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The COVID-19 pandemic has created unprecedented challenges
worldwide. Strained healthcare providers make difficult decisions
on patient triage, treatment and care management on a daily basis.
Policy makers have imposed social distancing measures to slow the
disease, at a steep economic price. We design analytical tools to sup-
port these decisions and combat the pandemic. Specifically, we pro-
pose a comprehensive data-driven approach to understand the clini-
cal characteristics of COVID-19, predict its mortality, forecast its evo-
lution, and ultimately alleviate its impact. By leveraging cohort-level
clinical data, patient-level hospital data, and census-level epidemio-
logical data, we develop an integrated four-step approach, combin-
ing descriptive, predictive and prescriptive analytics. First, we ag-
gregate hundreds of clinical studies into the most comprehensive
database on COVID-19 to paint a new macroscopic picture of the dis-
ease. Second, we build personalized calculators to predict the risk
of infection and mortality as a function of demographics, symptoms,
comorbidities, and lab values. Third, we develop a novel epidemi-
ological model to project the pandemic’s spread and inform social
distancing policies. Fourth, we propose an optimization model to re-
allocate ventilators and alleviate shortages. Our results have been
used at the clinical level by several hospitals to triage patients, guide
care management, plan ICU capacity, and re-distribute ventilators. At
the policy level, they are currently supporting safe back-to-work poli-
cies at a major institution and equitable vaccine distribution planning
at a major pharmaceutical company, and have been integrated into
the US Center for Disease Control’s pandemic forecast.
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I
n just a few weeks, the whole world has been upended by the1

outbreak of COVID-19, an acute respiratory disease caused2

by a new coronavirus called SARS-CoV-2. The virus is highly3

contagious: it is easily transmitted from person to person via4

respiratory droplet nuclei and can persist on surfaces for days5

(1, 2). As a result, COVID-19 has spread rapidly—classified by6

the World Health Organization as a public health emergency7

on January 30, 2020 and as a pandemic on March 11. As of8

mid-May, over 4.5 million cases and 300,000 deaths have been9

reported globally (3).10

Because no treatment is currently available, healthcare11

providers and policy makers are wrestling with unprecedented12

challenges. Hospitals and other care facilities are facing short-13

ages of beds, ventilators and personal protective equipment—14

raising hard questions on how to treat COVID-19 patients15

with scarce supplies and how to allocate resources to prevent16

further shortages. At the policy level, most countries have17

imposed “social distancing” measures to slow the spread of the18

pandemic. These measures allow strained healthcare systems19

to cope with the disease by “flattening the curve” (4) but 20

also come at a steep economic price (5, 6). Nearly all gov- 21

ernments are now confronted to di�cult decisions balancing 22

public health and socio-economic outcomes. 23

This paper proposes a comprehensive data-driven approach 24

to understand the clinical characteristics of COVID-19, predict 25

its mortality, forecast its evolution, and ultimately alleviate 26

its impact. We leverage a broad range of data sources, which 27

include (i) our own cohort-level data aggregating hundreds of 28

clinical studies, (ii) patient-level data obtained from electronic 29

health records, and (iii) census reports on the scale of the pan- 30

demic. We develop an integrated approach spanning descrip- 31

tive analytics (to derive a macroscopic understanding of the 32

disease), predictive analytics (to forecast the near-term impact 33

and longer-term dynamics of the pandemic), and prescriptive 34

analytics (to support healthcare and policy decision-making). 35

Specifically, our approach comprises four steps (Figure 1): 36

• Aggregating and visualizing the most comprehensive clin- 37

ical database on COVID-19 (Section 1). We aggregate 38

cohort-level data on demographics, comorbidities, symp- 39

toms and lab values from 160 clinical studies. These data 40

paint a broad picture of the disease, identifying common 41

symptoms, disparities between mild and severe patients, 42
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Fig. 1. Overview of our end-to-end analytics approach. We leverage diverse data sources to inform a family of descriptive, predictive and prescriptive tools for clinical and policy
decision-making support.

and geographic disparities—insights that are hard to de-43

rive from any single study and can orient future clinical44

research on COVID-19, its mutations, and its disparate45

e�ects across ethnic groups.46

• Providing personalized indicators to assess the risk of47

mortality and infection (Section 2). Using patient-level48

data, we develop machine learning models to predict49

mortality and infection risk, as a function of demographics,50

symptoms, comorbidities, and lab values. Using gradient51

boosting methods, the models achieve strong predictive52

performance—with an out-of-sample area under the curve53

above 90%. These models yield personalized calculators54

that can (i) guide triage, treatment, and care management55

decisions for strained healthcare systems, and (ii) serve as56

pre-screening tools for patients before they visit healthcare57

or testing facilities.58

• Developing a novel epidemiological model to forecast the59

evolution of the disease and assess the e�ects of social60

distancing (Section 3). We propose a new compartmental61

model called DELPHI, which accounts for COVID-19 fea-62

tures such as underdetection and government response.63

The model estimates the disease’s spread with high ac-64

curacy; notably, its projections from as early as April 365

have matched the number of cases observed in the United66

States up to mid-May. We also provide a data-driven67

assessment of social distancing policies, showing that the68

pandemic’s spread is highly sensitive to the stringency69

and timing of mitigating measures.70

• Proposing an optimization model to support ventilator71

allocation in response to the pandemic (Section 4). We72

formulate a mixed-integer optimization model to allocate73

ventilators e�ciently in a semi-collaborative setting where74

resources can be shared both between healthcare facilities75

or through a central authority. In the United States,76

this allows us to study the trade-o�s of managing the77

federal ventilator stockpile in conjunction with inter-state78

transfers. Results show that limited ventilator transfers79

could have eliminated shortages in April 2020.80

A major contribution of our work is to treat these dif-81

ferent questions as interdependent challenges raised by the82

pandemic—as opposed to a series of isolated problems. Indeed,83

clinical decision-making depends directly on patient inflows84

and available supplies, while resource planning and govern-85

ment responses react to patient-level outcomes. By combining 86

various data sources into descriptive, predictive and prescrip- 87

tive methods, this paper proposes an end-to-end approach to 88

design a comprehensive and cohesive response to COVID-19. 89

Ultimately, this paper develops analytical tools to inform 90

clinical and policy responses to the COVID-19 pandemic. 91

These tools are available to the public on a dedicated web- 92

site.� They have also been deployed in practice to combat 93

the spread of COVID-19 globally. Several hospitals in Europe 94

have used our risk calculators to support pre-triage and post- 95

triage decisions, and a major financial institution in South 96

America is applying our infection risk calculator to determine 97

how employees can safely return to work. A major hospital 98

system in the United States planned its intensive care unit 99

(ICU) capacity based on our forecasts, and leveraged our opti- 100

mization results to allocate ventilators across hospitals when 101

the number of cases was rising. Our epidemiological predic- 102

tions are used by a major pharmaceutical company to design 103

a vaccine distribution strategy that can contain future phases 104

of the pandemic. They have also been incorporated into the 105

US Center for Disease Control’s forecasts (7). 106

1. Descriptive Analytics: Clinical Outcomes Database 107

Early responses to the COVID-19 pandemic have been in- 108

hibited by the lack of available data on patient outcomes. 109

Individual centers released reports summarizing patient char- 110

acteristics. Yet, this decentralized e�ort makes it di�cult to 111

construct a cohesive picture of the pandemic. 112

To address this problem, we construct a database that ag- 113

gregates demographics, comorbidities, symptoms, laboratory 114

blood test results (“lab values”, henceforth) and clinical out- 115

comes from 160 clinical studies released between December 116

2019 and May 2020—made available on our website for broader 117

use. The database contains information on 133,600 COVID-19 118

patients (3.13% of the global COVID-19 patients as of May 119

12, 2020), spanning mainly Europe (81, 207 patients), Asia 120

(19, 418 patients) and North America (23, 279 patients). To 121

our knowledge, this is the largest dataset on COVID-19. 122

A. Data Aggregation. Each study was read by an MIT re- 123

searcher, who transcribed numerical data from the manuscript. 124

The appendix reports the main transcription assumptions. 125

�www.covidanalytics.io
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Each row in the database corresponds to a cohort of126

