Walkthrough with test data — SCOUT 0.1.0a documentation https://chunglabmit.github.io/scout/test data.html

Docs » Walkthrough with test data

Walkthrough with test data

The following walkthrough illustrates how to use SCOUT on a small organoid dataset using Docker.
Docker provides a cross-platform way to run SCOUT with minimal setup. The test dataset contains
stitched (whole-organoid) syto16, SOX2, and TBR1 images from a portion of a d35 cerebral
organoid cultured similar to the Lancaster protocol (described in the Methods section).

Before you start

This walkthrough has been optimized on Ubuntu Linux, so other platforms may require slight
changes to the commands below. Windows and Mac users may need to make the following
adjustments to the walkthrough commands:
1. Remove sudo from all commands
o If Docker is available to non-root users, then sudo is not needed on Mac. On Windows,
sudo is not available.
2. Replace $(pwd) with a full path to scout-data/test
o This may work on Mac, but using this subshell syntax on Windows Powershell would not
work. This should be replaced with c:\path\to\scout-data\test .
3. Remove the line breaks
e The backslash syntax for line breaks used in this walkthrough may not work on Windows
Powershell. Instead, you can enter the command using a single line.
4. Make sure Docker has permission to mount the drive with scout-data/

¢ On Windows, Docker may only have permissions to access the C: drive by default. If
scout-data is placed on another drive, then you should give Docker proper permissions by
accessing the Docker settings through the Docker tray icon.

Docker setup

The easiest way to ensure a similar runtime environment for SCOUT on Windows, Mac, and Linux is
by using the chunglabmit/scout Docker image hosted on pockerhub . First, you will need to install
“Docker Desktop” (which is free) by following the platform-specific instructions at
https:/docs.docker.com/get-docker/

1of8 9/9/2020, 9:41 PM



Walkthrough with test data — SCOUT 0.1.0a documentation https://chunglabmit.github.io/scout/test data.html
Once installed, you will need to download the pre-built Docker image for SCOUT. Open a terminal
and use docker pull to download it:

sudo docker pull chunglabmit/scout

This image may be moved to chunglabmit/scout in the future. Note that the sudo keyword may not
be needed on your platform for Docker commands.

Docker Desktop on Windows and Mac may restrict the amount of CPU and RAM resources that
each container can use by default. You can adjust resource allocation by accessing the Docker
settings through the Docker tray icon. You may also need to allow Docker access to other drives (D:,
E:, etc) if the scout-data directory is placed on a different drive. Lastly, if you want to run Jupyter
notebooks with the SCOUT Docker image, you may need to follow some platform-specific
networking setup (port forwarding, routing, etc), which you can read more about at
https:/docs.docker.com/docker-for-windows/networking/ or https:/docs.docker.com/docker-for-
mac/networking/ for Windows and Mac, respectively.

Download test data

After installing the SCOUT Docker image, a small test dataset (~3 GB) can be downloaded from
Dropbox. The test dataset is distributed as an archive called scout-data.zip , which contains two
subfolders: test and results . The test folder contains all the data needed to start the SCOUT
analysis from the begining, such as raw stitched images from a microscope. The resuits folder
contains all the intermediate results expected from completing the following walkthrough. This data
is included for completeness and verification purposes and is not required to actually run SCOUT
on newly acquired data.

First, download the test dataset from https:/www.dropbox.com/s/j37p5m7q7gklmpl/scout-
data.zip?dl=0 and unzip it. Make note of the resulting scout-data/test and scout-data/results
folders.

Open a terminal (or Powershell on Windows) and move into the scout-data/test directory:

cd path/to/scout-data/test # Replace with actual path

This folder will be mounted into the SCOUT Docker container using the -v ...:/scout/data
argument to docker run throughout the following walkthrough.

Preprocessing

20f8 9/9/2020, 9:41 PM



Walkthrough with test data — SCOUT 0.1.0a documentation https://chunglabmit.github.io/scout/test data.html
The first step in the SCOUT pipeline is to estimate the overall image histograms for each channel.

