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Supporting Text S1: Quality assurance of PFAS assessment 

Detailed information about the PFAS measurement quality assurance (QA) and quality control 

(QC) has been reported previously.(1) Briefly, internal QC samples were analyzed along with 

each batch of samples sent to NIPH to ensure high quality of the determinations. To monitor 

possible batch differences during the project, the results of all internal control samples were 

plotted in quality control charts per contaminant. The results were found satisfactory and no 

batch correction was applied. To ensure comparable results in PFAS assessment between 

RWTH at Aachen University (which conducted the assessment for INMA) and NIPH (which 

conducted the assessment for the other HELIX cohorts), 10 samples from INMA were 

assessed using the common HELIX protocol at NIPH and results were of similar magnitude 

and highly correlated (Spearman r > 0.8). Additionally, the NIPH laboratory participated three 

times in the “Arctic Monitoring and Assessment Program “Ring Test for Persistent Organic 

Pollutants in Human Serum” (AMAP) interlaboratory comparison study, with each round 

including 3 PFAS samples. The samples were spiked in a wide concentration range and Z-

scores below 2 were obtained for all PFAS, except for PFUnDA in two samples. Moreover, 15 

PFAS samples from 4 rounds of the AMAP interlaboratory comparison study were analyzed 

during the period when HELIX samples were analyzed, and the mean deviation from the 

assigned value varied between 8 and 17%. 
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Supporting Text S2: Bayesian Kernel Machine Regression (BKMR) modelling 
 
The BKMR models used in our study are given by: 
 

𝛷𝛷−1(𝜇𝜇1) =  ℎ (PFOS𝑖𝑖, PFOA𝑖𝑖, PFNA𝑖𝑖, PFHXS𝑖𝑖, PFUnDA𝑖𝑖) + 𝛽𝛽𝑍𝑍𝑖𝑖1…𝑝𝑝
𝑇𝑇 + 𝜀𝜀𝑖𝑖     (1) 

𝑌𝑌𝑖𝑖 = ℎ (PFOS𝑖𝑖, PFOA𝑖𝑖, PFNA𝑖𝑖, PFHXS𝑖𝑖, PFUnDA𝑖𝑖) + 𝛽𝛽𝑍𝑍𝑖𝑖1…𝑝𝑝
𝑇𝑇 + 𝜀𝜀𝑖𝑖    (2)                                           

 

In equation (1), Φ−1 is the link function of the probit regression and 𝜇𝜇1 =  𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖 𝐿𝐿𝐿𝐿𝑟𝑟𝑟𝑟𝑖𝑖 =

1) is the probability of the event “being at risk for liver injury” for each participant 

𝐿𝐿 (𝐿𝐿 = 1, … , 1105). Equation (1) was considered our main model. Probit model coefficients in 

this model were converted into odds ratios using 𝑙𝑙𝑙𝑙𝑙𝑙𝐿𝐿𝑙𝑙(𝜇𝜇) = 1.6 . 𝛷𝛷−1(𝜇𝜇).(2) In equation (2), 𝑌𝑌𝑖𝑖 

denotes the continuous liver enzyme concentrations (ALT𝑖𝑖, AST𝑖𝑖 , 𝑙𝑙𝐿𝐿 GGT𝑖𝑖) for each participant 

𝐿𝐿. In both models, ℎ () denotes a high-dimensional exposure-response function for the PFAS 

mixture to be estimated, 𝑍𝑍𝑖𝑖1…𝑝𝑝
𝑇𝑇  denotes a set of 𝑝𝑝 potential confounders, and 𝜀𝜀𝑖𝑖~ N (0,σ2). 

 ℎ () can accommodate non-linearity and/or interaction among the mixture components and is 

estimated using a Gaussian kernel machine representation. This flexibly captures a wide 

range of underlying functional forms for h () and has been shown to work well in both 

simulation and epidemiologic studies. Intuitively, the Gaussian kernel assumes that two 

subjects with similar exposure profiles will have more similar liver outcome profiles, and this 

similarity is measured using the kernel function. BKMR was fit with the R package bkmr(2) 

using the Markov chain Monte Carlo algorithm with 10,000 iterations.(3) Once fitted, BKMR 

provides a posterior inclusion probability (PIP) for each of the exposures, which constitutes a 

measure of the relative importance of each exposure within the h function.(3)  

Readers who are interested in BKMR are referred to Bob et al(3) that provides details about 

the statistical methodology. Moreover, previous analyses provide additional examples of 

BKMR implementation.(4, 5) 
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Supporting Text S3: xMWAS 
 

xMWAS provides an automated framework for integrative and differential network analysis 

through 3 stages: 1) pairwise integrative analysis; 2) network visualization; and 3) differential 

network analysis.  