patients—some papers study a single cohort, whereas oth-127

ers study several cohorts or sub-cohorts. Each column reports128

cohort-level statistics on demographics (e.g., average age, gen-129

der breakdown), comorbidities (e.g., prevalence of diabetes,130

hypertension), symptoms (e.g., prevalence of fever, cough),131

treatments (e.g., prevalence of antibiotics, intubation), lab132

values (e.g., average lymphocyte count), and clinical outcomes133

(e.g., average hospital length of stay, mortality rate). We also134

track whether the cohort comprises “mild” or “severe” patients135

(mild and severe cohorts are only a subset of the data).136

Due to the pandemic’s urgency, many papers were published137

before all patients in a cohort were discharged or deceased. Ac-138

cordingly, we estimate the mortality rate from discharged and139

deceased patients only (referred to as “Projected Mortality”).140

B. Objectives. Our main goal is to leverage this database to141

derive a macroscopic understanding of the disease. We break142

it down into the following questions:143

• Which symptoms are most prevalent?144

• How do “mild” and “severe” patients di�er in terms of145

symptoms, comorbidities, and lab values?146

• Can we identify epidemiological di�erences in di�erent147

parts of the world?148

C. Descriptive Statistics. Table 1 depicts the prevalence of149

COVID-19 symptoms, in aggregate, classified into “mild” or150

“severe” patients, and classified per geographic region. Our151

key observations are that:152

• Cough, fever, shortness of breath, and fatigue are the153

most prevalent symptoms of COVID-19.154

• COVID-19 symptoms are much more diverse than those155

listed by public health agencies. COVID-19 patients can156

experience at least 15 di�erent symptoms. In contrast,157

the US Center for Disease Control and Prevention lists158

seven symptoms (cough, shortness of breath, fever, chills,159

myalgia, sore throat, and loss of taste/smell) (8); the160

World Health Organization lists three symptoms (fever,161

cough, and fatigue) (9); and the UK National Health162

Service lists two main symptoms (fever and cough) (10).163

This suggests a lack of consensus among the medical164

community, and opportunities to revisit public health165

guidelines to capture the breadth of observed symptoms.166

• Shortness of breath and elevated respiratory rates are167

much more prevalent in cases diagnosed as severe.168

• Symptoms are quite di�erent in Asia vs. Europe or North169

America. In particular, more than 75% of Asian patients170

experience fever, as compared to less than half in Europe171

and North America. Conversely, shortness of breath is172

much more prevalent in Europe and North America.173

Using a similar nomenclature, Figure 2A reports demo-174

graphics, comorbidities, lab values, and clinical outcomes (an175

extended version is available in the appendix). In terms of176

demographics, severe populations of patients have a higher177

incidence of male subjects and are older on average. Severe pa-178

tients also have elevated comorbidity rates. Figures 2B and 2C179

visually confirm the impact of age and hypertension rates on180

population-level mortality—consistent with (11–13). In terms181

of lab values, CRP, AST, BUN, IL-6 and Protocalcitonin are182

highly elevated among severe patients.183

D. Discussion and Impact. Our database is the largest avail- 184

able source of clinical information on COVID-19 assembled 185

to date. As such, it provides new insights on common symp- 186

toms and the drivers of the disease’s severity. Ultimately, this 187

database can support guidelines from health organizations, 188

and contribute to ongoing clinical research on the disease. 189

Another benefit of this database is its geographical reach. 190

Results highlight disparities in patients’ symptoms across 191

regions. These disparities may stem from (i) di�erent reporting 192

criteria; (ii) di�erent treatments; (iii) disparate impacts across 193

di�erent ethnic groups; and (iv) mutations of the virus since 194

it first appeared in China. This information contributes to 195

early evidence on COVID-19 mutations (14, 15) and on its 196

disparate e�ects on di�erent ethnic groups (16, 17). 197

Finally, the database provides average values of key param- 198

eters into our epidemiological model of the disease’s spread 199

and our optimization model of resource allocation (e.g., av- 200

erage length of stay of hospitalizations, average fraction of 201

hospitalized patients put on a ventilator). 202

The insights derived from this descriptive analysis highlight 203

the need for personalized data-driven clinical indicators. Yet, 204

our population-level database cannot be leveraged directly 205

to support decision-making at the patient level. We have 206

therefore initiated a multi-institution collaboration to collect 207

electronic medical records from COVID-19 patients and de- 208

velop clinical risk calculators. These calculators, presented in 209

the next section, are informed by several of our descriptive 210

insights. Notably, the disparities between severe patients and 211

the rest of the patient population inform the choice of the fea- 212

tures included in our mortality risk calculator. Moreover, the 213

geographic disparities suggest that data from Asia may be less 214

predictive when building infection or mortality risk calculators 215

designed for patients in Europe or North America—motivating 216

our use of data from Europe. 217

2. Predictive Analytics: Mortality and Infection Risk 218

Throughout the COVID-19 crisis, physicians have made dif- 219

ficult triage and care management decisions on a daily basis. 220

Oftentimes, these decisions could only rely on small-scale 221

clinical tests, each requiring significant time, personnel and 222

equipment and thus cannot be easily replicated. As the bur- 223

den on “hot spots” has ebbed, hospitals began to aggregate 224

rich data on COVID-19 patients. This data o�ers opportu- 225

nities to develop algorithmic risk calculators for large-scale 226

decision support—ultimately facilitating a more proactive and 227

data-driven strategy to combat the disease globally. 228

We have established a patient-level database of thousands of 229

COVID-19 hospital admissions. Using state-of-the-art machine 230

learning methods, we develop a mortality risk calculator and an 231

infection risk calculator. Together, these two risk assessments 232

provide screening tools to support critical care management 233

decisions, spanning patient triage, hospital admissions, bed 234

assignment and testing prioritization. A more detailed model 235

for mortality with lab values is presented in (18). 236

A. Methods. This investigation constitutes a multi-center 237

study from healthcare institutions in Spain and Italy, two 238

countries severely impacted by COVID-19. Specifically, we 239

collected data from (i) Azienda Socio-Sanitaria Territoriale 240

di Cremona (ASST Cremona), the main hospital network in 241

the Province of Cremona, and (ii) HM Hospitals, a leading 242

Dimitris Bertsimas et al. PNAS | June 2, 2020 | vol. XXX | no. XX | 3
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Table 1. Count and prevalence of symptoms among COVID-19 patients, in aggregate, broken down into mild/severe patients, and broken
down per continent (Asia, Europe, North America). Mild and severe patients only form a subset of the data, and so do patients from Asia,
Europe and North America. A “-” indicates that fewer than 100 patients in a subpopulation reported on this symptom.

Symptom All patients Mild Severe Asia Europe North America

Count (%) Count (%) Count (%) Count (%) Count (%) Count (%)
Cough 94, 950 52.8% 6, 833 63.0% 5, 803 50.4% 14, 034 56.2% 78, 430 52.2% 1, 113 63.6%
Fever 95, 870 48.1% 6, 864 79.3% 6, 077 76.7% 14, 750 76.6% 78, 450 43.5% 1, 481 41.3%
Short Breath 17, 290 33.7% 6, 006 16.1% 5, 373 60.7% 11, 330 19.7% 3, 512 69.9% 1, 111 49.2%
Fatigue 11, 560 31.4% 5, 313 35.3% 1, 989 40.6% 11, 320 30.8% 226 64.2% ≠ ≠
Sputum 7, 613 26.3% 4, 995 29.2% 1, 216 34.2% 7, 395 26.7% ≠ ≠ 176 10.9%
Sore Throat 83, 170 22.2% 3, 513 14.2% 921 8.2% 6, 013 10.4% 75, 235 22.9% 550 9.8%
Myalgia 12, 150 17.5% 4, 455 16.4% 1, 643 19.1% 8, 517 15.5% 1, 633 33.5% 755 25.3%
Elev. Resp. Rate 7, 376 16.4% 527 9.7% 642 38.4% 1, 257 14.6% ≠ ≠ 6, 117 16.8%
Anorexia 3, 928 15.8% 1, 641 14.2% 808 15.4% 3, 566 13.8% 312 40.5% ≠ ≠
Headache 11, 430 15.7% 5, 068 12.2% 1, 541 8.6% 7, 929 9.9% 1, 633 27.2% 551 8.7%
Nausea 10, 070 12.4% 4, 238 6.5% 1, 798 5.6% 8, 262 8.2% 312 22.4% 259 9.0%
Chest Pain 3, 303 11.3% 767 12.2% 588 19.6% 2, 984 12.2% ≠ ≠ ≠ ≠
Diarrhea 16, 520 11.1% 5, 687 9.7% 5, 369 9.0% 11, 470 10.8% 3, 512 10.4% 1, 066 15.4%
Cong. Airway 1, 639 8.7% 2, 176 6.5% 234 14.1% 1, 369 8.9% ≠ ≠ 258 7.4%
Chills 3, 116 8.7% 2, 751 9.9% 520 9.4% 2, 794 8.2% ≠ ≠ 268 11.5%
Proj. Mortality 111, 700 11.7% 7, 428 0.4% 9, 146 74.0% 12, 820 16.7% 79, 750 9.9% 19, 060 15.8%
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Fig. 2. Summary of demographics, comorbidities and lab values in mild and severe COVID-19 patients. (A) Comorbidities, demographics, average lab values, average length of
stay and projected mortality among COVID-19 patients, in aggregate and broken down into mild/severe patients. (B) Impact of median age on projected mortality at a cohort
level. (C) Impact of hypertension rates on projected mortality at a cohort level. The size of each dot represents the number of patients in the cohort, and its color represents the
nation the study was performed in. We only include studies reporting both discharged and deceased patients.

hospital group in Spain with 15 general hospitals and 21 clini-243

cal centers spanning the regions of Madrid, Galicia, and León.244

We applied the following inclusion criteria to the calculators:245

• Mortality Risk: We include adult patients diagnosed246

with COVID-19 and hospitalized. We consider patients247

who were either discharged from the hospital or deceased248

within the visit—excluding active patients. We include 249

only lab values and vital values collected on the first day in 250

the emergency department to match the clinical decision 251

setting—predicting prognosis at the time of admission. 252

• Infection Risk: We include adult patients who un- 253

derwent a polymerase chain reaction test for detecting 254
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COVID-19 infection at the ASST Cremona hospital (19).†255

