SUPPLEMENTAL MATERIAL

Tables

<u>Defect</u>	<u>Gene</u>	<u>Mutations</u>	<u>Reference</u>	<u>Residual</u> <u>C-I</u> <u>activity</u>
	ND3	10158T>C p.Ser34Pro	(1)	52%
	ND6	14459G>A p.Ala72Val	(1)	57%
Complex I	NDUFB3	c.64T>C, p.Trp22Arg c.208G>T, p.Gly70X	(2)	17%
Deficiency	NDUFB9	c.191T>C homo p.L64P	(1)	18%
5	NDUFS1	c.683T>C, p.V228A c.755A>G, p.D252G	(1)	37%
	NDUFS3	c.595C>T homo; p.R199W	(3)	40%
	NDUFS8	c.187G>C homo, p.Glu63Gln	(3)	54%
			1	
				<u>Residual</u> <u>CoQ₁₀ levels</u>
Primary CoQ ₁₀	PDSS2	c.[964C>T];[1145C>T]	(4)	15% 27%
Deficiency	COQ4	c.[155T>C];[518 520delCCA]	(5)	

Table S1. Human skin fibroblasts with CI or CoQ₁₀ deficiency used in this study.

]	Fable S2.	Levels of CoQ10 in unt	reated and CoQ10-supplemented	cells.

	Regular Medium (A)	Regular Medium + 100 µM CoQ ₁₀ (B)	(B/A)
Gene	<u>CoQ10 (ng/mg prot)</u>	CoQ10 (ng/mg prot)	CoQ10 Increase Fold
Controls	83.2 ± 13.3	$715335 \pm 304041 +++$	8597
ND3	86.4 ± 2.1	$446180 \pm 166429 +++$	5164
ND6	82.4 ± 30.1	$450973 \pm 50294 +++$	4881
NDUFB3	88 ± 22.8	$3260636 \pm 1498894 +++$	37074
NDUFB9	84.6 ± 7.5	$195247 \pm 31905 +++$	2308
NDUFS1	75 ± 8.6	$265735 \pm 144425 +++$	3543
NDUFS3	93 ± 9.2	$446627 \pm 169118 + + +$	4802
NDUFS8	87.4 ± 9.3	591155 ± 415712 +++	6768
PDSS2	18.8 ± 11.2 ***	$2046794 \pm 9957 +++$	108872
COQ4	27.4 ± 13.4 ***	$472774 \pm 166429 +++$	17255

Data are expressed as mean \pm SD. ***P < 0.001, differences versus controls; +++ P < 0.001, differences versus untreated cells (A).

		No treatment	Treatment with oral Q ₁₀ H ₂	
Model	Tissue	<u>Total CoQ (ng/mg prot)</u>	<u>Total CoQ (ng/mg prot)</u>	
C57Bl6J	Liver	352.9 ± 13.3	$1885.7 \pm 412.6 +++$	
		<u>CoQ9 (ng/mg prot)</u>		
Ndufs4 ^{+/+}	Brain	315.3 ± 50.3		
Ndufs4-/-	Brain	365.7 ± 77.8		
		Vehicle	Treatment with NAC	Under SAAR
		<u>CoQ9 (ng/mg prot)</u>	<u>CoQ9 (ng/mg prot)</u>	<u>CoQ9 (ng/mg prot)</u>
<i>Coq9</i> ^{+/+}	Kidney	1042.3 ± 222.4		
$Coq 9^{R239X}$	Kidney	19.2 ± 2.1 ***	16.2 ± 2.1 ***	21.9 ± 4.1 ***

Table S3. Levels of CoQ in tissues of the mouse models used in this study.

Data are expressed as mean \pm SD. ***P < 0.001, differences versus wild-type; +++ P < 0.001, differences versus untreated animals.

Figures

Figure S1. Representation of some of the pathways altered after CoQ_{10} supplementation.

(A) Cysteine biosynthesis/homocysteine degradation.

(B) Serine and Glycine Biosynthesis.

(C) Folate transformation.

The shape with green filling means that the gene is downregulated; the shape with pink filling means that the gene is upregulated.

Figure S2. Representation of some of the pathways altered after CoQ_{10} supplementation.

(A) Purine nucleotides biosynthesis and urate biosynthesis.

(B) Salvage pathways of pyrimidine ribonucleotides.

