		
38		
39 40		
41		
42		
43		
44		
45 46		
40 47		
48		
49		
50		
51		
52 53		
53 54		
55		
56		
57		
58		

60

- 23. Warensjo E, Sjogren P, Cederholm T, et al. Milk Fat Biomarkers and the Risk of a First Ever Acute Myocardial Infarction A Prospective Nested Case-Control Study. *Journal of the American Dietetic Association*. 2009;109(9, Supplement):A51.
 - 24. Warensjö E, Jansson JH, Cederholm T, et al. Biomarkers of milk fat and the risk of myocardial infarction in men and women: a prospective, matched case-control study. *American Journal of Clinical Nutrition*. 2010;92(1):194-202 199p.

to peet eview only

BMJ Open

Study ID	Study	Length of	Number of	Age (mean	Exposure	Comparison	Outcomes	Funding	Disclosed
	Deign	Intervention	Participants	years)	(highest	(lowest	Measured	Source	author conflicts
		/Follow up			tertile/quartile/quintile	tertile/quartile/quintile	(verbatim)		of interest
					or 'yes' to dairy foods)	or 'no' to dairy foods)			of interest
Aerde, M	Cohort	12.4 years	1,956 men	61.6 years	Total Dairy, 271 g/day		Fatal CVD	Non-	Yes ^a
2013(1)			& women		per SD of the mean intake			Industry ¹	
					for Total dairy (all dairy				
					products except butter)				
Al-Delaimy,	Cohort	12 years	39,800 men	40-75 years	Dairy Calcium Q5, 819	Q1, 106 mg/day	Fatal Ischemic	Non	No ^b
WK 2003 ⁽²⁾					mg/day (median) (dairy		Heart Disease	Industry ²	
					calcium intake summed				
					the calcium intake from				
					whole milk, skim or low-				
					fat milk, yogurt, ice				
					cream,				
					cottage cheese, and other				
					cheese was summed)				
Alonso A,	Cohort	27 months	5,880 men	37 years	Dairy Q 5, 798.8 g/day	Q 1, 155.6 g/day	Hypertension	Non-	No ^c
2005(3)			& women		(whole-fat milk, partially			industry ³	
					skim milk, skim milk,				
					condensed milk, whipped				
					cream, yogurt, skim				
					yogurt, milk-				
					shake, cottage cheese or	07/2			
					junket, petit Suisse				
					cheese, spreadable				
					cheese wedges, soft				
					cheese, custard, and ice				
					cream)				

Mean follow up 7·5 years	3,588 men & women	44 years	or 'yes' to dairy foods)	or 'no' to dairy foods)	(verbatim)		conflicts of interes
		++ ycais	Dairy Protein T3, ≥ 27 g/day (dairy protein was calculated as protein from milk, yogurt, coffee creamer, curd, pudding, porridge, custard, whipped cream and cheese)	T1, ≤ 19 g/day	Hypertension	Industry ⁴	Yes ^d
Mean follow up 16.2 years	1,759 men & women	70.6 years men, 70.1 women	Whole Milk, Non-Fat Milk, Yogurt & Cheese, Sometimes/often (included daily, 4–6 times/week, 1–3 times/week and 1–3 times/months)	Rarely/never (included never & 1–11 times/year)	Incident CHD	Non- industry ⁵	No ^e
26 and 22 years of follow-up in women and men, respectively	127,160 (43 150 men 84 010 women)	Men 40 to 75 years, Woman 30 to 55 years	Whole Fat Q 5, Men 2.55 servings/day, Woman 2.81 servings/day (whole milk, ice cream, hard cheese, full fat cheese, cream, sour cream, cream cheese, butter) Low Fat Q5, Men 2.64 servings/day, Women 2.20 servings/day (skim/low-fat milk, 1% and 2% milk, yogurt, cottage and ricotta	Q 1, Men 0.21 servings/day, Woman 0.34 servings/day. Low Fat Q1, Men 0.11 servings/day, Women 0.07 servings/day	Total Stroke	Non- industry ⁶	Yes ^f
	218 men &	62.4 years	sherbet) Dairy Fat, > 34.1 g/day	<14.6 g/day	First Myocardial	Industry ⁷	Yes ^g
		218 men & women	5	cottage and ricotta cheeses, low-fat cheese, sherbet)218 men &62.4 yearsDairy Fat, > 34.1 g/day	cottage and ricotta cheeses, low-fat cheese, sherbet) 218 men & 62.4 years Dairy Fat, > 34.1 g/day <14.6 g/day	218 men & 62.4 years Dairy Fat, > 34.1 g/day <14.6 g/day	cottage and ricotta cottage and ricotta cheeses, low-fat cheese, cheeses, low-fat cheese, sherbet) 218 men & 62.4 years Dairy Fat, > 34.1 g/day <14.6 g/day

1 2 4 5 6 7 8	
9 10 11 12 13 14 15 16	2 3 4 5
17 18 20 21 22 23 24	3) <u>2</u> 3
	5 7 3 9 1 2
33 34 35 36 37 38 39 40	1 5 7 3 9
	2 3 1 5

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interest
Bonthuis, M 2010 ⁽⁸⁾	Cohort	Mean 14.4 years	1,529 men & women	25–78 years	Total Dairy T3, 599 g/day (median) ('low-fat dairy products was computed by adding daily servings (in grams) of skim milk, low-fat milk, low-fat yoghurt, cottage or ricotta cheese, whereas the food group 'high- fat/unmodified dairy' included whole milk, cream, ice cream, yoghurt, full-fat cheese and custard. Total dairy intake was the sum of intake of all these dairy foods)	T1, 174 g/day	Cardiovascular Disease Mortality	Non- Industry ⁸	No ^h
Buendia, JR 2018 ⁽⁹⁾	3 Cohorts	30 years of follow-up in NHS, 20 years in NHS II, 24 years in the HPFS	NHS (N=69298), NHS II (N=84368), HPFS (N=30512)	Mean baseline ages in the 3 cohorts were 44.6, 35.8, and 50.7 years, respectively	Total Dairy Q4, 3 - <6 servings/day (total dairy intake included: milk (skim, low-fat, whole), ice cream, sherbet/ frozen yogurt, cheese (cottage, ricotta, hard, sliced), and yogurt (all types)	Q1, <0.5 servings/day	High Blood Pressure	Industry ⁹	No ⁱ
Chen, M 2016 ⁽¹⁰⁾	3 Cohorts	24 years in the HPFS, 32 years NHS, 20 years in NHS II	222,234 - 43,652 men HPFS, 87,907 women NHS, 90,675 women NHS II	40–75 years HPFS, 30– 55 years NHS, 25– 42 y NHS II	Dairy Fat, Q5	Q1	CVD	Non- Industry ¹⁰	No ^j

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interest
Dalmeijer,G 2013 ⁽¹¹⁾	Cohort	13 years	33,625 men & women	66	Total dairy and its subtypes were evaluated as continuous variables per standard deviation of the mean intake which is 265 g/d for total dairy (total dairy included all dairy food products except for butter and ice cream. Milk and milk products included all kinds of milk, yogurt, coffee creamers, curd, pudding, porridge, custard, and whipping cream)		Incident of Coronary Heart Disease & Incident Stroke	Non- Industry ¹¹	Yes ^k
Dauchet, L 2007 ⁽¹²⁾	Cohort	5.4 years	2,341 men & women	Men 52.7 years, Women 46.9 years	Dairy Q4, 456 g/day (dairy products including milk, cheese, yogurt, and other dairy products)	Q1, 84 g/day	Systolic & Diastolic Blood Pressure	Non- Industry ¹²	No ¹
						Nr.			