We include all patients, regardless of their clinical out-256

come. Each patient was subject to a blood test. We omit257

comorbidities since they are derived from the discharge258

diagnoses, hence not available for all patients.259

We train two models for each calculator: one with lab260

values and one without lab values. Missing values are im-261

puted using k-nearest neighbors imputation (20). We exclude262

features missing for more than 40% of patients. We train263

binary classification models for both risk calculators, using the264

XGBoost algorithm (21). We restrict the model to select at265

most 20 features, in order to make the resulting tool easily us-266

able. We use SHapley Additive exPlanations (SHAP) (22, 23)267

to generate importance plots that identify risk drivers and268

provide transparency on the model predictions.269

To evaluate predictive performance, we use 40 random data270

partitions into training and test sets. We compute the average271

Area Under the Curve (AUC), sensitivity, specificity, precision,272

negative predictive value, and positive predictive value. We273

calculate 95% confidence intervals using bootstrapping.274

B. Results.275

Study Population. The mortality study population comprises276

2,831 patients, 711 (25.1%) of whom died during hospitaliza-277

tion while the remaining ones were discharged. The infection278

study population comprises 3,135 patients, 1,661 (53.0%) of279

whom tested positive for COVID-19. The full distributions of280

patient characteristics are reported in the appendix.281

Performance Evaluation. All models achieve strong out-of-sample282

performance. Our mortality risk calculator has an AUC of283

93.8% with lab values and 90.5% without lab values. Our284

infection risk calculator has an AUC of 91.8% with lab values285

and 83.1% without lab values. These values suggest a strong286

discriminative ability of the proposed models. We report in287

the appendix average results across all random data partitions.288

We also report in the appendix threshold-based metrics,289

which evaluate the discriminative ability of the calculators at290

a fixed cuto�. With the threshold set to ensure a sensitivity of291

at least 90% (motivated by the high costs of false negatives),292

we obtain accuracies spanning 65%–80%.293

The mortality model achieves better overall predictive per-294

formance than the infection model. As expected, both models295

have better predictive performance with lab values than with-296

out lab values. Yet, the models without lab values still achieve297

strong predictive performance.298

Model Interpretation. Figure 3 plots the SHAP importance plots299

for all models. The figures sort the features by decreasing300

significance. For each one, the row represents its impact on301

the SHAP value, as the feature ranges from low (blue) to high302

(red). Higher SHAP values correspond to increased likelihood303

of a positive outcome (i.e. mortality or infection). Features304

with the color scale oriented blue to red (resp. red to blue)305

from left to right have increasing (resp. decreasing) risk as the306

feature increases. For example, “Age” is the most important307

feature of the mortality score with lab values (Figure 3A), and308

older patients have higher predicted mortality.309

†HM Hospitals patients were not included since no negative case data was available.

C. Discussion and Impact. The models with lab values provide 310

algorithmic screening tools that can deliver COVID-19 risk 311

predictions using common clinical features. In a constrained 312

healthcare system or in a clinic without access to advanced 313

diagnostics, clinicians can use these models to rapidly identify 314

high-risk patients to support triage and treatment decisions. 315

The models without lab values o�er an even simpler tool 316

that could be used outside of a clinical setting. In strained 317

healthcare systems, it can be di�cult for patients to obtain 318

direct advice from providers. Our tool could serve as a pre- 319

screening step to identify personalized infection risk—without 320

visiting a testing facility. While the exclusion of lab values 321

reduces the AUC (especially for infection), these calculators 322

still perform strongly. 323

Our models provide insights into risk factors and biomark- 324

ers related to COVID-19 infection and mortality. Our results 325

suggest that the main indicators of mortality risk are age, 326

BUN, CRP, AST, and low oxygen saturation. These findings 327

validate several population-level insights from Section 1 and 328

are in agreement with clinical studies: prevalence of shortness 329

of breath (24), elevated levels of CRP as an inflammatory 330

marker (25, 26), and elevated AST levels due to liver dysfunc- 331

tion in severe COVID-19 cases (11, 27). 332

Turning to infection risk, the main indicators are CRP, 333

WBC, Calcium, AST, and temperature. These findings are 334

also in agreement with clinical reports: an elevated CRP 335

generally indicates an early sign of infection and implies lung 336

lesions from COVID-19 (28), elevated levels of leukocytes 337

suggest cytokine release syndrome caused by SARS-CoV-2 338

virus (29), and lowered levels of serum calcium signal higher 339

rate of organ injury and septic shock (30). The agreement 340

between our findings and clinicl observations o�ers credibility 341

for the use of our calculators to support clinical decision- 342

making—although they are not intended to substitute clinical 343

diagnostic or medical expertise. 344

When lab values are not available, the widely accepted 345

risk factors of age, oxygen saturation, temperature, and heart 346

rate become the key indicators for both risk calculators. We 347

observe that mortality risk is higher for male patients (blue in 348

Figure 3B) than for female patients (red), confirming clinical 349

reports (31, 32). An elevated respiratory frequency becomes 350

an important predictor of infection, as reported in (33). These 351

findings suggest that demographics and vitals provide valuable 352

information in the absence of lab values. However, when lab 353

values are available, these other features become secondary. 354

A limitation of the current mortality model is that it does 355

not take into account medication and treatments during hos- 356

pitalization. We intend to incorporate these in future research 357

to make these models more actionable. Furthermore, these 358

models aim to reveal associations between risks and patient 359

characteristics but are not designed to establish causality. 360

Overall, we have developed data-driven calculators that 361

allow physicians and patients to assess mortality and infection 362

risks in order to guide care management—especially with 363

scarce healthcare resources. These calculators are being used 364

by several hospitals within the ASST Cremona system to 365

support triage and treatment decisions—alleviating the toll of 366

the pandemic. Our infection calculator also supports safety 367

protocols for Banco de Credito del Peru, the largest bank in 368

Peru, to determine how employees can return to work. 369
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A B

C D

Mortality Prediction with Lab Values Mortality Prediction without Lab Values

Infection Prediction without Lab ValuesInfection Prediction with Lab Values

Fig. 3. SHapley Additive exPlanations (SHAP) importance plots for the mortality and infection risk calculators, including: (A) the mortality model with lab values; (B) the mortality
model without lab values; (C) the infection model with lab values; and (D) the infection model without lab values. The five most important features are shown for each model.
Gender is a binary feature (female is equal to 1, shown in red; male is equal to 0, shown in blue). Each row represents the impact of a feature on the outcome, with higher
SHAP values indicating higher likelihood of a positive outcome.

3. Predictive and Prescriptive Analytics: Disease Pro-370

jections and Government Response371

We develop a new epidemiological model, called DELPHI372

(Di�erential Equations Leads to Predictions of Hospitalizations373

and Infections). The model first provides a predictive tool to374

forecast the number of detected cases, hospitalizations and375

deaths—we refer to this model as “DELPHI-pred”. It then376

provides a prescriptive tool to simulate the e�ect of policy377

interventions and guide government response to the COVID-19378

pandemic—we refer to this model as “DELPHI-presc”. All379

models are fit in each US state (plus the District of Columbia).380

A detailed presentation and discussion on the implications381

of the DELPHI model especially with respect to government382

interventions is presented in (34).383

A. DELPHI-pred: Projecting Early Spread of COVID-19.384

A.1. Model Development. DELPHI is a compartmental model,385

with dynamics governed by ordinary di�erential equations.386

It extends the standard SEIR model by defining 11 states387

(Figure 4A): susceptible (S), exposed (E), infectious (I), unde-388

tected people who will recover (UR) or decease (UD), detected389

hospitalized people who will recover (DHR) or decease (DHD),390

quarantined people who will recover (DQR) or decease (DQD),391

recovered (R) and deceased (D). The separation of the UR/UD,392

DQR/DQD and DHR/DHD states enables separate fitting of393

recoveries and deaths from the data. 394

As opposed to other COVID-19 models (see, e.g., 35), DEL- 395

PHI captures two key elements of the pandemic: 396

• Underdetection: Many cases remain undetected due 397

to limited testing, record failures, and detection errors. 398

Ignoring them would underestimate the scale of the pan- 399

demic. We capture them through the UR and UD states. 400

• Government Response: “Social distancing” policies 401

limit the spread of the virus. Ignoring them would over- 402

estimate the spread of the pandemic. We model them 403

through a decline in the infection rate over time. Specifi- 404

cally, we write: dS
dt = ≠–“(t)S(t)I(t), where – is a con- 405

stant baseline rate and “(t) is a time-dependent function 406

characterizing each state’s policies, modeled as follows: 407

“(t) = 2
fi

arctan
3

≠(t ≠ t0)
k

4
+ 1. 408

The inverse tangent function provides a concave-convex re- 409

lationship, capturing three phases of government response. 410

In Phase I, most activities continue normally as people 411

adjust their behavior. In Phase II, the infection rate 412

declines sharply as policies are implemented. In Phase 413

III, the decline in the infection rate reaches saturation. 414

The parameters t0 and k can be respectively thought of 415

as the start date and the strength of the response. 416
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Ultimately, DELPHI involves 13 parameters that define417