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout preprocess histogram \
data/dataset/color_0/ data/dataset/color@_hist.csv -s 1 -v

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout preprocess histogram \
data/dataset/color_1/ data/dataset/colorl_hist.csv -s 1 -v

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout preprocess histogram \
data/dataset/color_2/ data/dataset/color2_hist.csv -s 1 -v

This will create 3 CSV files with histograms for each channel. Using these histograms, we can
normalize the images to the range [0, 1] and apply a background threshold.

sudo docker run -v "$(pwd):/scout/data” chunglabmit/scout preprocess rescale \
data/dataset/color_0/ data/dataset/color@_hist.csv data/dataset/color@_rescaled \
-t 120 -p 99.7 -v

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout preprocess rescale \
data/dataset/color_1/ data/dataset/colorl_hist.csv data/dataset/colorl_rescaled \
-t 100 -p 99.7 -v

sudo docker run -v "$(pwd):/scout/data” chunglabmit/scout preprocess rescale \
data/dataset/color_2/ data/dataset/color2_hist.csv data/dataset/color2_rescaled \
-t 100 -p 99.7 -v

This will create three new folders containing normalized TIFF images for each channel. In order to
more easily work with volumetric image data, we the convert the 2D TIFF stacks into 3D Zarr
arrays. Each Zarr array is a nested folder of chunk compressed voxel data. By default, the chunk size
is (64, 64, 64).

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout preprocess convert \
data/dataset/color@ _rescaled data/dataset/syto.zarr -v

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout preprocess convert \
data/dataset/colorl_rescaled data/dataset/sox2.zarr -v

sudo docker run -v "$(pwd):/scout/data” chunglabmit/scout preprocess convert \
data/dataset/color2_rescaled data/dataset/tbrl.zarr -v

This will create three new *.zarr folders, one for each channel.

Nuclel Detection

Once we have the sytol6.zarr array, we can detect nuclei centroids using parallel processing on
each image chunk. Note that the current Docker image does not support GPU acceleration, and this
step would be much faster by installing from source on a machine with a GPU.

30of8 9/9/2020, 9:41 PM



Walkthrough with test data — SCOUT 0.1.0a documentation https://chunglabmit.github.io/scout/test data.html

sudo docker run -v "$(pwd):/scout/data” chunglabmit/scout nuclei detect data/dataset/syto.zarr \
data/dataset/nuclei_probability.zarr data/dataset/centroids.npy \
--voxel-size data/dataset/voxel_size.csv \
--output-um data/dataset/centroids_um.npy -n 2 -v

This will create a new Zarr array, nuclei_probability.zarr , as well as two numpy arrays with nuclei
centroid coordinates. Given these nuclei centroids, we can perform a seeded watershed
segmentation of the nuclei probability array to obtain the shape of each detected nucleus. This
operation is done with some overlap between adjacent chunks to avoid artifacts at the boundaries
between adjacent chunks in the watershed lines.

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout nuclei segment \
data/dataset/nuclei_probability.zarr data/dataset/centroids.npy \
data/dataset/nuclei_foreground.zarr data/dataset/nuclei_binary.zarr -n 2 -v

This will create two new Zarr arrays, nuclei_foreground.zarr and nuclei_binary.zarr . Given this

binary nuclei segmentation, we can compute morphological features for each nucleus. The resulting
morphological features are stored in a CSV.

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout nuclei morphology \
data/dataset/nuclei_binary.zarr data/dataset/centroids.npy \
data/dataset/nuclei_morphologies.csv -v

This will create a CSV file containing multiple morphological measurements for each segmented
nucleus. Finally, we can sample the fluorescence in the other channels (SOX2 and TBR1 in this case)
at each nucleus centroid.

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout nuclei fluorescence \
data/dataset/centroids.npy data/dataset/nuclei_fluorescence/ \
data/dataset/sox2.zarr/ data/dataset/tbril.zarr/ -v

This will create a folder, nuclei fluorescence/ , that contains numpy arrays with the fluorescence
mean and standard deviation for each detected nucleus. The resulting mean fluorescence
intensities (MFls) are useful for gating cells into different cell types based on protein expression.