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interes
Dehghan, M 2018 ⁽¹³⁾	Cohort	9.1 yrs	136,384 men & women	50·1 years	Dairy Q4, >2 servings/ day (median) (dairy comprised milk, yoghurt, various types of cheese, yoghurt drink, and mixed dishes prepared with dairy. Mixed dishes prepared with dairy were dis- aggregated into their constituents and a proportional weight was assigned to each component. Then each component was included in the related dairy group.	Q1, 0 servings/day	Cardiovascular Mortality or Major Events	Industry ¹³	No ^m
Elwood, PC 2004 ⁽¹⁴⁾	Cohort	20-24 years	2,403 men	45-59 years	Milk Q4, >1 pint per day	Q1, None	Vascular Event	Non- Industry ¹⁴	No disclosure
						0 7 J			

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interes
Engberink, MF 2009 ⁽¹⁵⁾	Cohort	6 years	2,245 men & women	>55 years	Dairy Q4, 691 g/day (i.e. 4.5 servings/day) (median intake) (calculated total dairy intake by summing the intake of individual dairy items, except butter and ice cream. The category "milk and milk products" included all kinds of milk, yogurt, coffee creamer, curd, pudding, porridge, custard, and whipped cream. The category "cheese" included all kinds of cheese products, ie, soft cheese, hard cheese, and cheese spreads)	Q1, 164 g/day (i.e. 1 serving/day) (median intake)	Hypertension	No disclosure	No ⁿ
Farvid, MS 2017 ⁽¹⁶⁾	Cohort	8 years	42,403 men & women	51.6 years	Total Dairy Q5, 2.4 servings/day (median) (total dairy product items listed in the food frequency questionnaire included milk, cheese, yogurt, liquid yogurt (doogh), dried yogurt paste (kashk), and cream)	Q1, 0.4 servings/day (median)	Cardiovascular Disease Mortality	Non- Industry ¹⁵	Noº
Haring, B 2014 ⁽¹⁷⁾	Cohort	22 years (median)	12,066 men & women	45-64 years	Dairy Protein Q5, 2.9 servings/day	Q1, 0.1 median servings/day	Coronary Heart Disease	Non- Industry ¹⁶	No ^p
He, K 2003 ⁽¹⁸⁾	Cohort	14 years	43,732 men	40-75 years	High Fat Dairy Q5, ≥1/day	Q1, <1/week	Ischaemic & Haemorrhagic Stroke	Non- Industry ¹⁷	Noq

1	
2 3	
4	
5 6	
7 8	
9	
10 11	
12	
13 14	
15 16	
12 13 14 15 16 17	
18	
19 20	
20 21 22	
23 24	
25	
26 27	
28 29	
30	
31 32	
33	
34 35	
36 37	
38	
39 40	
41	
42 43	
44 45	
45 46	

Study ID	Study Deign	Length of Intervention	Number of Participants	Age (mean years)	Exposure (highest	Comparison (lowest	Outcomes Measured	Funding Source	Disclosed author
		/Follow up			tertile/quartile/quintile or 'yes' to dairy foods)	tertile/quartile/quintile or 'no' to dairy foods)	(verbatim)		conflicts of interest
Heraclides, A 2012 ⁽¹⁹⁾	Cohort	10 years	1,750 men & women	Men 43 years, Women 53 years	Total Dairy T3, 309.0 g/day (median) (full-fat milk; semi-skimmed milk; skimmed milk; milk-containing beverages (full fat, semi- skimmed and skimmed); full-fat cheese; low-fat cheese; full-fat yoghurt; low-fat yoghurt; fruit- flavoured yoghurt (full fat and low fat); and milk- based puddings)	T1, 224.1 g/day	Incident Hypertension	Non- Industry ¹⁸	Yes ^r
Johansson, I 2018 ⁽²⁰⁾	Cohort	8-12 years	27,682 men & women	29-65 years	Dairy Q 5, 7.1 servings/day (median)	Q1, 1.6 servings/day (median)	Blood Pressure	Non- Industry ¹⁹	No ^s
Johansson, I 2019 ⁽²¹⁾	Cohort	14.2 years	108,065 men & women	calculated mean = 52.5 years *	High Fat & Low Fat Non- Fermented Milk & Cheese Q 4, high dose	Q1, low dose	Myocardial Infarction & Stroke	Non- Industry ²⁰	No ^t
Kim, D 2017 ⁽²²⁾	Cohort	67.4 months	4,335 men & women	40-69 years	Total Dairy Q 5, >7 servings/week	Q 1, <1 servings/week	Blood Pressure	Non- Industry ²¹	No ^u
Larsson,S 2009 ⁽²³⁾	Cohort	13.6 years	26,556 men	50-69 years	Dairy Q5, 1295.6 g/day (median) (including low- fat milk, whole milk, sour milk, yogurt, cheese, cream, ice cream, and butter)	Q1 286.5 g/day	Cerebral Infarction, Intracerebral Haemorrhage, Subarachnoid Hemorrhage	Non- Industry ²²	No disclosure

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interest
Larsson, SC 2012 ⁽²⁴⁾	Cohort	10.2 years	74,961 men & women	45-83 years	Dairy Q5, 9.3 servings/day (median) (dairy foods included low-fat milk (0.5% fat), medium-fat milk (1.5% fat), full-fat milk (3% fat), milk in pancakes, low-fat sour milk/yogurt (0.5% fat), full-fat sour milk/ yogurt (3% fat), cottage cheese (4% fat), low-fat cheese (10%-17% fat), full-fat cheese (approximately 28% fat), ice cream, cream, and creme fraiche)	Q1, 2.3 servings/day	Total Stroke	Non- Industry ²³	Nov
Li, K 2012 ⁽²⁵⁾	Cohort	11 years	23,980 men & women	35-64 years	Dairy Calcium Q4, 780 mg/day	Q1, 188 mg/day	CVD Mortality	Non- Industry ²⁴	No ^w
Lin, PH 2013 ⁽²⁶⁾	Cohort	12 years	2,061 men & women	45.8 years (no information for stroke group)	Dairy T3, (dairy milk of any kind, cheese, yogurt).		Total Stroke	Non- Industry ²⁵	No ^x
Lockheart, MSK 2007 ⁽²⁷⁾	Case Control		211 men & women	62.5 years cases and 62.2 years controls	Low Fat Dairy T3, 618 g/day (Low-fat milk, skimmed milk, light sour cream)	T 1, 48 g/day	First Myocardial Infarction	Industry ²⁶	No disclosure
Louie, JCY 2013 ⁽²⁸⁾	Cohort	15 years	2,625 men & women	49–97 years	Total Dairy T3, 2.9 servings/day (median) (included all dairy foods)	T1, 0.6 servings/day	Total CVD	Industry ²⁷	No disclosure
Mazidi, M, 2018 ⁽²⁹⁾	Cohort	76.4 months	24,474 men & women	47.6 years	Total Dairy Q4, 3.08 cup equivalent servings/day (total dairy, milk, cheese, and yogurt)	Q1, 0.25 cup equivalent servings/day	CHD Mortality & Cerebrovascular Disease mortality	Non- Industry ²⁸	No ^y

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interest
Ness, AR 2001 ⁽³⁰⁾	Cohort	25 years	5,765 men	35-64 years	Milk T3, > 1 pint (= 0.568 liters)	T1, None	Cardiovascular Disease Deaths	Non- Industry ²⁹	No ^z
Nettleton, J 2008 ⁽³¹⁾	Cohort	13.3 years	14,153 men & women	45 to 64 years	High Fat Dairy, per 1 daily serving difference in food group intake		Incident Heart Failure	Non Industry ³⁰	No ^{aa}
Panagiotakos, D 2009 ⁽³²⁾	Cohort	5 years	3,042 men & women	18-89 years	Low Fat Dairy, 1-unit increase in components' scores (0%, 2% or total fat), like cheese, yogurt, milk)		CVD Events	Non- Industry ³¹	No disclosure
Patterson, E 2013 ⁽³³⁾	Cohort	11.6 years	33,636 women	48-83 years	Total Dairy, Q5 8.4 servings/day (median) (total dairy intake was the sum of milk [full-fat (\geq 3.0% fat), semi- skimmed (\leq 1.5% fat), skimmed (0.5% fat), and pancakes], cultured milk/yogurt [full-fat (\geq 3.0% fat) and low-fat (\leq 1.5% fat)], cheese [full- fat (>17% fat), low-fat (\leq 17% fat), and cottage cheese/ quark], cream and creme fariche (full fat and low fat) intakes)	Q1, 2.2 servings/day	Myocardial Infarction	Non Industry ³²	No ^{bb}
Praagman, J 2015 (a) ⁽³⁴⁾	Cohort	13.3 years (median)	4,235 men & women	66.9 years	Total Dairy, T3 >400g/day (total dairy included milk, buttermilk, yogurt, coffee creamer, curd, pudding, porridge, custard, whipped cream, ice cream, and cheese, but not butter)	Total Dairy, T 1 <200 g/day	Fatal Stroke & Fatal CHD	Industry ³³	Yes ^{cc}

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page	61	of	87
------	----	----	----