the transition rates between the 11 states. We calibrate six of418

them from our clinical outcomes database (Section 1). Using419

non-linear optimization, we estimate seven parameters for each420

US state from the data to minimize in-sample error. This421

training procedure leverages historical data on the number of422

cases and deaths per US county (36). We include each state423

as soon as it records more than 100 cases. We provide details424

on the fitting procedure in the appendix.425

A.2. Validation. DELPHI was created in late March and has been426

continuously updated to reflect new observed data. Figure 4B427

shows our projections made on three di�erent dates, and428

compares them against historical observations. This plot429

focuses on the number of cases, but a similar plot for the430

number of deaths is reported in the appendix.431

In addition to providing aggregate validation figures, we432

also evaluate the model’s out-of-sample performance quanti-433

tatively, using a backtesting procedure. To our knowledge,434

this represents the first attempt to assess the predictive per-435

formance of COVID-19 projections. Specifically, we fit the436

model’s parameters using data up to April 27, build projec-437

tions from April 28 to May 12, and evaluate the resulting438

Mean Absolute Percentage Error (MAPE). Figure 4C reports439

the results in each US state.440

A.3. Discussion and Impact. Results suggest that DELPHI-pred441

achieves strong predictive performance. The model has been442

consistently predicting, with high accuracy the overall spread443

of the disease for several weeks. Notably, DELPHI-pred was444

able to anticipate, as early as April 3rd, the dynamics of the445

pandemic in the United States up to mid-May. At a time446

where 200,000–300,000 cases were reported, the model was447

predicting 1.2M–1.4M cases by mid-May—a prediction that448

proved accurate 40 days later.449

Our quantitative results confirm the visual evidence. The450

MAPE is small across US states. The median MAPE is 8.5%451

for the number of cases—the 10% and 90% percentiles are452

equal to 1.9% and 16.7%. The median MAPE is 7.8% for the453

number of deaths—the 10% and 90% percentiles are equal454

to 3.3% and 25.1%. Given the high level of uncertainty and455

variability in the disease’s spread, this level of accuracy is456

suggestive of excellent out-of-sample performance.457

As Figure 4C shows, a limitation of our model is that458

the relative error remains large for a small minority of US459

states. These discrepancies stem from two main reasons. First,460

errors are typically larger for states that have recorded few461

cases (WY) or few deaths (AK, KS, NE). Like all SEIR-462

derived models, DELPHI performs better on large populations.463

Moreover, the MAPE metric emphasizes errors on smaller464

population counts. Second, our model is fitted at the state465

level, implicitly assuming that the spread of the pandemic is466

independent from one state to another—thus ignoring inter-467

state travel. This limitation helps explain the above-median468

error in a few heartland states which were confronted to the469

pandemic in later stages (MN, TN, IA).470

In summary, DELPHI-pred is a novel epidemiological model471

of the pandemic, which provides high-quality estimates of472

the daily number of cases and deaths per US state. This473

model has been incorporated to the forecasts used by the US474

Center for Disease Control to chart and anticipate the spread475

of the pandemic (7). It has also been used by the Hartford476

HealthCare system—the major hospital system in Connecticut, 477

US—to plan its ICU capacity, and by a major pharmaceutical 478

company to design a vaccine distribution strategy that can 479

most e�ectively contain the next phases of the pandemic. 480

B. DELPHI-presc: Toward Re-opening Society. To inform the 481

relaxation of social distancing policies, we link policies to the 482

infection rate using machine learning. Specifically, we predict 483

the values of “(t), obtained from the fitting procedure of 484

DELPHI-pred. For simplicity and interpretability, we consider 485

a simple model based on regression trees (37) and restrict the 486

independent variables to the policies in place. We classify 487

policies based on whether they restrict mass gatherings, school 488

and/or other activities (referred to as “Others”, and including 489

business closures, severe travel limitations and/or closing of 490

non-essential services). We define a set of seven mutually 491

exclusive and collectively exhaustive policies observed in the 492

US data: (i) No measure; (ii) Restrict mass gatherings; (iii) 493

Restrict others; (iv) Authorize schools, restrict mass gatherings 494

and others; (v) Restrict mass gatherings and schools; (vi) 495

Restrict mass gatherings, schools and others; and (vii) Stay- 496

at-home. 497

We report the regression tree in the appendix, obtained 498

from state-level data in the United States. This model achieves 499

an out-of-sample R
2 of 0.8, suggesting a good fit to the data. 500

As expected, more stringent policies lead to lower values of 501

“(t). The results also provide comparisons between various 502

policies—for instance, school closures seem to induce a stronger 503

reduction in the infection rate than restricting “other” activ- 504

ities. More importantly, the model quantifies the impact of 505

each policy on the infection rate. We then use these results 506

to predict the value of “(t) as a function of the policies (see 507

appendix for details), and simulate the spread of the disease 508

as states progressively loosen social distancing policies. 509

Figure 4D plots the projected case count in the state of New 510

York (NY), for di�erent policies (we report a similar plot for 511

the death count in the appendix). Note that the stringency of 512

the policies has a significant impact on the pandemic’s spread 513

and ultimate toll. For instance, relaxing all social distancing 514

policies on May 12 can increase the cumulative number of 515

cases in NY by up to 25% by September. 516

Using a similar nomenclature, Figure 4E shows the case 517

count if all social distancing policies are relaxed on May 12 vs. 518

May 26. Note that the timing of the policies also has a strong 519

impact: a two-week delay in re-opening society can greatly 520

reduce a resurgence in NY. 521

The road back to a new normal is not straightforward: 522

results suggest that the disease’s spread is highly sensitive to 523

both the intensity and the timing of social distancing policies. 524

As governments grapple with an evolving pandemic, DELPHI- 525

presc can be a useful tool to explore alternative scenarios and 526

ensure that critical decisions are supported with data. 527

4. Prescriptive Analytics: Ventilator Allocation 528

COVID-19 is primarily an acute respiratory disease. The 529

World Health Organization recommends that patients with 530

oxygen saturation levels below 93% receive respiratory sup- 531

port (9). Following the standard Acute Respiratory Distress 532

Syndrome protocol, COVID-19 patients are initially put in the 533

prone position and then put in a drug induced paralysis via a 534

neuromuscular blockade to prevent lung injury (38). Patients 535
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Fig. 4. DELPHI, an epidemiological model to guide government response. (A) Simplified flow diagram of DELPHI. (B) Cumulative number of cases in the United States
according to our projections made at different points in time, against actual observations. (C) Out-of-sample Mean Absolute Percentage Error (MAPE) on the number of cases
and deaths per US state. (D) Impact of different policies on the future number of cases, in NY. (E) Impact of the timing of policies on the future number of cases, in NY.

are then put on a ventilator, which delivers high concentrations536

of oxygen while removing carbon dioxide (39). Early evidence537

suggests that ventilator intubation reduces the risk of hypoxia538

for COVID-19 patients (40).539

As a result, hospitals have been facing ventilator shortages540

worldwide (41). Still, local shortages do not necessarily imply541

global shortages. For instance, in April 2020, the total supply542

of ventilators in the United States exceeded the projected543

demand from COVID-19 patients. Ventilator shortages could544

thus be alleviated by pooling the supply, i.e., by strategically545

allocating the surge supply of ventilators from the federal546

government and facilitating inter-state transfers of ventilators.547

We propose an optimization model to support the allocation548

of ventilators in a semi-collaborative setting where resources549

can be shared both between healthcare facilities or through550

a central authority. Based on its primary motivation, we for-551

mulate the model to support the management of the federal552

supply of ventilators and inter-state ventilator transfers in the553

United States. A similar model has also been used to support554

inter-hospital transfers of ventilators. The model can also sup-555

port inter-country ventilator allocation during the next phases556

of the pandemic. This model leverages the demand projections557

from DELPHI-pred (Section 3) to prescribe resource allocation558

recommendations—with the ultimate goal of alleviating the559

health impact of the pandemic.560

A. Model. Resource allocation is critical when clinical care561

depends on scarce equipment. Several studies have used opti-562

mization to support ventilator pooling. A time-independent563

model was first developed for influenza planning (42). A time- 564

dependent stochastic optimization model was developed to sup- 565

port transfers to and from the federal government for COVID- 566

19, given scenarios regarding the pandemic’s spread (43). In 567

this section, we propose a deterministic time-dependent model, 568

leveraging the projections from DELPHI-pred. 569

We model ventilator pooling as a multi-period resource 570

allocation over S states and D days. The model takes as input 571

ventilator demand in state s and day d, denoted as vs,d, as 572

well as parameters capturing the surge supply from the federal 573

government and the extent of inter-state collaboration. We 574

formulate an optimization problem that decides on the number 575

of ventilators transferred from state s to state s
Õ on day d, 576

and on the number of ventilators allocated from the federal 577

government to state s on day d. We propose a bi-objective 578

formulation. The first objective is to minimize ventilator-day 579

shortages; for robustness, we consider both projected shortages 580

(based on demand forecasts) and worst-case shortages (includ- 581

ing a bu�er in the demand estimates). The second objective 582

is to minimize inter-state transfers, to limit the operational 583

and political costs of inter-state coordination. Mixed-integer 584

optimization provides modeling flexibility to capture spatial- 585

temporal dynamics and the trade-o�s between these various 586

objectives. We report the mathematical formulation of the 587

model, along with the key assumptions, in the appendix. 588

B. Results. We implemented the model on April 15, a time of 589

pressing ventilator need in the United States. We estimate 590

the number of hospitalizations from DELPHI-pred as the sum 591
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of DHR and DHD. From our clinical outcomes database in592

