
Appendix A – Detailed Methods 
 

Latent Class Analysis 
Latent variables are hidden and random variables that are not directly observable (nor measurable), yet 

could be extracted from known variables. Latent Class Analysis (LCA) is a clustering method that 

reveals these latent variables, also called classes. LCA has several powerful advantages over 

traditional cluster analysis techniques (Magdison and Vermunt 2002). For instance, it is a model-based 

clustering method and unlike other types of cluster analysis, LCA is not distance-based (distances 

between categorical data levels are often not clearly defined). Variables that are used as an input to 

LCA may be dichotomous, categorical, continuous or any combination. Resulting clusters (or classes) 

are based on membership probabilities estimated from the model, unlike the all-or-none based 

classification seen in traditional cluster analysis.  

The basic latent class analysis (for discrete data types) is defined as follows:  
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(Eq. 1) 

Here yij represents the (transformed) data of a hearing aid i on the j
th
 of J (categorical) hearing aid 

feature variables. LCA computes the probability of observing yi, which is denoted by P(yi). K is the 

number of latent classes and k represent a specific latent class, whereas X represents the discrete latent 

class variable defined by k. The probability for a hearing aid feature variable being a certain level of 

potential (e.g. not present or a low level of potential), conditional on belonging to class k, is denoted 

by P(yij|X = k). Lastly, P(X = k) represents the (unconditional) probability of belonging to latent class 

k. A fundamental assumption of the LCA model is local independence, here characterized by the 

product over the class-specific response probabilities. However, relaxing the local independence 

assumption has several advantages when LCA is used as a clustering tool. A very detailed and 

comprehensive summary regarding the implementation of LCA and its model assumptions is given by 

Vermunt and Magidson (2002). 

The LCA clustering method involves finding the values of the unknown parameters by maximizing a 

log-likelihood function. This means, maximizing some model criteria (e.g. Bayesian Information 

Criteria) given a specific dataset. This results in a better fitted model for the assignment of hearing 

aids to clusters. 

log 𝐿 (𝜽; 𝒚) =∑log𝑃(𝒚𝑖)
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(Eq. 2) 

Here, P(yi) represents the definition of a basic latent class analysis as shown formulated in Equation 1 

and N is the total sample size. The unknown parameters are denoted by θ.  

Maximization of the log-likelihood function is typically done by means of the expectation-

maximization (EM) algorithm. A known problem with this method is the occurrence of a local 

solution, which could be prevented by using multiple starting values (Vermunt and Magidson 2002). 

However, changes in starting conditions do result in changes to the clusters found, but, once averaged 

across multiple starts, the cluster pattern is representative of these starts. 



In an exploratory setting deciding on the number of classes that best fits the data is done using a fit 

measure obtained by the log-likelihood optimization. A typical measure is the Bayesian Information 

Criteria (BIC), which penalize model complexity; BIC is defined as -2logL + log(N)P (P is the number 

of parameters). Yet, as LCA is used to model data that has a large number or records and/or many 

variables, it is not uncommon the end up with a large number of classes (van den Bergh, van 

Kollenburg et al. 2018). Such a result can therefore no longer be interpreted properly, rendering the 

model impractical. To overcome this problem van den Bergh, Schmittmann et al. (2017) suggested an 

alternative to LCA, which they called Latent Class Trees (LCT). 

Latent Class Trees 
LCA is a very powerful method for revealing hidden structures in complex datasets, however there are 

some disadvantages concerning the interpretation of LCA results. One previously stated issue, is the 

possibility that there is not a distinct optimum of number of classes (i.e. clusters) that fits a model. 

Another problem has to do with the fact that is often unclear how different model results are 

connected. A solution to these problems is the use of a hierarchical structure imposed on the latent 

classes (van den Bergh, Schmittmann et al. 2017), which is the core concept of LCT. In short, LCT is 

defined by a structure of mutually linked classes that are formed by sequentially splitting classes into 

two subclasses. This allows for a substantive interpretation of the relation(s) between classes of 

different levels, and so how classes are formed and related. The initial split of a LCT structure does 

not necessarily have to be a binary split; in their paper van den Bergh, van Kollenburg et al. (2018) 

argues that there are good reasons to have more than two primary classes at the root node of the tree, 

they also provide methods on how to determine an appropriate number of primary classes. An example 

of such a structure is shown in Figure A.1. 