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interes
Praagman, J 2015 (b) ⁽³⁵⁾	Cohort	15 years	34,409 men & women	Men 51 years & women 43 years	Total Yogurt & Cheese Q4, (fermented dairy foods)	Q1	CVD Mortality	Non- Industry ³⁴	Yes ^{dd}
Sauvaget, C 2003 ⁽³⁶⁾	Cohort	16 years	37,130 men & women	56 years	Dairy Q4, Almost Daily (dairy products (butter and cheese, excluding margarine))	Q1, Never	Total Stroke	Non- Industry ³⁵	No disclosure
Snijder, MB 2008 ⁽³⁷⁾	Cohort	6.4 years	1,124 men & women	50–75 years	Dairy Q4, 5.75-17.24 servings/day (range) (total dairy consumption was categorized as low-fat dairy (≤2% fat) or high- fat dairy (>2% fat). The variable dairy desserts included yoghurt, curds, and custard. The variable milk included low-fat, skim, and, whole milk. The variable yoghurt included all low- fat, skim, and whole yoghurts)	Q1 0-2.97 servings/day (range)	Systolic & Diastolic Blood Pressure	Industry ³⁶	Yes ^{ee}
Soedamah- Muthu, SS 2013 ⁽³⁸⁾	Cohort	10.8 years	4,255 men & women	56 years	Dairy, T3 575 g/day (median) (all dairy products, except butter and ice cream)	T1, 246 g/day (median)	Fatal & Non- Fatal CHD	Non- Industry ³⁷	Yes ^{ff}
Steffen, LM 2005 ⁽³⁹⁾	Cohort	15 years	4,304 men & women	18-30 years	Dairy Foods Q5, >3.4 times/day (dairy foods, including milk, cheese, yogurt, and dairy desserts)	Q1, <1.1 times/day	Blood Pressure	Non- Industry ³⁸	No ^{gg}

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interest
Tavani, A 2002 ⁽⁴⁰⁾	Case Control		985 men & women	61 years (median)	Total milk >7 cups/week, Yogurt >= 7 portions/week, Cheese >=350g/week	Total milk 0 cups/week, Yogurt 0 portions/week, Cheese <200g/week	Acute Myocardial Infarction	Non- Industry ³⁹	No ^{hh}
Um, C 2017 ⁽⁴¹⁾	Cohort	5.7 years of follow-up	21,427 men & women	calculated mean = 64.8 years**	Total Dairy Q5, 17.8 servings/day (dairy products (milk, cream, fermented dairy products, ice cream, butter, cheeses))	Q1, 0.9 servings/day	CVD Mortality	Non- Indutry ⁴⁰	No ⁱⁱ
Umesawa, M, 2008 ⁽⁴²⁾	Cohort	12.9-year follow-up	41,526 men & women	40-59 years	Dairy Calcium, Q5, 116 mg/day (median) (to calculate dairy calcium intake, we specified 2 kinds of dairy products, ie, cheese and dairy products except cheese, for the baseline questionnaire, and 4 kinds, ie, whole milk, low fat milk, cheese, and yogurt, for the 5-year follow-up questionnaire)	Q1, 0 mg/day	Total Stroke & CHD	Non- Industry ⁴¹	No ^{ij}
	I	I	I	L	Tonow up questionnane)	J.	L	I	

Page 63 of 87

Study ID	Study Deign	Length of Intervention /Follow up	Number of Participants	Age (mean years)	Exposure (highest tertile/quartile/quintile or 'yes' to dairy foods)	Comparison (lowest tertile/quartile/quintile or 'no' to dairy foods)	Outcomes Measured (verbatim)	Funding Source	Disclosed author conflicts of interest
Wang,L 2008 ⁽⁴³⁾	Cohort	10 years	28,886 women	53.8 years	Total Diary Q5, 3.69 servings/day (median) (total dairy product intake was calculated by summing the intake of individual dairy items: low-fat dairy items include skim or low-fat milk, sherbet, yogurt, and cottage/ricotta cheese, high-fat dairy items include whole milk, cream, sour cream, ice cream, cream cheese, and other cheese)	Q1, 0.56 servings/day (median)	Hypertension	Non- Industry ⁴²	No ^{kk}

* We calculated the mean age score of participants by summing Non-cases, T2D, MI and stroke cases at baseline and dividing them by 4 **We calculated the mean age score of participants by summing all quintiles 1, 3, & 5 (they were the only ones available) at baseline and dividing them by 5

Description of Funding Source (Verbatim)

- 1. The Hoorn Study has been made possible by the Vrije Universiteit Amsterdam and the VU University Medical Center, and by grants from the Dutch Diabetes Research Foundation, the Dutch Organization for Scientific Research, the Netherlands Heart Foundation, and the Health Research and Development Council of the Netherlands.
- 2. Supported by research grants HL24074, HL34594, DK36798, and CA87969 from the National Institutes of Health.
- 3. Supported by the Spanish Ministry of Health (grants PI040233 and G03-140), the Navarra Regional Government (PI41-2005), and the University of Navarra (línea especial Nutricio LE-97). AA was supported partially by a Fulbright fellowship and an MMA Foundation grant.
- 4. The Doetinchem Cohort Study was financially supported by the Ministry of Health, Welfare and Sport of the Netherlands and the National Institute for Public Health and the Environment. For the present analysis, Wageningen University was supported by the Top Institute Food and Nutrition, which is a public/private partnership that generates vision on scientific breakthroughs in food and nutrition, resulting in the development of innovative products and technologies. Partners are major Dutch Food companies and research organisations.
- 5. The study was supported by grants AG007181 and AG028507 from the National Institutes of Health/National Institute on Aging, and by grant DK31801 from the National Institute of Diabetes and Digestive and Kidney Diseases.
- 6. This study was supported by grant P01CA087969 from the National Institutes of Health, Department of Health and Human Services. A.M.B. was supported through the Harvard Human Nutrition Program.
- 7. The study was supported financially by the Research Council of Norway, Throne Holst's Foundation for Nutrition Research, The Norwegian Association of Margarine Producers, DeNoFa Fabrikker A/S and Tine BA. Tine BA is a dairy company.
- 8. This study was supported by the National Health and Medical Research Council of Australia.
- 9. Funding sources: The Nurses' Health Study and Health Professionals Follow-up Study cohorts are supported by grants UM1 CA186107, UM1 CA176726, and UM1 CA167552 from the National Institutes of Health. The current analyses were supported by small grants from the National Dairy Council, the General Mills Bell Institute for Health and Nutrition, and the Boston Nutrition and Obesity Research Center.
- 10. Supported by the NIH (grants R01 HL034594, UM1 CA176726, UM1 CA186107, R01 HL35464, R01 HL088521, R01 CA67262, HL60712, and UM1 CA167552).
- 11. This research was supported by a personal Dr. Dekker postdoctoral grant (2008T062) from The Netherlands Heart Foundation (JWJ Beulens).
- 12. The SU.VI.MAX study is supported by the Direction Générale de la Santé, the Ministère de la Santé, and the Institut Virtuel de Recherche en Santé Publique (groupe cohorte) INSERM.
- 13. The PURE Study is an investigator-initiated study that is funded by the Population Health Research Institute, the Canadian Institutes of Health Research (CIHR), Heart and Stroke Foundation of Ontario, support from CIHR's Strategy for Patient Oriented Research (SPOR) through the Ontario SPOR Support Unit, as well as the Ontario Ministry of Health and Long-Term Care and through unrestricted grants from several pharmaceutical companies, with major contributions from AstraZeneca (Canada), Sanofi-Aventis (France and Canada), Boehringer Ingelheim (Germany and Canada), Servier, and GlaxoSmithKline, and additional contributions from Novartis and King Pharma and from various

BMJ Open

	national or local organisations in participating countries. These include Brazil: Unilever Health Institute, Brazil; South Africa: The SA Sugar Association (SASA).
14.	The Medical Research Council, the University of Wales College of Medicine and Bristol University, Food Standards Agency.
	This work was supported by Tehran University of Medical Sciences (grant 82-603); Cancer Research UK (grant C20/A5860); the Intramural Research Program of the National Cancer Institute, US National Institutes of Health (grant Z01 CP000185-03); and various collaborative
	research agreements with the International Agency for Research on Cancer. M.F. was supported by a Takemi Fellowship from the Japan Pharmaceutical Manufacturers Association.
16.	The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C).
17.	This work was supported by the research grant HL35464 and CA55075 from the National Institutes of Health.
18.	The study was funded by the Medical Research Council, and some aspects of the analysis were funded by The European Commission, Quality of Life and Management of Living Resources Programme, contract number QLG1-CT-2000–01643.
19.	The present study was supported by the Swedish Research Council for Health, Working Life and Welfare (FORTE).
20.	This research was funded by The Swedish Research Council for Health, Working Life and Welfare (FORTE), grant number 2016-00960. The
	Northern Sweden Diet Database has been supported by the Swedish Research Council for Health, Working Life and Welfare (FORTES) and
	The Swedish Research Council.
21.	This research was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science, and Technology (NRF2016R1D1A1B03931307).
22.	The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study was supported by Public Health Service contracts N01-CN-45165, N01-RC-45035 and N01-RC-37004 from the US National Cancer Institute, National Institutes of Health, Department of Health and Human Services,
	Bethesda, Md. Dr. Larsson's research at the National Public Health Institute in Helsinki, Finland, was supported by a grant from the Swedish Council for Working Life and Social Research.
23.	This study was supported by a research grant from the Swedish Council for Working Life and Social Research (FAS), the Swedish Research
24.	Council, and by a Research Fellow grant from Karolinska Institutet (to Dr Larsson). This work was supported by supported by the Deutsche Krebshilfe (grant-No70-488-Ha I) and the Graduiertenkolleg 793: Epidemiology of communicable and chronic non-communicable disease and their inter-relationships.
25.	Data collection was supported by the Department of Health in Taiwan.
26.	The present study was supported by NIH NRSA T32HL007779, CVD Epidemiology and Prevention, American Heart Association – Greater
	Midwest Affiliate, Throne Holst's Foundation for Nutrition Research, The Norwegian Association of Margarine Producers, DeNoFa Fabriker
	A/S and Tine Norwegian Dairies.
27.	This study was funded by Dairy Australia.
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