Section 1, we estimate that 25% of hospitalized patients are593

put on a ventilator, which we use to estimate the demand for594

ventilators. We also obtain the average length of stay from595

our clinical outcomes database (Figure 2).596

Figure 5A shows the evolution of ventilator shortages with597

and without ventilator transfers from the federal government598

and inter-state transfers. These results indicate that ventilator599

pooling can rapidly eliminate all ventilator shortages. Figure600

5C shows ventilator transfers recommended in the US North-601

east on April 15 (with inter-state transfers only), overlaid on602

a map displaying the predicted shortage without transfers.603

There are di�erent pathways toward eliminating ventilator604

shortages. Figure 5B shows the trade-o� between shortages605

and transfer distance—each line corresponds to the maximal606

fraction of its own ventilators that each state can pool. Overall,607

states do not have to share more than 10% of their supply at608

any time to e�ciently eliminate shortages. States can largely609

meet their needs with help from neighboring states, with cross-610

country transfers only used as a last resort. Broadly, results611

underscore trade-o�s between ventilator shortages, the extent612

of inter-state transfers, the number of ventilators allocated613

from the federal government, and the robustness of the solution.614

We discuss these trade-o�s further in the appendix.615

C. Discussion and Impact. Our main insight is that ventilator616

shortages could be eliminated altogether through inter-state617

transfers and strategic management of the federal supply. Re-618

sults also underscore (i) the benefits of inter-state coordination619

and (ii) the benefits of early coordination. First, ventilator620

shortages can be eliminated through inter-state transfers alone:621

leveraging a surge supply from the federal government is not622

required, though it may reduce inter-state transfers. Under our623

recommendation, the most pronounced transfers occur from 624

states facing no shortages (Ohio, Pennsylvania, and North 625

Carolina) to states facing strong shortages (New York, New 626

Jersey). Second, most transfers occur in early stages of the 627

pandemic. This underscores the benefits of leveraging a pre- 628

dictive model like DELPHI-pred to align the ventilator supply 629

with demand projections as early as possible. 630

A similar model has been developed to support the re- 631

distribution of ventilators across hospitals within the Hartford 632

HealthCare system in Connecticut—using county-level fore- 633

casts of ventilator demand obtained from DELPHI-pred. This 634

model has been used by a collection of hospitals in the United 635

States to align ventilator supply with projected demand at a 636

time where the pandemic was on the rise. 637

Looking ahead, the proposed model can support the alloca- 638

tion of critical resources in the next phases of the pandemic— 639

spanning ventilators, medicines, personal protective equipment 640

etc. Since epidemics do not peak in each state at the same 641

time, states whose infection peak has already passed or lies 642

weeks ahead can help other states facing immediate shortages 643

at little costs to their constituents. Inter-state transfers of 644

ventilators occurred in isolated fashion through April 2020; 645

our model proposes an automated decision-making tool to 646

support these decisions systematically. As our results show, 647

proactive coordination and resource pooling can significantly 648

reduce shortages—thus increasing the number of patients that 649

can be treated without resorting to extreme clinical recourse 650

with side e�ects (such as splitting ventilators). 651

5. Conclusion 652

This paper proposes a comprehensive data-driven approach to 653

address several core challenges faced by healthcare providers 654

Dimitris Bertsimas et al. PNAS | June 2, 2020 | vol. XXX | no. XX | 9



DRAFT

and policy makers in the midst of the COVID-19 pandemic.655

We have gathered and aggregated data from hundreds of clini-656

cal studies, electronic health records, and census reports. We657

have developed descriptive, predictive and prescriptive mod-658

els, combining methods from machine learning, epidemiology,659

and mixed-integer optimization. Results provide insights on660

the clinical aspects of the disease, on patients’ infection and661

mortality risks, on the dynamics of the pandemic, and on the662

levers that policy makers and healthcare providers can use663

to alleviate its toll. The models developed in this paper also664

yield decision support tools that have been deployed on our665

dedicated website and that are actively being used by several666

hospitals, companies and policy makers.667
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Supporting Information Text15

1. Supplementary Materials on Clinical Outcomes Database16

The clinical outcomes database analyzed in Section 1 aggregates reported data from di�erent hospitals across the world. These hospitals17

may have di�erent equipment and reporting standards. It was obtained through a human reading process, which is inherently imperfect. For18

this reason, we now list some important observations and caveats about the database, and refer the reader to our website for a complete list19

of the 160 papers entered into the database.∗20

• To minimize human error in data reporting, we have veri�ed some key features with additional scrutiny, including mortality, ICU21

and hospital length of stay, key symptoms (fever, cough, short breath, fatigue, diarrhea) and common comorbidities (hypertension,22

diabetes).23

• Across papers, subcohort divisions may follow di�erent criteria, including: severity of disease (severe vs. mild), mortality (survivors vs.24

non-survivors), treatment (intubation vs. non-intubation), comorbidity (diabetic vs. non-diabetic). To retain a large enough number of25

studies in each category, we classify a population as “mild” if the study classi�es it as “not asymptomatic” and “mild”, “general”, or26

“non-ICU” and not “severe/critical”; and we classify a population as “severe” if the study classi�es it as “severe”, “critical”, “ICU only”27

or “non-survivors only”.28

• Studies in this dataset do not always have the same purpose. For instance, many papers from Italy seem to report data only on29

non-survivors. In addition, some studies focus on the disease’s contagion pro�le, with little information on mortality, discharge, stay30

length. Data points from these studies may exhibit a high proportion of missing features.31

• We have tried to report all lab values in consistent units. We have included a companion document (Reference Ranges) with32

corresponding reference ranges to facilitate analysis. There are some instances where the reported lab units seem inconsistent with33

the expected ranges (e.g. for D-Dimer), but we have generally reported the raw values from the source papers.34

• The papers entered in the database do not consistently report con�dence intervals alongside population means. For this reason, we35

have declined to provide con�dence intervals for the quantities estimated in this part of the paper.36

• We intend to continuously update the database as new papers become available. For this reason, the average values reported in this37

paper may change as more data becomes available.38

Table S1 reports comorbidities, demographics, average lab values and average clinical outcomes among all patients, mild patients and39

severe patients. This expands Table 2 of the paper by including the number of reported cases in each category.40

Finally, Table S2 reports statistics on treatments in di�erent continents. The data are reported at a higher level of granularity in early41

studies in Asia, which hinders direct comparisons. Still, we observe signi�cant di�erences in the use of hydroxychloroquine and ventilation42

between Asia, Europe and North America.43

2. Supplementary Materials on Clinical Risk Calculators44

A. Clinical Characteristics of Study Population. Our mortality cohort comprises 2,859 patients, 739 (25.8%) of whom deceased during45

hospitalization. The cohort includes patients from both ASST Cremona and HM Hospitals. Table S3 summarizes the clinical characteristics46

of the cohort, both in aggregate and broken down by survival status. The reported features are those used in the �nal model, that is age,47

gender, 3 vitals values, 13 lab results, and 4 comorbidities.48

Our infection cohort comprises 3,135 patients, 1,661 (53.0%) of whom tested positive for COVID-19. This cohort only includes patients49

from ASST Cremona, as negative tests results were not available from HM Hospitals. Table S4 summarizes the clinical characteristics of the50

cohort, both in aggregate and broken down by test result. Again, the reported features are those used in the �nal model, that is age, gender,51

4 vitals values, and 14 lab values.52

B. Method Details.We construct the feature space by aggregating all clinical features for each of the cohorts. We restricted the features53

to those that have at most 40% of missing values in both datasets (ASST Cremona and HM Hospitals). Missing values are imputed using54

k-nearest neighbors imputation method (1). The mortality model consists of 22 features. The infection model has a larger feature space,55

since we are not limited to common features in both datasets. We restrict this model to the 20 most important features, as determined by the56

algorithm, to ensure usability and reduce the data entry burden on end-users.57

We train models for each of the two outcomes of interest (mortality and infection), both including and excluding lab values. This results58

in a total of four models, referred to as “mortality with lab”, “mortality without lab”, “infection with lab”, and “infection without lab”. We59

use the XGBoost algorithm to train all models (2). We leverage a Bayesian optimization framework to select the best model parameters,60

using the mean cross-validation area under the curve (AUC) across 40 random seeds as the loss function. This technique results in a more61

accurate tuning compared to standard grid search, yielding better performance on the test set. We use Scikit-learn (3) to interface XGBoost62

and Scikit-optimize (4) to perform the hyperparameter tuning. We tune the following parameters for every model: learning rate, “, ⁄, –,63

minimum child weight, maximum tree depth, number of estimators, and the subsample ratio of columns when constructing each tree. All64

remaining hyperparameters are set to their default value.65

∗h�ps://www.covidanalytics.io/dataset

2 of 21 Dimitris Bertsimas, Leonard Boussioux, Ryan Cory-Wright, Arthur Delarue, Vassilis Digalakis, Alexandre Jacquillat,
Driss Lahlou Kitane, Galit Lukin, Michael Li, Luca Mingardi, Omid Nohadani, Agni Orfanoudaki, Theodore Papalexopoulos,