In stage 1, we applied sparse Partial Least Squares regression, a dimension reduction 

technique, for pairwise data integration and for generating the association matrices between 

maternal blood PFAS and child serum metabolites in each group of children at high and low 

risk for liver injury. sPLS performs simultaneous data integration and variable selection using 

a LASSO penalty for the loading vectors. Within xMWAS, the network() function in the 

mixOmics package was used to generate the association score matrix, 𝐴𝐴𝑋𝑋𝑋𝑋,  between the 

matrices X (i.e., PFAS) and Y (i.e., metabolites), where the association score between 

variables 𝑋𝑋𝑖𝑖 and 𝑌𝑌𝑗𝑗  is an approximation of their correlation coefficients determined using the 

PLS components and regression coefficients.(6-8) Student's t-test with an alpha level of 0.05 

was used to evaluate the statistical significance of pairwise association scores; only 

associations with P <0.05 were used for downstream analysis. 

Following the pairwise association analyses, an edge list matrix, Le, was generated such that 

each row in Le corresponded to an edge between PFAS and metabolites. Matrix Le was then 

used to generate the integrative network graph, G=(V,E), where V corresponds to “nodes” 

(PFAS and metabolites) and E corresponds to edges or connections representing positive or 

negative associations of PFAS with metabolites. Network graphics in xMWAS are generated 

using the igraph package in R.(9) 

In stage three of differential network analysis, the differential eigenvector centrality method 

was applied to identify nodes that underwent changes in their topological characteristics 

between the groups of children.(10, 11) 

Readers who are interested in xMWAS are referred to Uppal et al(12) that provides details 

about statistical methodology. Moreover, previous analyses provide additional examples of 

xMWAS implementation.(13, 14) 
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Supporting Text S4: Latent integrated variable analysis (LUCIDus) 

In the latent integrated variable analysis, PFAS mixture exposure was calculated as the sum 

of maternal plasma PFAS concentrations weighted by their posterior inclusion probabilities 

obtained from BKMR equation (1) to create a single variable capturing the relative 

importance of each PFAS within the mixture. In this analysis, we included the same set of 

covariates as the BKMR analysis for the association of the latent variables with liver injury 

risk. We obtained effect estimates for the association of estimated latent clusters with liver 

injury risk. For the estimation of the number of latent clusters, we used the Bayesian 

Information Criteria. The integrated analysis links the measured PFAS exposure variation (X) 

on liver injury risk (Y) via unmeasured and estimated subgroups (C).(15) In turn, the serum 

levels of metabolites (M) also characterize these unobserved (C) subgroups. Here, a model 

describing the liver injury risk (Y) as a function of cluster, C is (μY) = γ0 + γSC, where γS 

represents the effect of each estimated cluster C, on the liver injury risk Y. The clusters are 

related to the metabolites as a multivariate normal model, M~MVN(Cθ,Σ), where θ represents 

mean differences of the metabolite levels M by each cluster, and Σ is the covariance of the 

metabolites. The estimation of the clusters, C, follows a multinomial model with a linear 

predictor as a function of the PFAS exposures X, giving Pr(C=k | X, β), with corresponding 

effect estimates, β. Standard errors for parameters are estimated with a bootstrap procedure.  

Readers who are interested in LUCIDus are referred to Peng et al(15) that provides further 

details about statistical methodology. Moreover, previous analyses provide additional 

examples of LUCIDus implementation.(16-18) 
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Supporting Table S1. Distribution of maternal blood PFAS concentrations during 
pregnancy and their pairwise correlation coefficients 

LOD, limit of detection; PFHxS, perfluorohexane sulfonate; PFNA, perfluorononanoate; PFOA, 
perfluorooctanoate; PFOS, perfluorooctane sulfonate; PFUnDA, perfluoroundecanoate. 
* Spearman rho was calculated for the overall study population and was based on log2-transformed 
PFAS concentrations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
PFOA PFOS PFHxS PFNA PFUnDA 