 

Figure A.1 – Example of a LCT structure. 

When building a LCT it should be noted that LCT is based on proportional class assignment, which 

implies that every hearing aid is present in each node with a weight resulting from the local latent class 

model. Thus, the weight at a particular node level equals the weight at the parent node times the 

probability of belonging to the child class; the weights at the first (primary) split are equal to 1 per 

definition. A detailed explanation on how to perform a split at a parent node is given by Van der Palm, 

Van der Ark et al. (2016). The general definition of a two class latent class model in the context of 

LCT for a given level is 

𝑃(𝒚𝑖|𝑋𝑝𝑎𝑟𝑒𝑛𝑡) = ∑𝑃(𝑋𝑐ℎ𝑖𝑙𝑑 = 𝑘|𝑋𝑝𝑎𝑟𝑒𝑛𝑡)
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(Eq. 3) 

 



Here Xparent denotes the parent class at the parent level L and Xchild is the child class k (at level L + 1), 

where k is either 1 or 2. The probability of observing yi is now conditional on belonging the parent 

class. Similarly, an adapted log-likelihood function is used to estimate the best fitted latent class 

model, dependent on the parent weight wi,parent 

log 𝐿 (𝜽; 𝒚, 𝑋𝑝𝑎𝑟𝑒𝑛𝑡) =∑𝑤𝑖,𝑝𝑎𝑟𝑒𝑛𝑡 log𝑃(𝒚𝑖|𝑋𝑝𝑎𝑟𝑒𝑛𝑡)
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(Eq. 4) 

Interpretation/evaluation 
As the LCT method was applied in an exploratory setting, the aim was not to find the ‘true’ number of 

hearing aid modalities, but to define a set of modalities that describes the data reasonably well and, 

moreover, is easy to interpret. There are several statistics involved in building and evaluating a LCT 

structure. First, the root split needs to be evaluated to determine the number of primary classes. The 

authors van den Bergh, van Kollenburg et al. (2018) proposed to use a relative improvement in fit 

measure to decide on the number of primary classes, based on the statistical fit index. The relative 

improvement for a model with one split over a model with no splits is per definition 1. Thus, the 

benefit of subsequent splits is therefore expressed as the ratio of BIC improvement, relative to a model 

with one split. We included this measure in our implementation of the LCT method, which is defined 

as the ratio of improvement when splitting the root node into two or more splits, relative to a model 

with no split (one class).  

Secondly, successive splits following the root node were  based on a combination of statistical 

information and on whether a particular split was a logical result that could be explained by the 

context of previous divisions. Several decisive criteria were used to asses a split in terms of model fit, 

such as the difference between the BIC of a one and a two split model (ΔBIC = BIC1 – BIC2). In the 

event that ΔBIC is 0 or smaller a split is no longer justified as it does not contribute to a better model 

fit at that particular level. In addition, a split was also evaluated by the local improvement in model fit 

at a particular node relative to the improvement of the primary split; the primary split always yields 

the largest local improvement in model fit. The evaluation of the quality of a particular split is another 

important piece of information which indicates how well a latent class could be predicted given a set 

of hearing aid variables; in other words, how well the latent classes could be separated (Vermunt and 

Magidson 2016). Entropy is typically redefined as a R
2
-type measure by a rescaling procedure to lie 

between 0 and 1, where a fraction close to one indicates a better separation of classes (Celeux and 

Soromenho 1996, van den Bergh, Schmittmann et al. 2017).  

To consider the quality of a specific branch of consecutive splits we evaluated the product of R
2

Entropy 

results at each node. The model measures, total entropy and relative BIC, were used to examine 

consecutive model results. However, for practical reasons it was decided to use the size of the terminal 

node as the main stopping criteria. Using (fixed) group sizes was suggested by van den Bergh, 

Schmittmann et al. (2017) and further investigated by Pelaez, Levine et al. (2019). Nasserinejad, van 

Rosmalen et al. (2017) proposed that the termination of a model should depend on a minimum group 

size that must be greater than a predetermined cut-off percentage of the total group size, ranging 

between 2% and 5%. We adopted this rule and set the cut-off percentage at 5%, hence the minimum 

group size of a LCA class should not exceed 5% of the input data, otherwise the LCA model would be 

discarded. Additionally, a maximum depth size was used to prevent splits based on increasingly minor 

details. The maximum depth size of the LCT was set at 4 levels. Beyond this point we stopped the 

LCT, regardless of all other measures.  