Ivan Paskov, Jean Pauphilet, Omar Skali Lami, Bartolomeo Stellato, Hamza Tazi Bouardi, Kimberly Villalobos Carballo,
Holly Wiberg and Cynthia Zeng

https://www.covidanalytics.io/dataset


C. Performance Evaluation. Figure S1a reports the average receiver operating curve and precision-recall curve for each model. The66

results are averaged across models generated from 40 random seeds. The mortality models have higher average AUCs than the infection67

models, although the infection models are stronger when evaluated on precision and recall. As expected, predictive performance deteriorates68

when lab values are excluded. Yet, the models without lab values still achieve strong performance. In particular, the AUC of mortality model69

drops only moderately when lab values are excluded. Both models see a similar loss in precision/recall when lab values are excluded.70

Table S5 reports threshold-based metrics, which evaluate the discriminative ability of the calculators at a �xed cuto�. We ensure a71

sensitivity of at least 90% to re�ect the high cost of false negatives (missing a death or an infection). We select the highest corresponding72

threshold to maximize speci�city. The results show that the accuracy of the models spans 65%–80%. The mortality calculator with lab values73

achieves a speci�city of 76%. The infection model with lab values has lower speci�city (63%), but better precision (74% vs. 56%).74

Finally, Figure S2 displays calibration plots, showing the true event rates as a function of the average predicted probabilities. The x-axis75

bins the population by average predicted risk, and the y-axis plots the true event rate (percentage of deaths or infection). All four risk76

calculators are well calibrated across subgroups, as the �ts are close to the 45-degree line. The bottom plot shows the distribution of predicted77

risk values from the models. For the mortality calculators, the mean predicted values fall below 10% for most samples, whereas the infection78

calculators distribute the risk more evenly across the cohort. This re�ects the fact that mortality is less prevalent than infection.79

3. Supplementary Materials on DELPHI-pred and DELPHI-presc80

A. Formulation of DELPHI-pred.81

A.1. General Formulation. The DELPHI model separates people into 11 possible states:82

• Susceptible (S): People who have not been infected.83

• Exposed (E): People currently infected, but not contagious and within the incubation period.84

• Infected (I): People currently infected and contagious.85

• Undetected (UR) & (UD): People infected and self-quarantined due to the e�ects of the disease, but not con�rmed due to lack of86

testing. Some of these people recover (UR) and some die (UD).87

• Detected, Hospitalized (DHR) & (DHD): People who are infected, con�rmed, and hospitalized. Some of these people recover88

(DHR) and some die (DHD).89

• Detected, Quarantine (DQR) & (DQD): People who are infected, con�rmed, and home-quarantined rather than hospitalized.90

Some of these people recover (DQR) and some die (DQD).91

• Recovered (R): People who have recovered from the disease (and immune).92

• Deceased (D): People who have deceased from the disease.93

In addition to main functional states, we introduce helper states to calculate a few useful quantities: Total Hospitalized (TH), Total
Detected Deceased (DD) and Total Detected Cases (DT). The full mathematical formulation of the model is as follows:

dS

dt
= ≠Â–“(t)S(t)I(t)

dE

dt
= Â–“(t)S(t)I(t)

dI

dt
= riE(t) ≠ rdI(t)

dUR

dt
= rd(1 ≠ Âpdth)(1 ≠ pd)I(t) ≠ rriUR(t)

dDHR

dt
= rd(1 ≠ Âpdth)pdphI(t) ≠ rrhDHR(t)

dDQR

dt
= rd(1 ≠ Âpdth)pd(1 ≠ ph)I(t) ≠ rriDQR(t)

dUD

dt
= rdÂpdth(1 ≠ pd)I(t) ≠ ÂrdthUD(t)

dDHD

dt
= rdÂpdthpdphI(t) ≠ ÂrdthDHD(t)

dDQD

dt
= rdÂpdthpd(1 ≠ ph)I(t) ≠ ÂrdthDQD(t)

dT H

dt
= rdpdphI(t)

dDD

dt
= Ârdth(DHD(t) + DQD(t))

dDT

dt
= rdpdI(t)

dR

dt
= rri(UR(t) + DQR(t)) + rrhDHR(t)

dD

dt
= Ârdth(UD(t) + DQD(t) + DHD(t))
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This set of di�erential equations comprises 11 explicit parameters, de�ned below. The parameters with a tilde are the parameters that are94

�tted against historical data for each state; the others are �xed parameters that we estimate using our clinical outcomes database (Section 1).95

• Â– is the baseline infection rate, constant across all US states.96

• “(t) measures the government response and is de�ned as:97

“(t) = 2
fi

arctan
3

≠(t ≠ Ât0)
Âk

4
+ 1,98

where the parameters Ât0 and Âk capture, respectively, the start date and the strength of the response.99

• rd is the rate of detection. This equals to log 2
Td

, where Td is the median time to detection (2 days).100

• ri is the rate of infection leaving incubation phase. This equals to log 2
Ti

, where Ti is the median time to leave incubation (5 days).101

• rri is the rate of recovery not under hospitalization. This equals to log 2
Tri

, where Tri is the median time to recovery when a patient is102

not under hospitalization (10 days).103

• rrh is the rate of recovery under hospitalization. This equals to log 2
Trh

, where Trh is the median time to recovery under hospitalization104

(15 days).105

• Ârdth is the rate of death.106

• Âpdth is the mortality rate.107

• pd is the percentage of infection cases detected. This percentage is constant and is set to 20%.108

• ph is the percentage of detected cases hospitalized. This percentage is also constant and set to 15%.109

Therefore, we �t on 5 parameters from the list above (Â–, Âpdth, Ârdth, Ât0,Âk). In addition, we create two additional parameters Âk1, Âk2 to account110

for the initial population in the infected (I) and exposed (E) states. We thus �t seven parameters per state.111

The parameters are �tted using non-convex optimization methods, including trust-region methods (5) and the Nelder-Mead method (6).
We use historical counts of cases and deaths for the �tting procedure. We use a weighted Mean Squared Error (MSE) metric to account for
recency and di�erent types of data. The weighted MSE for a training period of T days is de�ned as:

Weighted MSE =
Tÿ

t=1

t · (DT (t) ≠ Total Detected Cases on Day t)2

+ ⁄
2 ·

Tÿ

t=1

t · (DD(t) ≠ Total Detected Deceased on Day t)2
.

The factor t gives more prominence to more recent data, as recent errors are more likely to propagate into future errors. We set ⁄ =112

min
) Total Detected Cases on Day T

3·Total Detected Deceased on Day T , 10
*
to balance the �tting between cases and deaths.113

A.2. Modeling Government Response. As governments respond to the spread of the epidemic, the rate of infection decreases. We model this114

by multiplying an initial infection rate with an inverse tangent function, which captures three phases of government response (Figure S3).115

• Phase I: This phase models the initial response when the government has just started to consider implementing policies. Some people116

have already changed their behavior in response to early reports, but most people continue business-as-usual activities.117

• Phase II: This phase is characterized by the sharp decline in infection rate as policies get broadly implemented.118

• Phase III: This phase re�ects the diminishing marginal returns in the decline of the infection rate as the measures reach saturation.119

Using parameters Ât0 and Âk, we control the start time and the strength of the measures. We can therefore interpret Ât0 as the median120

day of action, and Âk as the median rate of action. This formulation allows us to model, under the same framework, a wide variety of121

policies—spanning school closures, restriction on mass gatherings, stay-at-home policies, etc.122

A.3. DELPHI-pred Validation. Figure S4 shows the projected number of deaths in the United States, with projections made on three di�erent123

weeks, against historical observations. This complements the corresponding �gure in the main text reporting the number of projected vs.124

actual cases. We see that we were generally able to predict the number of deaths up to 4 weeks ahead with good accuracy. One exception is125

our prediction made on April 3, which is due to a lack of state-level data on deaths at the time (hence, we had to assume a constant mortality126

rate per state). But after that, our projections have closely followed historical trends.127

B. Formulation of DELPHI-pres.128

B.1. Modeling of the Impact of Government Response. Recall that we �t a machine learning model to predict the value of “(t) (�tted by129

DELPHI-pred), as a function of the policies in place. The objective is to evaluate the impact of each policy on the infection rate in order130

to simulate its overall e�ect on the dynamics of the pandemic. Figure S5 shows the resulting regression tree, using state-level data in the131

United States. The results show that more stringent policies result in lower values of “(t), hence in lower infection rates. For instance, in132

states with no measure in place, the predicted value of “(t) is 1.304; in states where a stay-at-home policy is in place, the predicted value of133

“(t) is 0.312; in states where partial social distancing policies are in place, the predicted value of “(t) falls in between.134

The main objective of DELPHI-presc is to modify the value of “(t) in DELPHI-pred to account for future changes in social distancing135

policies, using the values predicted by the tree shown in Figure S5. To this end, we de�ne the following quantities:136

• tc is the time of the policy change.137
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• k0 is a normalized pair-wise di�erence between the predicted values of “(t) between policies (with respect to the largest predicted value138

of “(t) under no measure). For instance, transitioning from stay-at-home to no measure induces an o�set (1.304 ≠ 0.312)/1.304 =139

+0.761. All values can be found in Table S6—the o�set is positive if the new policy is more lenient, and negative if it is more stringent.140

• p0 is the normalized value of the current policy.141

We then correct the government response as follows:

“
Õ(t) = max

;
2
fi

arctan
3

≠ t ≠ Ât0
k

4
+ 1 + k0 · min

5
2 ≠ “(tc)

1 ≠ p0
,

“(tc)
p0

6
, 0

<
, ’t Ø tc.