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout nuclei gate \
data/dataset/nuclei_fluorescence/nuclei_mfis.npy \
data/dataset/nuclei_gating.npy 0.35 0.25 -v

This will create a numpy array, nuclei_gating.npy , containing binary cell type labels for each

4 of 8 9/9/2020, 9:41 PM



Walkthrough with test data — SCOUT 0.1.0a documentation https://chunglabmit.github.io/scout/test data.html
nucleus. In this case, high SOX2 expression is used to identify neural progenitors and high TBR1
expression is used to identify post-motitic neurons. Cells that have low SOX2 and TBR1 expression
are called “double negative” (DN). Cell types can be named in order using the following command:

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout nuclei name \
sox2 tbrl dn -o data/dataset/celltype_names.csv -v

This will create a CSV file with names for each cell type.

Microenvironment Analysis

(Note that this was formerly called niche analysis)

Given nuclei centroids and cell type labels, we can further describe the microenvironment around
each cell. To do this, we compute the proximity to each of the non-DN cell types, which is described
in the Method section.

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout niche proximity \
data/dataset/centroids_um.npy data/dataset/nuclei_gating.npy \
data/dataset/niche_proximities.npy -r 25 25 -k 2 -v

This will create a numpy array with proximities to each cell type. These spatial proximities are
attibutes of each cell describing the local environment. The next step is to use these proximity
values to further gate cells into subpopulations based on their spatial context.

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout niche gate \
data/dataset/niche_proximities.npy data/dataset/niche_labels.npy \
--low 0.2 0.2 --high 0.66 0.63 -v

This will create a numpy array containing microenvironment labels for each nucleus. Here, we
defined a low and high™ proximity threshold for SOX2 and TBR1 separately. This results in 7
subpopulations (3 high, 3 mid, and 1 low), which can be named using the following command:

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout niche name \
DN SOX2 TBR1 DP MidTBR1 MidSOX2 MidInter -o data/dataset/niche_names.csv -v

This will create a CSV file with names for each microenvironment.

Ventricle Segmentation

50f8 9/9/2020, 9:41 PM



Walkthrough with test data — SCOUT 0.1.0a documentation https://chunglabmit.github.io/scout/test data.html
Next, we turn to ventricle segmentation, which is required to calculate radial profiles in a
cytoarchitecture analysis. The pretrained U-Net model assumes that each input image is of nuclear
staining at 4 um pixel resoltion. We, therefore, resize the normalized nuclei images and stack them
into a single 3D TIFF.

sudo docker run -v "$(pwd):/scout/data” chunglabmit/scout segment downsample \
data/dataset/color@ _rescaled/ data/dataset/syto_downéx 6 6 -v -t

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout segment stack \
data/dataset/syto_down6x/ data/dataset/syto_down6x.tif -v

This will create a new folder and 3D TIFF with 6x downsampled (in x and y) images. The 3D TIFF
can be passed to the U-Net model for ventricle segmentation, which occurs one 2D slide at a time.

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout segment ventricle \
data/dataset/syto_downéx.tif models/unet_weights3_zika.h5 \
data/dataset/segment_ventricles.tif -t 0.5 -v

This will result in a 3D TIFF, segment_ventricles.tif , containing a binary segmentation of all
ventricles. We also need a foreground segmentation to determine the overall organoid size and
shape. A foreground segmentation can be computed by thresholding.

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout segment foreground \
data/dataset/syto_downéx.tif data/dataset/segment_foreground.tif -v -t ©.02 -g 8 4 4

This will create another 3D TIFF, segment_foreground.tif , containing a binary segmentation of the
whole organoid.

Cytoarchitecture Analysis

Given the ventricle segmentation, nuclei centroids, and cell types labels, radial profiles from each
ventricle can be computed. First, the ventricle segmentation is turned into a polygon mesh (using
the marching cubes algorithm).