- 28. This manuscript was written independently; no company or institution supported it financially.
- 29. Funding: this study was provided with funding by a grant from the NHS Management Executive Cardiovascular Disease and Stroke Research and Development Initiative.
- 30. This research was supported by the National Institutes of Health grant HL73366, training grant T32 HL07779, and contracts N01-HC-55015, N01-HC-55016, N01-HC-55018, N01-HC-55019, N01-HC-55020, N01-HC-55021, and N01-HC-55022 from the National Heart, Lung, and Blood Institute.
- 31. The ATTICA study was supported by research grants from the Hellenic Cardiological Society (HCS2002).
- 32. Supported by research grants from the Swedish Council for Working Life and Social Research and from the Swedish Research Council/Infrastructure Medicine.
- 33. This study was supported by an unrestricted grant from the Dutch Dairy Organization (NZO) for epidemiological analyses on dairy intake and cardiovascular diseases.
- 34. The present study was supported by a personal Dr Dekker postdoctoral grant (2008T062) from the Netherlands Heart Foundation (J. W. J. B.).
- 35. This publication is based on research performed at the Radiation Effects Research Foundation (RERF), Hiroshima and Nagasaki, Japan. RERF is a private nonprofit foundation funded equally by the Japanese Ministry of Health, Labor and Welfare and the US Department of Energy through the National Academy of Sciences.
- 36. This particular study has been supported by a grant from the Dutch Dairy Association (NZO).
- 37. The Whitehall II study was supported by grants from the Medical Research Council (G0902037), the British Heart Foundation (RG/07/008/23674), the Stroke Association, the National Heart Lung and Blood Institute (5RO1 HL036310), the National Institute on Aging (5RO1AG13196) and the Agency for Health Care Policy Research (5RO1AG034454).
- 38. The CARDIA Study is supported by National Heart, Lung, and Blood Institute contracts N01-HC-48047, N01-HC-48048, N01-HC-48049, N01-HC-48050, and N01-HC-95095.
- 39. Funding: partly supported by the Italian Ministry of Health (Programmi Speciali).
- 40. The REGARDS research project is supported by a cooperative agreement U01 NS041588 from the National Institute of Neu-rological Disorders and Stroke, National Institutes of Health, Department of Health and Human Service. Additional support provided by the Franklin Foundation.
- 41. This study was supported by grants-in-aid for cancer research and by the Third Term Comprehensive Ten-Year Strategy for Cancer Control from the Ministry of Health, Labor and Welfare of Japan.
- 42. This work was supported by research grants CA-047988 and HL-080467 from the National Institutes of Health, Bethesda, Md.

Description of Author Disclosure Statement (Verbatim)

BMJ Open

	Sabita S. Soedamah-Muthu and Johanna M. Geleijnse obtained an unrestricted grant from the Dutch Dairy Association (NZO) to carry out meta-analyses on the association between dairy products and CVD.
	None of the authors had any conflict of interest from a financial, personal, or professional aspect in relation to the findings of this study.
	None of the authors had any conflicts of interest.
	Altorf-van der Kuil W, Engberink MF, Geleijnse JM - Top Institute Food and Nutrition, PO Box 557, 6700 AN, Wageningen, The
	Netherlands.
e)	The authors have no conflicts of interest.
f)	D.M. received research grants for studying the effects of diet on cardiometabolic diseases from the National Institutes of Health; the Searle
	Scholar Award from the Searle Funds at The Chicago Community Trust; the Genes and Environment Initiative at the Harvard School of
	Public Health; and the Gates Foundation/World Health Organization Global Burden of Diseases, Injuries, and Risk Factors Study; and from
	GlaxoSmithKline, Sigma Tau, Pronova, and the National Institutes of Health for an investigator-initiated, not- for-profit clinical trial of fish oil
	and postsurgical complications. He also received ad hoc travel reimbursement and/or honoraria for research presentations from the Chicago
	Council, International Life Sciences Institute, Aramark, Unilever, SPRIM, Nutrition Impact, Norwegian Seafood Export Council, United
	Nations Food and Agricultural Organization, World Health Organization, US Food and Drug Administration, and several universities. He
	received ad hoc consulting fees from Foodminds and royalties from UpToDate for an online chapter on fish oil.
-	A. S. Biong is employed as a Ph.D. student in a research project funded jointly by TINE BA, a Norwegian dairy company, and the Norwegian
	Research Council.
<i>,</i>	The authors declare no conflict of interest.
·	There are no conflicts of interest.
	None of the authors reported a conflict of interest related to the study.
k)	SS-Mand MG obtained an unrestricted grant from the Dutch Dairy Association (NZO) to carry out meta-analyses on the association between
•	dairy products and cardiovascular diseases. None of the authors had any personal or financial conflicts of interest. We declare no competing interests.
	None of the authors had any personal or financial conflicts of interest.
	We declare no competing interests.
· ·	There were no conflicts of interest.
Ś	Conflict of interest: none declared The outbors have declared that no compating interests exist
- 、	The authors have declared that no competing interests exist. Competing interests: None declared.
.	SSM, JMG and AH and were supported by an unrestricted grant from the Dutch dairy industry (NZO).
	The authors declare that they have no competing interests.
	The authors declare no conflict of interest
<i>′</i>	The authors have no conflicts of interest to declare.
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

v) Disclosures: None.

- w) Competing interests None.
- x) AUTHOR DISCLOSURES None.
- y) All authors have nothing to declare in relation to the subject of this paper.
- z) Conflicts of interest: none.
- aa) The authors have no conflicts of interest to report.
- bb) Author disclosures: E. Patterson, S. C. Larsson, A. Wolk, and A. A kesson, no conflicts of interest.
- cc) J.M.G and S.S.S.M received an unrestricted grant from the Dutch Dairy Organization (NZO) for epidemiological analyses on dairy intake and cardiovascular diseases.
- dd) S. S. S. M. received an unrestricted research grant from the Global Dairy Platform, Dairy Research Institute and Dairy Australia for a metaanalysis project on the effect of cheese on lipids.
- ee) Gerrit J. Hiddink Dutch Dairy Association (NZO), Zoetermeer, The Netherlands.
- ff) S. S. S.-M., L. V. and J. M. G. obtained an unrestricted grant from the Dutch Dairy Association (NZO) to carry out meta-analyses on the association between dairy products. relien only
- gg) None of the authors had any conflicts of interest.
- hh) Conflicts of interest: none.
- ii) Conflict of Interests: None.
- jj) Disclosures: None.
- kk) Disclosures: None.

 BMJ Open

References

1. Aerde M, Soedamah-Muthu S, Geleijnse J, et al. Dairy intake in relation to cardiovascular disease mortality and all-cause mortality: the Hoorn Study. European Journal of Nutrition. 2013;52(2):609-16 8p.

2. Al-Delaimy WK, Rimm E, Willett WC, et al. A prospective study of calcium intake from diet and supplements and risk of ischemic heart disease among men. American Journal of Clinical Nutrition. 2003;77(4):814-8 5p.

3. Alonso A, Beunza JJ, Delgado-Rodriguez M, et al. Low-fat dairy consumption and reduced risk of hypertension: the Seguimiento Universidad de Navarra (SUN) cohort. American Journal of Clinical Nutrition. 2005;82(5):972-9.

4. Altorf-van der Kuil W, Engberink MF, Geleijnse JM, et al. Sources of dietary protein and risk of hypertension in a general Dutch population. British Journal of Nutrition. 2012;108(10):1897-903 7p.

5. Avalos EE, Barrett-Connor E, Kritz-Silverstein D, et al. Is dairy product consumption associated with the incidence of CHD? Public health nutrition. 2013;16(11):2055-63.

6. Bernstein AM, Pan A, Rexrode KM, et al. Dietary protein sources and the risk of stroke in men and women. Stroke. 2012;43(3):637-44.