> LOD (%) 99.7 100 97.5 97.9 95.4 
Blood concentration, median (25th-75th percentile), ng/ml 

  

Overall 2.38 (1.45, 3.45) 6.74 (4.43, 10.35) 0.59 (0.34, 0.93) 0.72 (0.47, 1.11) 0.2 (0.13, 0.3) 
BiB 1.93 (1.38, 2.82) 3.77 (2.36, 6.35) 0.43 (0.22, 0.91) 0.27 (0.17, 0.51) 0.04 (0.02, 0.1) 
EDEN 3.51 (2.82, 4.56) 13.39 (9.31, 19.04) 1.01 (0.75, 1.52) 0.93 (0.7, 1.26) 0.16 (0.12, 0.21) 
INMA 2.78 (1.99, 3.8) 6.19 (4.39, 8.07) 0.81 (0.58, 1.12) 0.8 (0.61, 1.07) 0.21 (0.14, 0.31) 
KANC 1.03 (0.77, 1.49) 4.32 (3.1, 5.54) 0.34 (0.27, 0.47) 0.64 (0.44, 0.89) 0.2 (0.15, 0.27) 
MoBa 2.15 (1.44, 3.11) 9.25 (6.73, 13.01) 0.65 (0.44, 0.9) 0.49 (0.36, 0.67) 0.25 (0.17, 0.36) 
RHEA 2.33 (1.78, 3.22) 5.23 (4.01, 6.74) 0.27 (0.21, 0.41) 1.38 (1.1, 1.98) 0.28 (0.19, 0.39) 

Spearman rho* 
    

PFOA 1.00 - - - - 
PFOS 0.61 1.00 - - - 
PFHxS 0.65 0.70 1.00 - - 
PFNA 0.60 0.35 0.25 1.00 - 
PFUnDA 0.18 0.26 0.11 0.42 1.00 
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Supporting Table S2. Pairwise association scores between maternal blood PFAS 
concentrations in pregnancy and child serum metabolites in the integrative network of 
children at high liver injury risk 
Metabolites Class PFOA PFOS PFHxS PFNA PFUnDA 
Aspartate AA -0.16* -0.19* -0.24* -0.02 0.01 
Glutamate AA -0.16* -0.18* -0.21* -0.06 -0.04 
Glycine AA -0.10 -0.10 0.00 -0.19* -0.18* 
Isoleucine AA 0.06 0.05 -0.11 0.25* 0.26* 
Leucine AA 0.05 0.05 -0.10 0.23* 0.23* 
Lysine AA 0.15* 0.17* 0.10 0.18* 0.16* 
Phenylalanine AA 0.01 0.00 -0.13 0.18* 0.19* 
Serine AA -0.11 -0.14 -0.23* 0.05 0.07 
Tryptophan AA 0.10 0.10 -0.07 0.28* 0.28* 
Tyrosine AA 0.04 0.03 -0.08 0.17* 0.18* 
Valine AA 0.08 0.08 -0.08 0.26* 0.26* 
C2 Acyl-Carn 0.02 0.01 -0.10 0.15* 0.16* 
Acetylornithine BA 0.02 0.01 -0.16* 0.23* 0.24* 
Alpha-aminoadipic acid BA 0.10 0.10 0.03 0.16* 0.15* 
Creatinine BA 0.16* 0.17* 0.09 0.20* 0.18* 
Methionine sulfoxide BA -0.18* -0.22* -0.28* -0.03 0.01 
Taurine BA -0.13 -0.15* -0.15* -0.08 -0.06 
Lyso-PC a C16:1 GP 0.10 0.10 0.04 0.14* 0.13 
Lyso-PC a C18:1 GP 0.00 -0.02 -0.20* 0.24* 0.25* 
Lyso-PC a C18:2 GP -0.04 -0.06 -0.19* 0.14 0.16* 
Lyso-PC a C20:3 GP 0.05 0.04 -0.17* 0.30* 0.31* 
Lyso-PC a C20:4 GP 0.00 -0.01 -0.15* 0.19* 0.20* 
PC aa C28:1 GP 0.14 0.15* 0.11 0.15* 0.13 
PC aa C32:0 GP -0.08 -0.10 -0.25* 0.15* 0.17* 
PC aa C34:1 GP 0.02 0.00 -0.16* 0.22* 0.23* 
PC aa C34:2 GP -0.09 -0.11 -0.23* 0.09 0.12 
PC aa C36:0 GP 0.13 0.15* 0.13 0.10 0.08 
PC aa C36:1 GP 0.05 0.04 -0.10 0.22* 0.22* 
PC aa C36:2 GP -0.08 -0.09 -0.15* 0.03 0.04 
PC aa C36:3 GP -0.04 -0.06 -0.23* 0.19* 0.22* 
PC aa C36:4 GP -0.04 -0.06 -0.17* 0.12 0.13 
PC aa C36:5 GP 0.07 0.10 0.20* -0.09 -0.11 
PC aa C36:6 GP 0.15* 0.18* 0.26* -0.01 -0.04 
PC aa C38:0 GP 0.14 0.16* 0.13 0.11 0.09 
PC aa C38:3 GP 0.06 0.06 -0.03 0.15* 0.15* 
PC aa C38:6 GP 0.15* 0.17* 0.21 0.04 0.01 
PC aa C40:2 GP -0.14* -0.16* -0.10 -0.16* -0.14* 
PC aa C40:4 GP -0.08 -0.10 -0.16* 0.04 0.06 
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Supporting Table S2- continued. 