(C) Pyrimidine deoxyribonucleotides de novo biosynthesis.

The shape with green filling means that the gene is downregulated; the shape with pink filling means that the gene is upregulated.

Figure S3. Changes in gene expression in the pathways related to sulfide metabolism in *NDUFS1* mutant cells.

(A) Changes in the expression of genes related to sulfide metabolism.

(B) Changes in the expression of genes related to cysteine biosynthesis.

(C) Changes in the expression of genes related to the folate cycle.

(D) Changes in the expression of genes related to nucleotides.

Bars in blue indicates genes overexpressed; bars in orange indicates genes underexpressed. Botted lines indicate the limit chosen for overexpression (log2 FC = 0.585) or underexpression (log2 FC = -0.585). Asterisks indicates the genes that exceed the chosen fold change limit and have p-values less than 0.05 in the comparison of treated and untreated cells in both control and mutant cells.

Figure S4. Relation between pathways, with some key genes indicated. Sulfide oxidation pathway (black arrows); transsulfuration pathway (grey arrows); sulfide synthesis (yellow arrows); folate cycle (red arrows); serine biosynthesis (blue arrows); nucleotides metabolism (purple arrows).

Figure S5. The levels of SQOR are modified under mitochondrial dysfunction or CoQ₁₀ supplementation, independently of sulfur amino acids availability.

(A, B, C, D) Levels of the proteins of the mitochondrial hydrogen sulfide oxidation pathway in human skin fibroblasts from control and patients with mutations in Complex I subunits or CoQ₁₀ biosynthetic genes. Data are expressed as mean \pm SD. *P < 0.05; **P < 0.01; ***P < 0.001; differences versus Control. +P < 0.05; ++P < 0.01; +++P < 0.001; Control versus Control + CoQ₁₀ or Complex I deficiency versus Complex I deficiency + CoQ₁₀ or CoQ₁₀ deficiency versus CoQ₁₀ deficiency + CoQ₁₀ (*t*-test; n = 3 for each group); n = 3 for each group). C = control; B9 = *NDUFB9* mutant; S1 = *NDUFS1* mutant; S3 = *NDUFS3* mutant; S8 = *NDUFS8* mutant; ND3 = *ND3* mutant; COQ4 = *COQ4* mutant; CI Def = cells with Complex I deficiency; CoQ Def = cells with CoQ₁₀ deficiency; Q = CoQ₁₀; -SAA = medium without sulfur aminoacids. The blot image (A) has been made from three different membranes, as follow: blot 1, control; blot 2, *NDUFB9*; blot 3, *NDUFS3*, *ND3* and *COQ4*; blot 4, *NDUFS8*.

Figure S6. The changes of SQOR levels under mitochondrial dysfunction do not depend of mitochondrial supercomplexes formation.

(A-D) Blue-native gel electrophoresis (BNGE) followed by C-I immunoblotting analysis of mitochondrial supercomplexes in Control and CI deficiency skin fibroblasts. Anti-VDAC was used as loading control.

(E-H) Blue-native gel electrophoresis (BNGE) followed by C-III immunoblotting analysis of mitochondrial supercomplexes in Control and CI deficiency skin fibroblasts. Anti-VDAC was used as loading control.

(I-K) Blue-native gel electrophoresis (BNGE) followed by SQOR, Ig rabbit or CIII immunoblotting to check the presence of SQOR in mitochondrial supercomplexes in mitochondria isolated from kidneys of mouse models with CI or CoQ deficiency. Test made in 6 different membranes using different conditions.

(L-N) Migration pattern of Complex III subunits and SQOR proteins from human skin fibroblasts of three different controls. Data extracted from Van Strien, Guerrero-Castillo et al., 2019.

Data are expressed as mean SD. *P < 0.05; **P < 0.01; ***P < 0.001; Control cells versus deficiency skin fibroblasts. (*t*-test; n = 3 for each group); n = 3 for each group).

Figure S7. CoQ₁₀ regulates the enzymes of transsulfuration pathway independently of sulfur amino acids availability.