7. Biong AS, Rebnord HM, Fimreite RL, et al. Intake of dairy fat and dairy products, and risk of myocardial infarction: A case–control study. International Journal of Food Sciences and Nutrition. 2008;59(2):155-65.

8. Bonthuis M, Hughes MCB, Ibiebele TI, et al. Dairy consumption and patterns of mortality of Australian adults. European journal of clinical nutrition. 2010;64(6):569-77.

9. Buendia JR, Yanping L, Hu FB, et al. Long-term yogurt consumption and risk of incident hypertension in adults. Journal of Hypertension. 2018;36(8):1671-9.

10. Chen M, Li Y, Sun Q, et al. Dairy fat and risk of cardiovascular disease in 3 cohorts of US adults. American Journal of Clinical Nutrition. 2016;104(5):1209-17.

11. Dalmeijer GW, Struijk EA, van der Schouw YT, et al. Dairy intake and coronary heart disease or stroke—A population-based cohort study. International Journal of Cardiology. 2013;167(3):925-9.

12. Dauchet L, Kesse-Guyot E, Czernichow S, et al. Dietary patterns and blood pressure change over 5-y follow-up in the SU.VI.MAX cohort. The American journal of clinical nutrition. 2007;85(6):1650-6.

13. Dehghan M, Mente A, Rangarajan S, et al. Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): a prospective cohort study. Lancet. 2018;392 North American Edition(10161):2288-97.

14. Elwood PC, Pickering JE, Fehily AM, et al. Milk drinking, ischaemic heart disease and ischaemic stroke I. Evidence from the Caerphilly cohort. European Journal of Clinical Nutrition. 2004;58(5):711-7.

15. Engberink MF, Hendriksen MA, Schouten EG, et al. Inverse association between dairy intake and hypertension: the Rotterdam Study. The American journal of clinical nutrition. 2009;89(6):1877-83.

16. Farvid MS, Malekshah AF, Pourshams A, et al. Dairy Food Intake and All-Cause, Cardiovascular Disease, and Cancer Mortality. American Journal of Epidemiology. 2017;185(8):697-711.

BMJ Open

17. Haring B, Gronroos N, Nettleton JA, et al. Dietary Protein Intake and Coronary Heart Disease in a Large Community Based Cohort: Results from the Atherosclerosis Risk in Communities (ARIC) Study. PloS one. 2014;9(10):e109552.

18. He K, Merchant A, Rimm EB, Rosner BA, et al. Dietary fat intake and risk of stroke in male US healthcare professionals: 14 year prospective cohort study. BMJ. 2003;327(7418):777-82.

 19. Heraclides A, Mishra GD, Hardy RJ, et al. Dairy intake, blood pressure and incident hypertension in a general British population: the 1946 birth cohort. European journal of nutrition. 2012;51(5):583-91.

20. Johansson I, Nilsson LM, Esberg A, et al. Dairy intake revisited - associations between dairy intake and lifestyle related cardio-metabolic risk factors in a high milk consuming population. Nutrition Journal. 2018;17(1):N.PAG-N.PAG.

21. Johansson I, Esberg A, Nilsson LM, at al. Dairy Product Intake and Cardiometabolic Diseases in Northern Sweden: A 33-Year Prospective Cohort Study. Nutrients. 2019;11(2):284.

22. Kim D, Kim J. Dairy consumption is associated with a lower incidence of the metabolic syndrome in middle-aged and older Korean adults: the Korean Genome and Epidemiology Study (KoGES). British Journal of Nutrition. 2017;117(1):148-60.

23. Larsson SC, Männistö S, Virtanen MJ, et al. Dairy foods and risk of stroke. Epidemiology (Cambridge, Mass) [Internet]. 2009; 20(3):[355-60 pp.]. Available from: <u>http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/629/CN-00701629/frame.html</u>.

24. Larsson SC, Virtamo J, Wolk A. Dairy consumption and risk of stroke in Swedish women and men. Stroke. 2012;43(7):1775-80.

25. Li K, Kaaks R, Linseisen J, et al. Associations of dietary calcium intake and calcium supplementation with myocardial infarction and stroke risk and overall cardiovascular mortality in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition study (EPIC-Heidelberg). Heart. 2012;98(12):920-5.

26. Lin PH, Yeh WT, Svetkey LP, et al. Dietary intakes consistent with the DASH dietary pattern reduce blood pressure increase with age and risk for stroke in a Chinese population. Asia Pacific journal of clinical nutrition. 2013;22(3):482-91.

27. Lockheart MSK, Steffen LM, Rebnord HM, et al. Dietary patterns, food groups and myocardial infarction: a case–control study. British Journal of Nutrition. 2007;98(2):380-7.

28. Louie JCY, Flood VM, Burlutsky G, et al. Dairy consumption and the risk of 15-year cardiovascular disease mortality in a cohort of older Australians. Nutrients. 2013;5(2):441-54.

29. Mazidi M, Mikhailidis DP, Sattar N, et al. Consumption of dairy product and its association with total and cause specific mortality - A population-based cohort study and meta-analysis. Clin Nutr. 2018.

30. Ness AR, Smith GD, Hart C. Milk, coronary heart disease and mortality. Journal of Epidemiology & Community Health. 2001;55(6):379-82.

31. Nettleton JA, Steffen LM, et al. Incident heart failure is associated with lower whole-grain intake and greater high-fat dairy and egg intake in the Atherosclerosis Risk in Communities (ARIC) study. Journal of the American Dietetic Association. 2008;108(11):1881-7.

32. Panagiotakos D, Pitsavos C, Chrysohoou C, et al. Dietary patterns and 5-year incidence of cardiovascular disease: A multivariate analysis of the ATTICA study. Nutrition, Metabolism and Cardiovascular Diseases. 2009;19(4):253-63.

33. Patterson E, Larsson SC, Wolk A, et al. Association between dairy food consumption and risk of myocardial infarction in women differs by type of dairy food. The Journal of nutrition. 2013;143(1):74-9.

Page 71 of 87

 BMJ Open

34. Praagman J, Franco OH, Ikram MA, et al. Dairy products and the risk of stroke and coronary heart disease: the Rotterdam Study. European journal of nutrition. 2015;54(6):981-90.

35. Praagman J, Dalmeijer GW, van der Schouw YT, et al. The relationship between fermented food intake and mortality risk in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort. British Journal of Nutrition. 2015;113(3):498-506.

36. Sauvaget C, Nagano J, Allen N, et al. Intake of animal products and stroke mortality in the Hiroshima/Nagasaki Life Span Study. International journal of epidemiology. 2003;32(4):536-43.

37. Snijder MB, van Dam RM, Stehouwer CD, et al. A prospective study of dairy consumption in relation to changes in metabolic risk factors: the Hoorn Study. Obesity (Silver Spring, Md). 2008;16(3):706-9.

38. Soedamah-Muthu SS, Masset G, Verberne L, Geleijnse JM, et al. Consumption of dairy products and associations with incident diabetes, CHD and mortality in the Whitehall II study. The British journal of nutrition. 2013;109(4):718-26.

39. Steffen LM, Kroenke CH, Yu X, et al. Associations of plant food, dairy product, and meat intakes with 15-y incidence of elevated blood pressure in young black and white adults: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. American Journal of Clinical Nutrition. 2005;82(6):1169-77; quiz 363-4.

40. Tavani A, Gallus S, Negri E, et al. Milk, dairy products, and coronary heart disease. Journal of Epidemiology & Community Health. 2002;56(6):471-2.

41. Um CY, Judd SE, Flanders WD, et al. Associations of Calcium and Dairy Products with All-Cause and Cause-Specific Mortality in the REasons for Geographic and Racial Differences in Stroke (REGARDS) Prospective Cohort Study. Nutrition & Cancer. 2017;69(8):1185-95.

42. Umesawa M, Iso H, Ishihara J, et al. Dietary calcium intake and risks of stroke, its subtypes, and coronary heart disease in Japanese: the JPHC Study Cohort I. Stroke. 2008;39(9):2449-56.

43. Wang L, Manson JE, Buring JE, et al. Dietary intake of dairy products, calcium, and vitamin D and the risk of hypertension in middle-aged and older women. Hypertension. 2008;51(4):1073-9.