For example, if we are currently in Lockdown and are moving to No measure, then we obtain k0 = 0.787, p0 = 0.329/1.544 = 0.213 and142

“(tc) = 2
fi arctan

1
≠ tc≠Ât0

k

2
+ 1.143

B.2. Application to Policy Assessment. To assess any policy, we run the DELPHI-pred model (governed by the system of di�erential equations),144

using the value of the infection rate derived in Section Eq. (B.1). We report the impact of the di�erent policies on the case count in the main145

body of the paper. Figure S6 provides a similar visualization of the e�ect on the death count in the state of New York. We can draw similar146

observations regarding the impact of the various policies and the impact of the timing of these policies.147

4. Supplementary Materials on Ventilator Allocation148

We now detail the formulation of the optimization model proposed for ventilator allocation. We begin by specifying the model mathematically,149

then discuss data sources and parameter calibration.150

A. Formulation.We consider S states, indexed by s = 1, · · · , S, and D days, indexed by d = 1, · · · , D.151

Data. In formulating the problem, we consider the following data as given:152

• vs,d is the demand for ventilators in state s on day d.153

• bs is the base supply of ventilators starting in each state s.154

• nd is the surge supply of ventilators distributed by the federal government on day d.155

• ds,sÕ is the distance between state s and state s
Õ.156

• ·s,sÕ is the lead time between state s and state s
Õ.157

We note two comments regarding these inputs. First, the surge supply nd corresponds to the number of ventilators that are actually158

distributed by the federal government on day d: the details of managing the federal stockpile fall beyond the scope of this model. More159

generally, nd represents supply available from any exogenous, centralized source. Second, we consider distances between states as a way to160

encourage transfers between neighboring states. We also calibrate the distances such that ds,s > 0 for each state s, to ensure we do not161

propose meaningless transfers from state s to itself.162

Decisions. We de�ne integer decision variables as follows:163

• xs,d œ Z+ is the supply of ventilators in state s on day d.164

• ys,sÕ,d œ Z+ is the number of ventilators sent from state s to state s
Õ on day d.165

• zs,d œ Z+ is the additional supply state s receives from the federal government on day d.166

• ws,d œ Z+ is the shortage of ventilators in state s on day d relative to the demand vs,d.167

• �s,d œ Z+ is the shortage of ventilators in state s on day d relative to the demand with a bu�er.168

Parameters. We de�ne the following parameters, which control di�erent policy trade-o�s:169

• fmax œ [0, 1] is the maximum fraction of its base supply that each state is willing to share. A value of fmax = 0 indicates that170

states are not willing to share any ventilator with other states; a value of fmax = 1 indicates that states are willing to share all their171

ventilator supply with other states.172

• – œ [0, Œ) is the percentage of projected demand that states would like to plan for with a supply bu�er. For example, – = 0.1 will173

penalize any solution such that supply falls within 10% of projected demand.174

• ⁄ œ [0, Œ) is a regularization parameter that captures the trade-o� between the �nancial and logistical cost of interstate transfers175

with the public health cost of ventilator shortages.176

• tmin œ Z+ is the number of days a ventilator is in use after it is shipped to a new location, allowing to control for excessive transfers.177

• fl œ [0, 1] is a relative cost parameter capturing the relative importance of projected shortages vs. worst-case shortages. Each unit of178

supply that falls short of the projected demand is assigned a cost of 1. Each unit of supply that exceeds the demand but does not179

exceed the state’s desired supply bu�er is assigned a cost of fl.180

Objective. The problem of allocating scarce resources in a pandemic is complex because of the necessity to balance competing interests.181

We identify two key operational goals: improving public health outcomes, and reducing �nancial cost. We therefore formulate the ventilator182

allocation problem with two objectives, minimizing total shortage costs as well as total ventilator transfer costs. Each unit of ventilator183

shortage is assigned a weight of 1 (for shortage relative to the projected demand) or a weight of fl Æ 1 (for shortage relative to the bu�ered184

demand). We formalize the bi-objective problem by means of a penalty on transfers, weighted with a trade-o� parameter ⁄.185

min
Sÿ

s=1

Dÿ

d=1

(ws,d + fl�s,d) + ⁄

Sÿ

s=1

Sÿ

sÕ=1

Dÿ

d=1

ds,sÕ ys,sÕ,d. [1a]186

Note that ventilators distributed by the federal government are not penalized, as our model simply treats this source as exogenous.187
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Constraints.188

• Initial supply for each state s:189

xs,0 = bs, ’s = 1, · · · , S. [1b]190

• The supply in each state s on each day d remains higher than the fraction of its initial supply the state wants to retain:191

xs,d Ø (1 ≠ fmax)bs, ’s = 1, · · · , S, d = 1, · · · , D. [1c]192

• The transfers from the federal government cannot exceed the available surge supply on each day d:193

Sÿ

s=1

zs,d Æ nd, ’d = 1, · · · , D. [1d]194

• The shortage variable corresponds to the positive part of the di�erence between ventilator demand and supply, if positive, for each195

state s and day d:196

ws,d Ø vs,d ≠ xs,d, ’s = 1, · · · , S, d = 1, · · · , D. [1e]197

• The bu�er shortage variable is de�ned such that the total (actual plus bu�er) shortage corresponds to the di�erence between bu�ered198

demand and ventilator supply, if positive, for each state s and day d:199

ws,d + �s,d Ø (1 + –)vs,d ≠ xs,d, ’s = 1, · · · , S, d = 1, · · · , D. [1f]200

• (Conservation of �ow) For each state s and day d, today’s supply is equal to yesterday’s supply plus what is received today from the201

government and the other states, minus what is sent to other states, with ·sÕ,s re�ecting shipments’ lead times:202

xs,d = xs,d≠1 + zs,d +
Sÿ

sÕ=1

ysÕ,s,d≠·sÕ,s
≠

Sÿ

sÕ=1

ys,sÕ,d, ’s = 1, · · · , S, d = 1, · · · , D. [1g]203

• (Minimum days in use) For each state s and day d, any incoming ventilator, either from another state or from the federal government,204

cannot be shipped out for at least tmin days. This constraint ensures that ventilators are not transferred too often.205

d≠1ÿ

dÕ=max(1,d≠tmin)

A
zs,dÕ +

Sÿ

sÕ=1

ysÕ,s,dÕ

B
Æ xs,d, ’s = 1, · · · , S, d = 1, · · · , D. [1h]206

• Any state s facing a shortage on day d cannot ship any ventilators to other states on day d. To write this constraint, we de�ne auxiliary
binary variables as,d œ {0, 1} indicating if there is a shortage in state s on day d and a parameter Vmax providing a trivial upper
bound on the number of ventilators a state can ship per day (we use a value of 3,000 which does not restrict the solution, as it exceeds
the shortage faced by any state on any given day).

ws,d + �s,d Æ vs,d(1 + –)as,d, [1i]
Sÿ

sÕ=1

ys,sÕ,d Æ Vmax(1 ≠ as,d). [1j]

B. Data Sources and Parameter Calibration. Our optimization model is complex enough to model high-level dynamics of scarce resource207

allocation, yet simple enough to only require simple data inputs. We now describe our methodology in collecting the key data necessary to208

solve this optimization problem.209

Demand. The most important input data is the forecasted ventilator demand vs,d. Consistent with our end-to-end data-driven approach,210

and in contrast with other ventilator allocation approaches (7), we develop our own demand forecasts using DELPHI-pred (Section 3 of211

the main text). Recall that DELPHI-pred does not only estimate the number of cases, but also the number of hospitalizations, equal to212

DHR + DHD . We then apply a 25% ratio to estimate the number of ventilators in use—given that, in our clinical outcomes database, 25% of213

hospitalized patients are on a ventilator. Ultimately, we can use the DELPHI-pred outputs to derive projections of ventilator demand at the214

state level and at the daily level—consistently with the optimization input vs,d.215

Supply. It can be di�cult to estimate how many ventilators are available in each state as well as at the federal level. For the base supply216

bs, we use inventory levels from a 2010 American Medical Association report (8). We adjust this number for population growth, under the217

assumption that the number of ventilators per capita has remained constant in each state.218

Of course, ventilators can also be used to treat non-COVID-19 patients. We assume that 50% of ventilator supply across the board is219

unavailable due to non-COVID-19 usage, in line with other estimates (7).220

In addition, our model takes into account the daily availability nd of ventilators at the federal level. Estimating this quantity from221

publicly-available sources is both di�cult due to limited data and politically fraught. We use the estimate from the Society for Critical222