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout cyto mesh \
data/dataset/segment_ventricles.tif data/dataset/voxel_size.csv \
data/dataset/mesh_ventricles.pkl -d 1 6 6 -g 2 -s 3 -v

This will generate a pickled Python dictionary, mesh ventricles.pkl , containing mesh verticies, faces,
and normals. Then, normal vectors from this mesh are used to compute radial profiles for each cell

type.

6 of 8 9/9/2020, 9:41 PM



Walkthrough with test data — SCOUT 0.1.0a documentation https://chunglabmit.github.io/scout/test data.html

sudo docker run -v "$(pwd):/scout/data” chunglabmit/scout cyto profiles \
data/dataset/mesh_ventricles.pkl data/dataset/centroids_um.npy \
data/dataset/nuclei_gating.npy data/dataset/cyto_profiles.npy -v

This will create a numpy array, cyto profiles.npy , containing radial profiles of cell counts. Finally, we
randomly sample from the large number of radial profiles to be able to cluster radial profiles across
many organoids. This step isn’t required in this case, but we include it for completeness.

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout cyto sample 5000 \
data/dataset/cyto_sample_index.npy -i data/dataset/cyto_profiles.npy \
-0 data/dataset/cyto_profiles_sample.npy -v

This will create numpy arrays containing a random sample of radial profiles and the corresponding
index from the original array of profiles. Then, we would compute clusters of cytoarchitectures
across all organoids by combining sampled profiles and using the determine cyto clusters.ipynb

notebook. You can access and use these notebooks by starting a Jupyter server within the SCOUT
Docker container:

sudo docker run -it -v "$(pwd):/scout/data" -p 8888:8888 chunglabmit/scout jupyter --ip 0.0.0.0

Note that the positions of the -p and -ip arguments are important because -p is for Docker port
forwarding and -ip is for the Jupyter server. You can navigate to 1ocalhost:8883 in your browser and
copy the access token printed to the terminal as /»token={copy-this-text} .

For the sake of brevity, we simply provide precomputed profiles, labels, and a fit UMAP model from
our d35/d60 comparison. With these, we can classify the cytoarchitecture of all radial profiles.

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout cyto classify \
data/cyto_profiles_combined.npy data/cyto_labels_combined.npy \
data/dataset/cyto_profiles.npy data/cyto_labels.npy -v \
--umap data/model_d35_d6@.umap

This will create a numpy array, cyto_labels.npy , containing cytoarchitecture labels for each radial
profile. Note that because the test dataset is not a full 3D dataset, the resulting radial profiles and
cytoarchitecture labels obtained here may have some artifacts due to empty profiles near the top
and bottom of the test volume.

We can provide appropriate names for each cytoarchitecture cluster after inspecting each cluster in
the determine cyto clusters.ipynb notebook.

7 of 8 9/9/2020, 9:41 PM



Walkthrough with test data — SCOUT 0.1.0a documentation https://chunglabmit.github.io/scout/test data.html

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout cyto name \
TBR1-LowDN TBR1-HighDN Surface Artifacts DN Adjacent -o data/cyto_names.csv -v

This will create a CSV with names for each cytoarchitecture class.

Multiscale Analysis

All of the intermediate results above are used to compute multiscale features for each dataset in an
analysis. Note that the following command assumes that the intermediate results are named as
shown in the previous steps.

sudo docker run -v "$(pwd):/scout/data" chunglabmit/scout multiscale features data/ \
-d166-g2-v

This command will create an Excel file called organoid features.xlsx , which is the final step in the
walkthrough. Details of how to perform statistical analysis of multiple organoids can be found in
the full SCOUT tutorial.

Expected results

The final organoid_features.x1sx file can be inspected in Excel. For convenience, we highlight some
expected results in organoid_features.xlsx here:

e TBR1 nbrhd, tbr count: 3967
e SOX2 nbrhd, sox2 count: 12670
e ventricle equivalent diameter mean (um): 48.874

e organoid volume (mm3): 0.06565 (not a full organoid dataset)

All of the intermediate results can be compared to the results in scout-data/results .

8of 8 9/9/2020, 9:41 PM