Metabolites Class PFOA PFOS PFHxS PFNA PFUnDA 
PC aa C40:5 GP -0.11 -0.12 -0.05 -0.15* -0.14* 
PC aa C40:6 GP 0.13 0.16* 0.25* -0.03 -0.06 
PC ae C32:1 GP 0.04 0.04 -0.07 0.18* 0.18* 
PC ae C32:2 GP 0.13 0.14* 0.07 0.18* 0.16* 
PC ae C34:0 GP 0.09 0.09 -0.01 0.18* 0.18* 
PC ae C34:1 GP 0.01 0.00 -0.15* 0.21* 0.22* 
PC ae C34:2 GP -0.02 -0.03 -0.15* 0.15* 0.17* 
PC ae C36:0 GP 0.08 0.08 -0.04 0.21* 0.21* 
PC ae C36:1 GP 0.05 0.05 -0.05 0.16* 0.16* 
PC ae C36:3 GP 0.00 -0.02 -0.16* 0.19* 0.20* 
PC ae C36:4 GP 0.09 0.08 -0.08 0.27* 0.27* 
PC ae C36:5 GP 0.10 0.10 0.00 0.20* 0.20* 
PC ae C38:0 GP 0.11 0.13 0.19* -0.01 -0.04 
PC ae C38:2 GP -0.09 -0.11 -0.18* 0.04 0.06 
PC ae C38:4 GP 0.05 0.05 -0.10 0.24* 0.24* 
PC ae C38:5 GP 0.03 0.02 -0.13 0.22* 0.22* 
PC ae C38:6 GP 0.16* 0.18* 0.12 0.18* 0.16* 
PC ae C40:4 GP -0.09 -0.11 -0.20* 0.06 0.08 
PC ae C42:4 GP -0.09 -0.10 -0.17* 0.03 0.05 
H1 Hexose 0.10 0.10 -0.05 0.25* 0.24* 
SM C16:1 SM 0.02 0.01 -0.08 0.14 0.14* 
SM C18:0 SM 0.14 0.15* 0.05 0.22* 0.20* 
SM C18:1 SM 0.12 0.13 0.03 0.21* 0.20* 
SM C24:0 SM -0.08 -0.10 -0.19* 0.07 0.09 
SM (OH) C14:1 SM 0.12 0.13 0.07 0.15* 0.13 
SM (OH) C16:1 SM 0.13 0.15* 0.10 0.15* 0.13 
SM (OH) C22:1 SM -0.02 -0.04 -0.21* 0.22* 0.24* 
SM (OH) C24:1 SM -0.01 -0.02 -0.13 0.15* 0.16* 