Supplementary File 6. Risk of bias in included studies

Funding	Source, n	$(\%^{a})$
---------	-----------	------------

			Sponsorship		C	COI	Industry Ties	
Characteristic	Category	Total	Industr	Non-	COI	No COI	Industry	Non-
		N = 43	у	Industry	N =10	N=33	/COI	Industry
			N= 8	N=35			N = 14	No COI
								N = 29
Risk of Bias								
Assessment								
	Serious/Critic	43 (100)	8 (100)	35 (100)	10 (100)	33 (100)	14 (100)	29 (100)
	al Bias due to	6						
	confounding							
	Serious/Critic	6 (14)	1 (13)	5 (14)	1 (10)	5 (15)	2 (14)	4 (14)
	al Bias in							
	selection of							
	participants							
	into the study							
	Serious/Critic	16 (37)	3 (38)	13 (37)	2 (20)	14 (42)	3 (21)	13 (44)
	al Bias in							
	classification							
	of exposures							
	Serious/Critic	21 (49)	3 (38)	18 (51)	6 (60)	15 (45)	7 (50)	14 (48)
	al Bias due to							
	deviations							
	from							
	exposures							
	Serious/Critic	10 (23)	2 (25)	8 (23)	3 (30)	7 (21)	3 (21)	7 (24)
	al Bias due to							
	missing data							

	6 (14)	2 (25)	4 (11)	1 (10)	5 (15)	2 (14)	4 (14)
al Bias in							
measurement							
of outcomes							
Serious/Critic	4 (9)	1 (13)	3 (9)	2 (20)	2 (6)	2 (14)	2 (7)
al Bias in							
selection of							
reported							
results							
Serious/Critic	43 (100)	8 (100)	35 (100)	10 (100)	33 (100)	14 (100)	29 (100)
al overall risk							
of bias							

Supplementary File 7: Favorable Outcomes by Industry Ties v No Industry Ties, Industry Sponsorship v No Industry Sponsorship and Conflicts of Interest v No Conflicts of Interest

Industry Ties: Industry Sponsorship and/or Author Conflicts of Interest					No Industry Ties: No Industry Sponsorship and No Author Conflicts of Interest					
Study ID	Funding Source	Disclosed author conflicts of interest	Results Favourable/ Unfavourable	Conclusions Favourable/ Unfavourable	Study ID	Funding Source	Disclosed author conflicts of interest	Results Favourable/ Unfavourable	Conclusions Favourable/ Unfavourable	
Aerde, M 2013	Non- Industry	Yes	U	U	Al- Delaimy, WK 2003	Non Industry	No	U	U	
Altorf-van der Kuil, W2012	Industry	Yes	U	U	Alonso A, 2005	Non- industry	No	U	U	
Bernstein, AM 2012	Non- industry	Yes	U	U	Avalos, EE 2013	Non- industry	No	U	U	
Biong, A 2008	Industry	Yes	U	F	Bonthuis, M 2010	Non- Industry	No	U	U	
Buendia, JR 2018	Industry	No	F	F	Chen, M 2016	Non- Industry	No	U	F	
Dalmeijer, G 2013	Non- Industry	Yes	U	F	Dauchet, L 2007	Non- Industry	No	U	U	
Dehghan, M 2018	Industry	No	U	F	Elwood, PC 2004	Non- Industry	No disclosure	U	U	
Heraclides, A 2012	Non- Industry	Yes	U	U	Engberink, MF 2009	No disclosure	No	U	F	
Lockheart, MSK 2007	Industry	No disclosure	U	U	Farvid, MS 2017	Non- Industry	No	F	F	
Louie, JCY 2013	Industry	No disclosure	U	U	Haring, B 2014	Non- Industry	No	U	U	
Praagman, J 2015	Industry	Yes	U	U	He, K 2003	Non- Industry	No	U	U	

Industry Ties: Industry Sponsorship and/or Author Conflicts of Interest				Conflicts of	No Industry Ties: No Industry Sponsorship and No Author Conflicts of Interest				uthor
Study ID	Funding Source	Disclosed author conflicts of interest	Results Favourable/ Unfavourable	Conclusions Favourable/ Unfavourable	Study ID	Funding Source	Disclosed author conflicts of interest	Results Favourable/ Unfavourable	Conclusions Favourable/ Unfavourable
Praagman J, 2015	Non- Industry	Yes	U	U	Johansson, I 2018	Non- Industry	No	U	U
Snijder, MB 2008	Industry	Yes	U	U	Johansson, I 2019	Non- Industry	No	U	U
Soedamah- Muthu, SS 2013	Non- Industry	Yes	U	U	Kim, D 2017	Non- Industry	No	F	F
				-0-	Larsson,S 2009	Non- Industry	No disclosure	U	U
					Larsson, SC 2012	Non- Industry	No	U	U
					Li, K 2012	Non- Industry	No	U	U
					Lin, PH 2013	Non- Industry	No	U	U
					Mazidi, M, 2018	Non- Industry	No	F	F
					Ness, AR 2001	Non- Industry	No	U	U
					Nettleton, J 2008	Non Industry	No	U	U
					Panagiotak os, D 2009	Non- Industry	No disclosure	U	U
					Patterson, E 2013	Non Industry	No	F	F
					Sauvaget, C 2003	Non- Industry	No disclosure	F	F
					Steffen, LM 2005	Non- Industry	No	U	U

Industry Ties: Industry Sponsorship and/or Author Conflicts of Interest			No Industry Ties: No Industry Sponsorship and No Author Conflicts of Interest				uthor		
Study ID	Funding Source	Disclosed author conflicts of interest	Results Favourable/ Unfavourable	Conclusions Favourable/ Unfavourable	Study ID	Funding Source	Disclosed author conflicts of interest	Results Favourable/ Unfavourable	Conclusions Favourable/ Unfavourable
			\sim		Tavani, A 2002	Non- Industry	No	F	F
		-	0		Um, C 2017	Non- Indutry	No	U	F
			6		Umesawa, M, 2008	Non- Industry	No	F	F
				20.	Wang,L 2008	Non- Industry	No	F	F
	·		<u>.</u>	r.	0.	· · · ·		<u>.</u>	<u>.</u>

Favourable results - Statistical significance: Industry ties vs no industry ties; industry sponsorship vs no sponsorship; COI v no COI

Industry Ties

	Industry/COI	Non-Industry/No COI
Favourable	1	8
Unfavourable	13	21

RR= 0.26 (95% CI 0.04, 1.87)

Industry Sponsorship

	Industry	Non-Industry
Favourable	1	8
Unfavourable	7	27

BMJ Open

RR = 0.55 (95% CI 0.08, 3.77)

Conflicts of Interest

	COI	No/COI	
Favourable	0	9	
Unfavourable	10	24	

RR= 0.16 (95% CI 0.01, 2.57)

- monsorship Favourable conclusions: Industry ties vs no industry ties; industry sponsorship vs no sponsorship; COI v no COI

Industry Ties

	Industry/COI	Non-Industry/NO COI
Favourable	4	11
Unfavourable	10	18

RR = 0.75 (95% CI 0.29, 1.95)

Industry Sponsorship

	Industry	Non-Industry
Favourable	3	12
Unfavourable	5	23

Conflicts of Interest

	COI	No COI	
Favourable	2	13	
Unfavourable	8	20	
RR =0.51 (95%	0.14, 1	.88)	

Concordance between study results and conclusions: Industry ties vs no industry ties; industry sponsorship vs no sponsorship; COI v no review only

COI Industry Ties

Industry Ties

	Industry/COI	Non-Industry/NO COI
Discord	3	3
Concord	11	26

RR = 2.07 (95% CI 0.48, 8.99)

Industry Sponsorship

	Industry	Non-Industry
Discord	2	4
Concord	6	31

RR = 2.19 (95% CI 0.48, 9.94)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Conflicts of Interest

Favourable Unfavourable	COI 2 8	No/COI 4 29	
RR = 1.65 (95%	5 CI 0.:	35, 7.72)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary File 8. Results for each of the meta-analyses conducted

Effect Size, Cardiovascular Disease: Industry ties v no industry ties, Risk Ratio

				Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Industry Sponsor					
Bernstein, AM 2012	-0.1165		21.6%	0.89 [0.79, 1.00]	
Biong, A 2008	-0.4005		1.3%	0.67 [0.25, 1.83]	
Lockheart, MSK 2007 Subtotal (95% CI)	-0.0408	0.43	1.8% 24.7%	0.96 [0.41, 2.23] 0.89 [0.79, 1.00]	•
Heterogeneity: Tau ² = 0	0.00; Chi ² = 0.34, d	lf = 2 (P =	0.85); I ² :	= 0%	
Test for overall effect: Z	.= 2.03 (P = 0.04)				
Non-Industry Spo	onsored & NO COI				
Al-Delaimy, WK 2003		0.1811	7.8%	1.15 [0.81, 1.64]	
He, K 2003		0.4867	1.4%	1.22 [0.47, 3.17]	
Larsson, S 2009		0.1965	6.9%	1.32 [0.90, 1.94]	
Larsson, SC 2012	-0.0943		21.0%	0.91 [0.80, 1.03]	
Ness, AR 2001	-0.4463		5.5%	0.64 [0.41, 1.00]	and the second
Nettleton, J 2008		0.0361	25.0%	1.09 [1.02, 1.17]	■
Tavani, A 2002	-0.2485	0.1846	7.6%	0.78 [0.54, 1.12]	
Subtotal (95% CI) Heterogeneity: Tau ² = 0			75.3%	0.99 [0.85, 1.14]	•
Test for overall effect: Z					
Total (95% CI)			100.0%	0.96 [0.85, 1.08]	•
Heterogeneity: Tau ² = 0		df = 9 (P	= 0.01); P	²= 57%	0.1 0.2 0.5 1 2 5
Test for overall effect: Z	. ,				Favourable to Dairy Unfavourable to Dair
Test for subgroup diffe	rences: Chif = 1.2;	3. at = 1 (P = 0.27	, if = 18.8%	

