Table S1. Residue preferences at furin cleavage sites

Position	P6	P5	P4	Р3	P2	P1	P1'	P2'	P3'	P4'	P5'
Most Common Residues at	R 14.5%	R 22.3%	R 85.6%	K 16.9%	K 45.8%	R 100%	S 33.1%	L/V 18.4%	S 13.6%	A 11.9%	A 12.6%
	K/S 10.5%	S 13.2%	I 5.9%	R 13.6%	R 36.4%	-	A 15.7%	A 17.6%	D/G 11.0%	Q/S 10.2%	G 10.9%
Furin Sites	P/T 9.7%	K 10.7%	V 4.2%	S 11.9%	A 4.2%	-	F 10.2%	S 10.4%	P 10.2%	T 9.3%	E 10.1%
PE Furin Site	R 14.5%	H 5.0%	R 85.6%	Q 9.3%	P 3.4%	R 100%	G 7.1%	W 0.8%	E 5.9%	Q 10.2%	L 7.6%

Table S2. HA22-LR variant proteins

	RIT	Antibody	Linker	Furin Site	Catalytic Domain
1)	HA22-LR			RHRQPRGWEQL	
2)	HA22-LR R274H		KASGG	$\underline{\mathbf{H}}$ H R Q P R G W E Q L	
3)	HA22-LR H275R			$ R \ \underline{R} \ R \ Q \ P \ R \ G \ W \ E \ Q \ L $	
4)	HA22-LR Q277R			RHR $\underline{\mathbf{R}}$ PRGWEQL	
5)	HA22-LR P278K	RFB4		RHRQ $\underline{\mathbf{K}}$ RGWEQL	
6)	HA22-LR R279G	[GTHW] anti-CD22		RHRQP $\underline{\mathbf{G}}$ GWEQL	PTGAEREDLK
7)	HA22-LR G280S	disulfide- stabilized		RHRQPR $\underline{\mathbf{s}}$ WEQL	[Native PE 395-613]
8)	HA22-LR W281L	(ds) Fv*		RHRQPRG $\underline{\mathbf{L}}$ EQL	
9)	HA22-LR E282D			RHRQPRGW $\underline{\mathbf{D}}$ QL	
10)	HA22-LR Q283T			RHRQPRGWE <u>T</u> L	
11)	HA22-LR L284S			RHRQPRGWEQ S	
12)	HA22-LR/FUR			$\underline{\mathbf{H}}$ $\underline{\mathbf{R}}$ R $\underline{\mathbf{R}}$ $\underline{\mathbf{K}}$ R G $\underline{\mathbf{L}}$ $\underline{\mathbf{D}}$ $\underline{\mathbf{T}}$ $\underline{\mathbf{S}}$	
13)	HA22			Native PE 251-364	Native PE 381-613

^{*}Salvatore, G., Beers, R., Margulies, I., Kreitman, R. J., and Pastan, I. (2002) Improved cytotoxic activity toward cell lines and fresh leukemia cells of a mutant anti-CD22 immunotoxin obtained by antibody phage display. *Clin. Cancer Res.* 8, 995-1002.

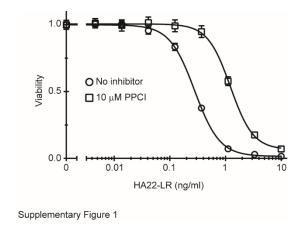


Figure S1. HA22-LR cytotoxicity in the presence of a furin inhibitor.

The cytotoxicity of HA22-LR was evaluated against CA46 cells in the presence (open squares) and absence (open circles) of proprotein convertase inhibitor (PPCI).

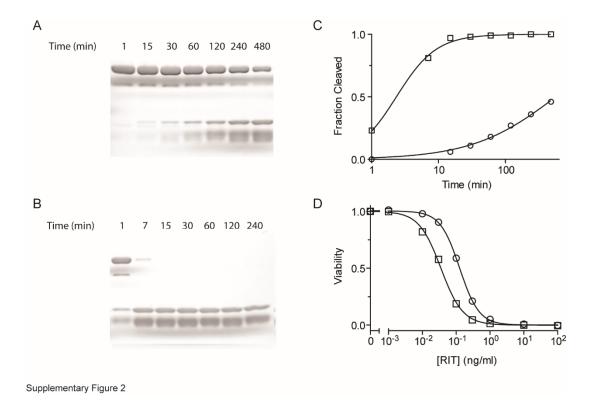


Figure S2. Representative analyses of furin site mutants. An *in vitro* assay was used to evaluate the efficiency of furin cleavage (A-C). Example SDS-PAGE gels from assays evaluating (A) HA22-LR and (B) HA22-LR/FUR are shown. Band intensity was quantified by densitometry, plotted against time, and fit to a four-parameter sigmoid model (C). The cytotoxicity of each mutant was also evaluated on the CA46 cell line (D). HA22-LR (open circles; $EC_{50} = 0.18$ ng/ml) and HA22-LR/FUR (open squares; $EC_{50} = 0.04$ ng/ml) are shown. A comparison of the relative cytotoxicity and relative cleavage efficiency for all variants is presented in Figure 2.