(A, B, C, D) Levels of the proteins of the transsulfuration pathway in human skin fibroblasts from control and patients with mutations in Complex I subunits or CoQ_{10} biosynthetic genes. Data are expressed as mean \pm SD. *P < 0.05; **P < 0.01; ***P < 0.001; differences versus Control. +P < 0.05; ++P < 0.01; +++P < 0.001; Control versus Control + CoQ_{10} or Complex I deficiency versus Complex I deficiency + CoQ_{10} or CoQ_{10} deficiency versus Complex I deficiency + CoQ_{10} or CoQ_{10} deficiency versus CoQ_{10} deficiency + CoQ_{10} (*t*-test; n = 3 for each group). C = control; B9 = *NDUFB9* mutant; S1 = *NDUFS1* mutant; S3 = *NDUFS3* mutant; S8 = *NDUFS8* mutant; ND3 = *ND3* mutant; COQ4 = *COQ4* mutant; CI Def = cells with Complex I deficiency; CoQ Def = cells with CoQ_{10} deficiency; Q = CoQ_{10}; -SAA = medium without sulfur aminoacids. The blot image (A) has been made from three different membranes, as follow: blot 1, control; blot 2, *NDUFB9*; blot 3, *NDUFS3*, *ND3* and *COQ4*; blot 4, *NDUFS8*.

Figure S8. The levels of SQOR and CBS in control and mutant cells after supplementation with 20 μ M CoQ₁₀. C = control; S1 = *NDUFS1* mutant; B3 = *NDUFB3* mutant; *PDSS2* = *PDSS2* mutant; Q = CoQ₁₀.

Figure S9. Transcriptional regulation and cell signaling pathways altered by CoQ₁₀ supplementation.

(A) Canonical pathways most enriched in the differentially expressed gene list, related to transcriptional regulation and cells signaling, of the CoQ_{10} treated control cells dataset. (B) STAT3 pathway in control cells.

- (C)HIG1 α signaling pathway in control cells.
- (D) Sumoylation pathway in control cells.
- (E) Canonical pathways most enriched in the differentially expressed gene list, related to transcriptional regulation and cells signaling, of the CoQ_{10} treated *NDUFS1* cells dataset.

(F) STAT3 pathway in NDUFS1 mutant cells.

(G) HIG1 α signaling pathway in *NDUFS1* mutant cells.

(H) NRF2 pathway in *NDUFS1* cells.

The shape with green filling means that the gene is downregulated; the shape with pink filling means that the gene is upregulated.

Figure S10. Levels of SQOR after the treatment with the antioxidants NAC or aMT. (A) Levels of SQOR in control cells; (B) Levels of SQOR in *NDUFS1* mutant cells; (C) Levels of SQOR in *NDUB3* mutant cells; (D) Levels of SQOR in *PDSS2* mutant cells;

Bibliography

1 Haack, T.B., Madignier, F., Herzer, M., Lamantea, E., Danhauser, K., Invernizzi, F., Koch, J., Freitag, M., Drost, R., Hillier, I. *et al.* (2012) Mutation screening of 75 candidate genes in 152 complex I deficiency cases identifies pathogenic variants in 16 genes including NDUFB9. *J. Med. Genet.*, **49**, 83-89.

2 Alston, C.L., Howard, C., Olahova, M., Hardy, S.A., He, L., Murray, P.G., O'Sullivan, S., Doherty, G., Shield, J.P., Hargreaves, I.P. *et al.* (2016) A recurrent mitochondrial p.Trp22Arg NDUFB3 variant causes a distinctive facial appearance, short stature and a mild biochemical and clinical phenotype. *J. Med. Genet.*, **53**, 634-641.

3 Haack, T.B., Haberberger, B., Frisch, E.M., Wieland, T., Iuso, A., Gorza, M., Strecker, V., Graf, E., Mayr, J.A., Herberg, U. *et al.* (2012) Molecular diagnosis in mitochondrial complex I deficiency using exome sequencing. *J. Med. Genet.*, **49**, 277-283.

4 Lopez, L.C., Schuelke, M., Quinzii, C.M., Kanki, T., Rodenburg, R.J., Naini, A., DiMauro, S. and Hirano, M. (2006) Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. *Am J Hum Genet*, **79**, 1125-1129.

5 Brea-Calvo, G., Haack, T.B., Karall, D., Ohtake, A., Invernizzi, F., Carrozzo, R., Kremer, L., Dusi, S., Fauth, C., Scholl-Burgi, S. *et al.* (2015) COQ4 mutations cause a broad spectrum of mitochondrial disorders associated with CoQ10 deficiency. *Am J Hum Genet*, **96**, 309-317.