4 5

BMJ Open

Effect Size, Cardiovascular Disease: Industry ties v no industry ties, Hazard Ratio

6						
7					Hazard Ratio	Hazard Ratio
8	Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
9	Industry Sponsored &	/OR COI		1011-02001		
	Aerde, M 2013		0.1002	4.7%	1.06 [0.87, 1.29]	
10	Dalmeijer,G 2013 Dehghan, M 2018	-0.0101	0.03 0.1384	13.9% 2.8%	0.99 [0.93, 1.05] 0.77 [0.59, 1.01]	
11	Louie, JCY 2013	-0.2744		2.5%	0.76 [0.57, 1.02]	
12	Praagman, J 2015 a		0.2433	1.0%	0.90 [0.56, 1.45]	
13	Praagman, J 2015 b		0.1101	4.1%	1.08 [0.87, 1.34]	
14	Soedamah-Muthu, SS 2013	-0.0943	0.1496	2.5% 31.4 %	0.91 [0.68, 1.22]	
15	Subtotal (95% CI) Heterogeneity: Tau ² = 0.00; •	^hi² – 7 78 df – 6 /₽ –	0.25):17		0.96 [0.88, 1.05]	•
16	Test for overall effect: Z = 0.9		0.20), 1	- 2070		
17						
18	Non-Industry Sponsor		0.4470	0.00	0 77 10 00 4 051	
19	Bonthuis, M 2010 Chen, M 2016		0.4472		0.77 [0.32, 1.85] 1.00 [0.95, 1.05]	
20	Elwood, PC 2004		0.5147	0.2%	0.66 [0.24, 1.81]	
21	Farvid, MS 2017	-0.3285	0.0907	5.4%	0.72 [0.60, 0.86]	
22	Haring, B 2014		0.1099		1.04 [0.84, 1.29]	-
	Johansson, I 2019		0.0565	9.3%	1.11 [0.99, 1.24]	
23	Li, K 2012 Lin, PH 2013		0.2043	1.4% 1.2%	1.30 [0.87, 1.94] 0.74 [0.48, 1.14]	
24	Mazidi, M, 2018		0.0152		0.99 [0.96, 1.02]	•
25	Panagiotakos, D 2009	-0.0305	0.1375	2.8%	0.97 [0.74, 1.27]	
26	Patterson, E 2013		0.1072		0.77 [0.62, 0.95]	
27	Sauvaget, C 2003 Um, C 2017		0.129 0.1148	3.2% 3.8%	0.73 [0.57, 0.94] 1.03 [0.82, 1.29]	
28	Umesawa, M. 2008		0.2022		1.09 [0.73, 1.62]	
29	Subtotal (95% CI)			68.6%	0.95 [0.89, 1.02]	•
30	Heterogeneity: Tau ² = 0.01;		P = 0.002); I ^z = 609	6	
31	Test for overall effect: Z = 1.4	13 (P = 0.15)				
32	Total (95% CI)			100.0%	0.96 [0.91, 1.01]	•
33	Heterogeneity: Tau ² = 0.00;	Chi² = 40.49, df = 20 (F	P = 0.004); I² = 51%	6	
34	Test for overall effect: $Z = 1.6$					Favuorable to Dairy Unfavourable to Dairy
35	Test for subgroup difference	s: Chif = 0.03, df = 1 (P = 0.86)	, 17 = 0%		
36						
37						
38						
39						
40						
41						
42						
43						
43						
45						
46						
47						
48						
49						
50						
51						
52						
53						
54						
55						
56						
57						
58						
59						
60	For	peer review only	· - http	://bmio	pen.bmj.com/sit	e/about/guidelines.xhtml
00		,			, <u>,</u> ,,	

Effect Size, Cardiovascular Disease: Industry sponsorship vs no industry sponsorship, Risk Ratio

Industry Sponsore Biong, A 2008 Lockheart, MSK 2007 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	d -0.4005 -0.0408	0.5127			
Lockheart, MSK 2007 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0		0.5127			
Subtotal (95% CI) Heterogeneity: Tau² = 0.0	-0.0408		1.3%	0.67 [0.25, 1.83]	
Heterogeneity: Tau ² = 0.0		0.43	1.8%	0.96 [0.41, 2.23]	
			3.1%	0.83 [0.43, 1.58]	
		f=1(P=	0.59); I ² :	= 0%	
Non-Industry Spon	sored				
Al-Delaimy, WK 2003	0.1398	0.1811	7.8%	1.15 [0.81, 1.64]	
Bernstein, AM 2012	-0.1165	0.0595	21.6%	0.89 [0.79, 1.00]	-
He, K 2003	0.1989	0.4856	1.4%	1.22 [0.47, 3.16]	
Larsson, S 2009	0.2776	0.1965	6.9%	1.32 [0.90, 1.94]	
Larsson, SC 2012	-0.0943	0.0632	21.0%	0.91 [0.80, 1.03]	
Ness, AR 2001	-0.4463		5.5%	0.64 [0.41, 1.00]	
Nettleton, J 2008	0.0862		24.9%	1.09 [1.02, 1.17]	-
Tavani, A 2002	-0.2485		7.6%	0.78 [0.54, 1.12]	
Subtotal (95% CI)	0.2.00	0.1010	96.9%	0.97 [0.85, 1.09]	•
Heterogeneity: Tau² = 0.0 Test for overall effect: Z =		df = 7 (P			
Fotal (95% CI)	,		100.0%	0.96 [0.85, 1.08]	•
Heterogeneity: Tau ² = 0.0	01; Chi ² = 20.78.	df = 9 (P	= 0.01); P	² = 57%	0.1 0.2 0.5 1 2 5
Test for overall effect: Z =		1			0.1 0.2 0.5 1 2 5 Favourable to Dairy Unfavourable to Dairy
Test for subgroup differe	nces: Chi ² = 0.21	1. df = 1 (P = 0.65)	, I ^z = 0%	Favourable to Daily Offiavourable to Daily

BMJ Open

Effect Size, Cardiovascular Disease: COI vs No COI, Risk Ratio

6						
7					Risk Ratio	Risk Ratio
8	Study or Subgroup	log[Risk Ratio]	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
9	COI					
10	Bernstein, AM 2012 Biong, A 2008	-0.1165 -0.4005			0.89 [0.80, 0.99] 0.67 [0.24, 1.87]	
11	Subtotal (95% CI)	-0.4005	0.3230	24.1%	0.89 [0.80, 0.99]	
12	Heterogeneity: Tau ² = (0.00; Chi ² = 0.29, d	lf = 1 (P =			
13	Test for overall effect: 2		0.0	2000		
14	N- COI					
15	No COI Al-Delaimy, WK 2003	0 1 2 0 0	0.1852	7 504	1 15 10 00 1 651	
16	He, K 2003		0.1852	7.5% 1.4%		
17	Larsson, S 2009		0.2011	6.6%	1.32 [0.89, 1.96]	
18	Larsson, SC 2012	-0.0943	0.0657	21.0%	0.91 [0.80, 1.04]	
19	Lockheart, MSK 2007	-0.0408			0.96 [0.42, 2.19]	
	Ness, AR 2001	-0.4463			• • •	
20	Nettleton, J 2008 Tavani, A 2002	-0.2485	0.0389	25.3% 7.3%	1.09 [1.01, 1.18] 0.78 [0.54, 1.13]	
21	Subtotal (95% CI)	-0.2403	0.1070	75.9%	0.99 [0.86, 1.13]	
22	Heterogeneity: Tau ² = (0.01; Chi ^z = 13.83,	df = 7 (P	= 0.05); P	² = 49%	
23	Test for overall effect: 2	z = 0.16 (P = 0.87)				
24	Total (05% CI)			100.0%	0.96 [0.86, 1.08]	
25	Total (95% CI) Heterogeneity: Tau² = (101·Chiz-1005	df = 0 /P			
26	Test for overall effect: 2		ui – 5 (F	- 0.02), 1	- 55%	0.1 0.2 0.5 1 2 5 10
27	Test for subgroup diffe		2, df = 1 ((P = 0.22)	, I² = 34.1%	Favourable to Dairy Unfavourable to Dairy
28						
29						
30						
31						
32						
33						
34						
35						
36						
37						
38						
39						
40						
41						
42						
43						
44						
45						
46						
40						
48						
49						
50						
51						
52						
53						
54						
55						
56						
57						
58						
50						