Association scores were derived using sparse Partial Least Squares regression. AA, amino 
acid; Acyl-Carn, acylcarnitine; BA, biogenic amine; GP, glycerophospholipid; PC, 
phosphatidylcholine; PFHxS, perfluorohexane sulfonate; PFNA, perfluorononanoate; PFOA, 
perfluorooctanoate; PFOS, perfluorooctane sulfonate; PFUnDA, perfluoroundecanoate; SM, 
sphingomyelin.   
* P<0.05 
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Supporting Table S3. Pairwise association scores between maternal blood PFAS 
concentrations in pregnancy and child serum metabolites in the integrative network of 
children at low liver injury risk  
 Class PFOA PFOS PFHxS PFNA PFUnDA 
Isoleucine AA 0.05 0.00 -0.03 0.16* 0.11 
Glutamate AA -0.24* -0.32* -0.30* 0.01 -0.02 
Glutamine AA 0.10 0.15* 0.08 0.03 0.05 
Aspartate AA -0.01 -0.20* -0.18* 0.05 -0.01 
Asparagine AA 0.17* 0.09 0.09 0.14 0.07 
C2 Acyl-Carn -0.12 -0.14 -0.18* 0.03 0.01 
Methionine sulfoxide BA -0.17* -0.24* -0.22* 0.05 0.00 
Creatinine BA 0.20* 0.20* 0.19* 0.12 0.04 
Acetylornithine BA 0.08 -0.06 -0.06 0.18* 0.10 
PC ae C40:6 GP -0.04 0.18* 0.11 -0.12 0.13 
PC ae C40:2 GP -0.05 0.19* 0.07 -0.13 0.06 
PC ae C40:1 GP 0.08 0.14* 0.14 -0.05 0.07 
PC ae C38:6 GP -0.01 0.11 0.11 -0.04 0.14* 
PC ae C38:0 GP 0.03 0.25* 0.18* -0.14* 0.05 
PC ae C36:4 GP -0.03 -0.15* -0.07 0.11 0.11 
PC ae C36:1 GP 0.02 0.17* 0.07 0.00 0.09 
PC ae C34:0 GP 0.02 0.17* 0.06 0.02 0.11 
PC aa C42:6 GP -0.04 0.20* 0.08 -0.17* 0.05 
PC aa C40:6 GP 0.02 0.23* 0.18 -0.16* 0.04 
PC aa C40:2 GP -0.04 -0.01 0.03 -0.16* -0.03 
PC aa C40:1 GP -0.07 0.03 0.04 -0.17* 0.03 
PC aa C38:6 GP 0.03 0.22* 0.17 -0.12 0.08 
PC aa C38:1 GP -0.04 0.14* 0.09 -0.11 0.09 
PC aa C36:6 GP 0.06 0.27* 0.20 -0.12 0.06 
PC aa C36:5 GP 0.01 0.26* 0.16 -0.14 0.02 
PC aa C28:1 GP 0.06 0.18* 0.09 0.02 0.08 
Lyso-PC a C20:4 GP 0.08 -0.06 0.00 0.14 0.09 
Lyso-PC a C20:3 GP 0.14 0.01 0.04 0.16 0.08 
Lyso-PC a C170 GP 0.03 0.19* 0.11 0.00 0.09 
Lyso-PC a C161 GP 0.06 0.15* 0.09 0.05 0.06 
SM (OH) C24:1 SM -0.05 -0.01 -0.09 0.06 0.14* 
SM (OH) C22:1 SM -0.03 -0.07 -0.10 0.14* 0.12 
SM (OH) C16:1 SM -0.03 0.17* 0.07 0.02 0.15* 
SM (OH) C14:1 SM 0.0004 0.15* 0.06 0.07 0.12 

Association scores were derived using sparse Partial Least Squares regression. AA, amino 
acid; Acyl-Carn, acylcarnitine; BA, biogenic amine; GP, glycerophospholipid; PC, 
phosphatidylcholine; PFHxS, perfluorohexane sulfonate; PFNA, perfluorononanoate; PFOA, 
perfluorooctanoate; PFOS, perfluorooctane sulfonate; PFUnDA, perfluoroundecanoate; SM, 
sphingomyelin.   
* P<0.05 
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Supporting Table S4. Distribution of metabolites in the clusters of 
children derived from the integrated latent variables analysis 
 Cluster 2 Cluster 1 Absolute difference 