Lastly, for visual inspection of the different levels of the hierarchical LCT structure, hearing aid 

feature profiles plots were created for each node; the number of profiles per node depending on the 



appropriateness of a split. Figure A.2 shows an example of such a profile plot; in this example rescaled 

mean values for several hearing aid variables were shown. Mean Hearing aid feature data was rescaled 

between 0 and 1 to enable a straightforward comparison between different scaled variables. Moreover, 

the final hearing aid modalities were evaluated and labeled using such feature profile plots.  

 
Figure A.2 – Profiles plot total dataset. Mean Hearing aid feature data were rescaled between 0 

and 1 to enable a straightforward comparison between different scaled variables. Features were 

ordered according the three domains: Signal Processing, Comfort, and Adaptation. Whiskers 

show a 95% confidence interval for the specific feature. The lines between the points do not 

refer to a dependency between adjacent features, but were included to interpret and compare the 

feature profiles between modalities. Labels x-axis: Compression (C); Sound Processing (SP); 

Noise Reduction (NR); Expansion (Ex); Wind Noise Reduction (WNR); Impulse (Noise) 

Reduction (IR); Active Feedback Management (FBM); Directionality (Dir); Noise Reduction 

Environments (NRe); Ear-to-Ear Communication (ETE). 
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Appendix B – Detailed Results 
 

Complete list of database attributes 
 

Database attributes 

 

Name Type Name Type 

(1) Unique ID ID (26) Binaural beamforming Y/N 

(2) Brand  ID (27) Noise reduction levels Number 

(3) Manufacture ID ID (28) Noise reduction environments Number 

(4) Model name ID (29) Wind Noise reduction levels Number 

(5) Introduction Date (30) Passive Feedback levels Number 

(6) Availability Status (31) Active Feedback levels Number 

(7) Style Type (32) Expansion levels Number 

(8) Ear-coupling Type (33) Impulse Reduction levels Number 

(9) Water resistance IP-Class (34) Tele-coil Y/N 

(10) CROS Y/N (35) Audio-input DAI Y/N 

(11) OSPL 90 (Max Output) dB (36) Wireless audio input Y/N 

(12) OSPL 50 (Max Gain) dB (37) Wireless TV input  Y/N 

(13) OSPL 60 (Max Reference) dB (38) Wireless phone input Y/N 

(14) Lower limit bandwidth  Hz (39) Wireless mic input Y/N 

(15) Upper limit bandwidth Hz (40) Ear to Ear communication Y/N 

(16) Volume control Y/N (41) Ear to Ear feature synchronization Y/N 

(17) Program slots Number (42) Ear to Ear sound streaming Y/N 

(18) Remote control Y/N (43) Adaptation manager Y/N 

(19) Adjustable compression channels Number (44) Automatic learning Y/N 

(20) Adjustable MPO channels Number (45) Data-logging Y/N 

(21) Signal Processing channels Number (46) Frequency lowering levels Number 

(22 ) Directionality Y/N (47) Tinnitus Noiser Y/N 

(23) Automatic directionality Y/N (48) Environmental steering Y/N 

(24) Adaptive directionality levels Number (49) Environmental Steering levels Number 

(25) Natural ‘ear like’ directionality Y/N (50) Environmental Steering manual adjustable Y/N 

 

Table B.1 – All ‘ZN-hoortoestellen database’ attributes, including the type of variable. 

 

  



LCT Relative Improvement Primary Node 
 

n primary node split 2 3 4 5 

BTE 1.000 0.359 0.178 0.272 

ITE 1.000 0.411 0.401 0.297 

 

Table B.2 – Relative improvement ratio for the primary node, for the BTE and ITE data. The first split 

(n=2) always yields the largest improvement in model fit. Additional splits were computed as the ratio 

of the local improvement in model fit relative to the improvement of the first split. 

 

   

 