Effect Size, Cardiovascular Disease: COI vs no COI, Hazard Ratio

				Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
COL					
Aerde, M 2013	0.0583	0.095	5.0%	1.06 [0.88, 1.28]	
Dalmeijer,G 2013	-0.0101		14.7%	0.99 [0.94, 1.04]	1
Praagman, J 2015 a	-0.1054	0.2421	1.0%	0.90 [0.56, 1.45]	
Praagman, J 2015 b	0.077	0.1103	4.0%	1.08 [0.87, 1.34]	
-					
Soedamah-Muthu, SS 2013	3 -0.0943	0.1487	2.4%	0.91 [0.68, 1.22]	
Subtotal (95% CI)			27.2%	1.00 [0.95, 1.04]	•
Heterogeneity: $Tau^2 = 0.00$; Test for overall effect: $Z = 0$.		0.81); l²:	= 0%		
No COI					
Bonthuis, M 2010	-0.2614	0.448	0.3%	0.77 [0.32, 1.85]	
Chen, M 2016		0.0262		1.00 [0.95, 1.05]	1
Dehghan, M 2018	-0.2614		2.6%	0.77 [0.58, 1.02]	
Elwood, PC 2004	-0.4155	0.5161	0.2%	0.66 [0.24, 1.81]	
Farvid, MS 2017	-0.3285		5.1%	0.72 [0.60, 0.86]	_ - _
Haring, B 2014	0.0392		4.1%	1.04 [0.84, 1.29]	
Johansson, I 2019	0.1044	0.0584	9.0%	1.11 [0.99, 1.24]	† ■
Li, K 2012	0.2624	0.2049	1.4%	1.30 [0.87, 1.94]	
Lin, PH 2013	-0.3011		1.2%	0.74 [0.48, 1.14]	
Louie, JCY 2013	-0.2744		2.3%	0.76 [0.56, 1.03]	
Mazidi, M, 2018	-0.0101	0.0157	16.5%	0.99 [0.96, 1.02]	•
Panagiotakos, D 2009	-0.0305		2.6%	0.97 [0.73, 1.29]	
Patterson, E 2013	-0.2614		4.5%	0.77 [0.63, 0.94]	
Sauvaget, C 2003	-0.3147	0.1262	3.2%	0.73 [0.57, 0.93]	No. of Street,
Um, C 2017	0.0296	0.1163	3.7%	1.03 [0.82, 1.29]	
Umesawa, M, 2008	0.0862	0 1 9 7 6	1.5%	1.09 [0.74, 1.61]	
Subtotal (95% CI)	0.0002	0.1010	72.8%	0.93 [0.87, 1.00]	A
	week warmen over manage				•
Heterogeneity: Tau ² = 0.01; Test for overall effect: Z = 2.		= 0.000	9); F= 619	0	
	Chi2 - 20.01 df - 20./E	- 0.005	VIE - 5000	F	
Heterogeneity: Tau* = 0.00; Test for overall effect: Z = 1. Test for subgroup differenc				ı	1.1 0.2 0.5 1 2 5 Favourable to Dairy Unfavourable to Dai
Test for overall effect: Z = 1.	.65 (P = 0.10)			ı	1.1 0.2 0.5 1 2 5 Favourable to Dairy Unfavourable to Dai
Test for overall effect: Z = 1.	.65 (P = 0.10)			ı	Favourable to Dairy Unfavourable to Da
Test for overall effect: Z = 1.	.65 (P = 0.10)			ı	Favourable to Dairy Unfavourable to Da
Test for overall effect: Z = 1.	.65 (P = 0.10)			ı	Favourable to Dairy Unfavourable to Da
Test for overall effect: Z = 1.	.65 (P = 0.10)			ı	Favourable to Dairy Unfavourable to Da
Test for overall effect: Z = 1.	.65 (P = 0.10)			ı	Favourable to Dairy Unfavourable to Da
Test for overall effect: Z = 1.	.65 (P = 0.10)			ı	Favourable to Dairy Unfavourable to Da
Test for overall effect: Z = 1.	.65 (P = 0.10)			ı	Favourable to Dairy Unfavourable to Da
Test for overall effect: Z = 1.	.65 (P = 0.10)			ı	Favourable to Dairy Unfavourable to Dai
Test for overall effect: Z = 1.	.65 (P = 0.10)			ı	Favourable to Dairy Unfavourable to Da

BMJ Open

Effect Size, Elevated Blood Pressure / Hypertension: Industry ties v no industry ties

6						
7					Hazard Ratio	Hazard Ratio
8	Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
9	Industry Sponsored & Altorf-van der Kuil, W2012		0 4 4 2 0	13.9%	1 00 10 00 1 251	
10	Buendia, JR 2018	-0.1393			1.00 [0.80, 1.25] 0.87 [0.84, 0.90]	
11	Subtotal (95% CI)			37.0%	0.89 [0.80, 0.99]	◆
12	Heterogeneity: Tau ^z = 0.00;		= 0.23);	l² = 32%		
13	Test for overall effect: Z = 2.	18 (P = 0.03)				
14	Non-Industry Sponso	red &/OR No COI				
15	Alonso A, 2005	-0.2877	0.2687	4.9%	0.75 [0.44, 1.27]	
16	Engberink, MF 2009	-0.1744	0.094		0.84 [0.70, 1.01]	
17	Johansson, I 2018	-0.0101	0.072		0.99 [0.86, 1.14]	
18	Kim, D 2017 Steffen, LM 2005	-0.6162 -0.1985		14.3% 9.4%	0.54 [0.44, 0.67] 0.82 [0.59, 1.14]	
	Subtotal (95% CI)	0.1000	0.1001	63.0%	0.78 [0.61, 0.99]	•
19	Heterogeneity: Tau ² = 0.06;		P = 0.000	03); I ^z = 8 ⁻	1%	
20	Test for overall effect: Z = 2.	02 (P = 0.04)				
21	Total (95% CI)			100.0%	0.83 [0.73, 0.95]	•
22	Heterogeneity: Tau ² = 0.02;	Chi ² = 24.01, df = 6 (l	P = 0.000			0.1 0.2 0.5 1 2 5 10
23	Test for overall effect: Z = 2.	74 (P = 0.006)				0.1 0.2 0.5 1 2 5 10 Favourable to Dairy Unavourable to Dairy
24	Test for subgroup differenc	es: Chi² = 1.00, df = 1	(P = 0.3	2), I ^z = 09	5	· - · - · - · · · · · · · · · · · · · ·
25						
26						
27						
28						
29						
30						
31						
32						
33						
34						
35						
36						
37						
38						
39						
40						
41						
42						
43						
44						
45						
46						
47						
48						
49						
50						
51						
52						
53						
55 54						
54 55						
55 56						
57						
58						

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT	· · ·		
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2-3
INTRODUCTION			
, Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	3&5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5, Supp file 1
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	7-8
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	8-9
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	8-9
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	7 & 11
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6 & 10
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta analysis - http://bmjopen.bmj.com/site/about/guidelines.xhtml	10 -11

Page 87 of 87

RIS MAA

PRISMA 2009 Checklist

3 4			Page 1 of 2	
5 6 Section 7	/topic	#	Checklist item	Reported on page #
⁸ Risk of b	ias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	11
10 11 Additiona 12	al analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	10-11
13 RESUL	TS			
14 15 Study se 16 17 18	lection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	11, Figure 1, Supp file 4
20 Study ch	aracteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Supp file 5
²² Risk of b 23 24 25	ias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	13, Supp File 6, Figure 2
26 Results of 27	of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	13-15
30 31 32	s of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	13-15, Supp file 7 & 8, Figure 3
33 34 Risk of b 35 36	ias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	13,Supp file 6, Figure 2
³⁷ Additiona	al analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	N/A
	SION			
41 Summar 42	y of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	15-18
43 Limitation 44 45	าร	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias). For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	16

BMJ Open

PRISMA 2009 Checklist

4	Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	19
5	FUNDING			
7 8 9	Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	3&20
10 11	From: Moher D, Liberati A, Tetzlaff	J, Altma	an DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med	6(7): e1000097.
12			For more information, visit: www.prisma-statement.org. Page 2 of 2	
13			Page 2 of 2	
14 15				
16				
17				
18				
19				
20 21				
22				
23				
24				
25				
26 27				
28				
29				
30				
31 32				
33				
34				
35				
36				
37 38				
39				
40				
41				
42				
43 44				
44			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
46				
47				