in means Metabolites Mean (SD) Mean (SD) 
Valine 0.46 (0.29) -0.19 (0.27) 0.65 
Isoleucine 0.48 (0.3) -0.2 (0.27) 0.68 
Leucine 0.45 (0.29) -0.19 (0.26) 0.64 
Tryptophan 0.47 (0.35) -0.2 (0.34) 0.67 
Phenylalanine 0.49 (0.3) -0.2 (0.25) 0.69 
Acetylornithine 0.5 (0.22) -0.2 (0.2) 0.70 
PC aa C36:1 0.46 (0.36) -0.19 (0.36) 0.65 
Lyso-PC a C18:1 0.37 (0.29) -0.15 (0.3) 0.52 
PC ae C36:0 0.36 (0.33) -0.15 (0.35) 0.51 
PC aa C34:1 0.35 (0.34) -0.14 (0.34) 0.49 
Lyso-PC a C20:3 0.33 (0.3) -0.13 (0.3) 0.46 
PC aa C36:3 0.27 (0.37) -0.11 (0.37) 0.38 
H1 0.26 (0.21) -0.11 (0.21) 0.37 
PC aa C36:6 0.22 (0.26) -0.09 (0.27) 0.31 
PC ae C34:1 0.22 (0.33) -0.09 (0.35) 0.31 
PC ae C38:0 0.22 (0.27) -0.09 (0.28) 0.31 
PC aa C32:0 0.21 (0.33) -0.09 (0.33) 0.30 
PC aa C36:5 0.21 (0.23) -0.08 (0.23) 0.29 
Lyso-PC a C20:4 0.2 (0.27) -0.08 (0.28) 0.28 
PC aa C40:6 0.18 (0.23) -0.07 (0.24) 0.25 
PC ae C36:3 0.16 (0.35) -0.07 (0.38) 0.23 
PC ae C36:5 0.15 (0.31) -0.06 (0.34) 0.21 
PC aa C38:6 0.15 (0.25) -0.06 (0.26) 0.21 
SM (OH) C22:1 0.13 (0.22) -0.06 (0.22) 0.19 
PC ae C36:4 0.11 (0.32) -0.05 (0.35) 0.16 
PC ae C38:5 0.11 (0.31) -0.05 (0.34) 0.16 
PC ae C38:4 0.02 (0.33) -0.01 (0.35) 0.03 
SM C18:0 0.02 (0.2) -0.01 (0.21) 0.03 
SM C18:1 0.01 (0.29) 0.00 (0.22) 0.01 

* Mean and SD of metabolites are calculated on log10-transformed and 
standardized data 
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Supporting Figure S1. Directed acyclic graph for the association of prenatal PFAS 
exposure and liver injury risk in childhood 
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Supporting Figure S2. Associations between single maternal blood PFAS concentrations 
within the mixture and liver injury risk in children. (a) Exposure–response associations for 
each PFAS when the other PFAS are fixed at the median. Blue lines represent ORs, gray bands 
represent 95% confidence bands, and red dotted lines represents the null. (b) Exposure–
response associations for each PFAS when another PFAS is at either the 25th, 50th, 75th 
percentile and the remaining PFAS are fixed to their median. Lines represent ORs. Effect 
estimates were estimated by Bayesian Kernel Machine regression models adjusted for cohort 
of inclusion, maternal age, maternal education level, maternal pre-pregnancy BMI, child 
ethnicity, child age, and child sex. PFHxS, perfluorohexane sulfonate; PFNA, 
perfluorononanoate; PFOA, perfluorooctanoate; PFOS, perfluorooctane sulfonate; PFUnDA, 
perfluoroundecanoate. 
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Supporting Figure S3. Joint effect of prenatal PFAS mixture on liver injury risk in 
sensitivity analyses. (a) Effect estimates after adjusting for child serum PFAS levels. (b) Effect 
estimates after further adjustment for child weight status based on WHO BMI classification. (c) 
Effect estimates after further adjustment for gestational weight gain, food indicators of maternal 
diet quality, and childhood sedentary behavior and diet quality indicators. (d) Effect estimates 
following exclusion of one cohort at a time and of the two cohorts contributing most to the cases 
of increased liver enzymes. (e) Effect estimates after stratifying for sex. (f) Effect estimates after 
stratifying for gestational period of PFAS assessment. Black circles represent ORs, black vertical 
lines represent 95% CIs, and red horizontal lines represent the null. Effect estimates were 
estimated by Bayesian Kernel Machine regression models adjusted for cohort of inclusion, 
maternal age, maternal education level, maternal pre-pregnancy BMI, child ethnicity, child age, 
child sex (for a, b and c). For a, models were further adjusted for child serum levels of PFOA, 
PFOS, PFNA, PFHxS and PFUnDA, For c, models were further adjusted for gestational weight 
gain, maternal consumption of fish and fruits and vegetables, child sedentary behavior and child 
consumption of fish, fruits and vegetables, and sugar-sweetened beverages. 
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