Medicine that the federal stockpile contains at least 12,700 ventilators (9). Some news reports suggest a lower estimate of 10,000 based on223

some defects in the stockpiled equipment (10), while others suggest an estimate of 16,600 based on older model repairs (11). Based on these224

reference points, we estimate roughly 13,500 available ventilators and assume that they can be deployed evenly over a month. In other words,225

we allow 450 ventilators to be deployed each day for 30 days (starting on day 4 to allow for lead times). This gradual release re�ects potential226

operational constraints and strategic considerations of controlling the release of inventory in case of unexpected outbreaks. Yet, given the227

underlying uncertainty, we perform sensitivity analysis to explore how the model’s recommendation varies with the federal stockpile.228
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Distances and lead times. We compute the interstate distance ds,sÕ as the Euclidean distance between the centers of states s and s
Õ, and229

we let the lead time parameter ·s,sÕ equal 3 days for every pair of states. Our choice of a conservative uniform lead time for shipments is230

motivated by simplicity concerns. This could be improved, in future work, to better re�ect e�ciencies in the US shipping infrastructure.231

Trade-o� parameters.232

• Understanding the impact of states’ willingness to share ventilators with other states is a key takeaway from our model. In Figure 7B,233

we vary the fraction fmax of each state’s pooling supply between {0%, 5%, 10%, 15%, 20%}. Results indicate there is little additional234

e�ciency to be gained from states sharing more than 20% of their supply.235

• Understanding the relative importance of federal surge supply compared to interstate transfers is another interesting takeaway from236

our model. In Figure 7A, we show the e�ects of removing federal surge supply, or preventing interstate transfers, on ventilator237

shortage reduction. We show more detailed sensitivity analysis results in Section C.238

• We vary the parameter ⁄ to derive the the Pareto-optimal frontier of the trade-o� between inter-state transfers vs. ventilator shortages239

(for instance in Fig. 7B). As ⁄ tends to zero, transfers incur no cost other than rendering the ventilators unavailable during shipment;240

as ⁄ tends to in�nity, transfers become heavily discouraged.241

• The parameter – models uncertainty in the demand forecast as well as robustness to ine�ciency in ventilator allocation within each242

state. We vary the percentage – of bu�ered demand within {0%, 5%, 10%, 20%} in Section C.243

Finally, we choose the following values for the remaining two parameters, which have a small impact on the �nal solution.244

• We set the value of tmin to 10 days, based on the clinical outcomes database (Section 1).245

• We set fl, the cost of shortage with respect to bu�ered demand relative to the cost of shortage with respect to real demand, to 0.25.246

C. Sensitivity analysis. In the main text, we discuss the impact of the federal surge and inter-state coordination on alleviating ventilator247

shortages, showing that ventilator shortages can be eliminated through limited transfers among states and from the federal government. The248

results also suggest trade-o�s between the number of inter-state transfers, the amount of ventilator shortages, and the fraction of ventilators249

that each state is willing to share (captured by the fmax parameter). We report additional results to underscore the trade-o�s between250

inter-state transfers, the ventilator supply from the federal government, and the robustness of the solution—that is, the exposure of the251

states to ventilator shortages if demand exceeds our projections.252

To this end, Figure S7 shows the Pareto-optimal frontier between the model’s two objectives, inter-state transfer distance and ventilator253

shortage, as a function of two model parameters: – (capturing the demand bu�er that states would like to plan for) and a surge supply254

multiplier (capturing by how much the federal government’s ventilator supply varies from our estimates). Note that the bu�er – does not255

impact the number of inter-state transfers and the amount of ventilator shortages too signi�cantly—suggesting that the solution can be made256

robust at limited overall costs. In contrast, as the surge supply is decreased, the number of required ventilator transfers and the amount of257

ventilator shortages increase—highlighting the need for stronger cooperation between states as federal supply drops.258
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(a) Average ROC Curves

(b) Average Precision Recall Curves

Fig. S1. Bootstrapped results on ROC and Precision Recall curves for all calculators on the testing set.
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Fig. S2. Bootstrapped Results on the Calibration Curves for both risk calculators on the testing set. The intervals are: [0,10%], (10,20%], (20,30%], . . . , (90,100%]. The event rates are
plo�ed against the bin mid-points. An ideal event rate is marked by the do�ed 45 degree line.
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Fig. S4. Cumulative number of deaths in the United States according to our projections made at di�erent points in time, against actual observations
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Fig. S5. Regression Tree (CART) predicting an average value of “(t) for each policy.
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(a) Impact of di�erent policies on the future number of deaths, in NY

(b) Impact of the timing of policies on the future number of deaths, in NY.

Fig. S6. Impact of di�erent policies on the future number of deaths in the State of New York, for di�erent policies and policy start dates.
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Fig. S7. Influence of additional bu�er and federal surge availability on ventilator shortage and ventilator transfers.
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Table S1. Comorbidities, demographics, average lab values, average length of stay and projected mortality among COVID-19 patients, in
aggregate and broken down into mild/severe patients.

Feature All Patients Mild Patients Severe Patients

No. Report Avg. No. Report. Avg. No. Report. Avg.

Demographics

Male (%) 131, 200 53.0% 9, 570 48.8% 10, 120 68.7%
Age (years) 119, 000 51.3 8, 022 46.1 9, 685 68.2
White/European (%) 55, 490 22.2% 10, 120 9.7% 9, 887 63.9%
African American (%) 55, 490 5.4% 10, 120 3.5% 9, 887 2.5%
Asian (%) 55, 320 51.3% 10, 300 80.2% 9, 933 31.2%
Hispanic/Latino 50, 630 19.9% 8, 017 0% 9, 107 0%
Multiple ethnicities/other 55, 190 3.6% 10, 120 6.9% 9, 887 2.7%
Comorbidities

Smoking history 27, 900 16.1% 6, 080 12.2% 1, 973 16.6%
Hypertension 38, 390 35.9% 8, 252 15.2% 8, 449 54.4%
Diabetes 39, 790 20.8% 8, 396 6.8% 8, 818 26.1%
Cardio Disease 40, 030 12.4% 8, 028 3.0% 9, 540 20.3%
COPD 34, 150 6.0% 6, 297 2.8% 8, 727 10.0%
Cancer 29, 170 7.2% 6, 259 3.2% 8, 355 12.9%
Liver Disease 18, 300 2.8% 1, 875 2.3% 6, 832 3.5%
Cebrovascular 6, 830 9.8% 3, 245 2.7% 1, 360 24.8%
Kidney Disease 35, 500 5.7% 6, 152 1.2% 8, 139 10.8%
Lab values

WBC Count (109/L) 19, 970 6.41 5, 403 5.07 2, 305 6.80
Neutrophil Count (109/L) 12, 500 4.72 2, 236 5.12 1, 410 5.78
Platelet Count (109/L) 12, 125 195.7 5, 165 184.0 2, 105 170.4
ALT (U/L) 14, 467 29.0 2, 840 24.6 2, 428 31.1
AST (U/L) 14, 214 37.3 2, 766 27.1 2, 366 45.7
BUN (mmol/L) 4, 822 5.22 1, 700 4.18 1, 138 6.86
Creatinine (µmol/L) 8, 504 63.08 2, 529 66.0 2, 454 56.4
CRP Count (mg/L) 17, 090 76.5 2, 573 18.9 2, 339 94.1
Interleukin-6 (pg/mL) 2, 582 24.57 1, 127 4.17 552 38.63
Procalcitonin (ng/mL) 14, 750 2.26 1, 468 1.85 1, 969 4.81
D-Dimer (mg/L) 13, 330 38.81 2, 478 8.04 2, 401 165.9
Length of Stay (days) 16, 010 10.7 4, 131 14.0 5, 642 7.97
Proj. Mortality (%) 111, 700 11.7% 7, 428 0.4% 9, 146 74.0%
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Table S2. Count and prevalence of treatments among COVID-19 patients, broken down per continent (Asia, Europe, North America). A “-”
indicates that fewer than 100 patients in a subpopulation reported on this symptom.

Treatment Asia Europe North America

No. Report Prev. (%) No. Report. Prev. (%) No. Report. Prev. (%)
Kaletra 5, 665 35.2% ≠ ≠ ≠ ≠
Oseltamivir 5, 901 25.1% ≠ ≠ ≠ ≠
Remdesivir 337 47.4% ≠ ≠ 868 10.3%
Arbidol 5, 902 34.8% ≠ ≠ ≠ ≠
Interferon 3, 647 51.8% ≠ ≠ ≠ ≠
Hydroxychloroquine 6, 008 0.7% ≠ ≠ 1, 235 61.7%
Invasive Ventilation 7, 945 8.0% 75, 120 4.8% 5, 840 19.3%
Proj. Mortality 12, 820 16.7% 79, 750 9.9% 19, 060 15.8%
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Table S3. Characteristics of study population for mortality prediction model.

All (N = 2, 831) Survivors (N = 2, 120) Non-Survivors (N = 711) P-Value

Age 68.0 (57.0-79.0) 63.0 (54.0-74.0) 81.0 (73.2-86.0) 1.28E-185
Female ú 1095.0 (38.7%) 868.0 (40.9%) 227.0 (31.9%) 1.18E-05

Heart Rate 89.0 (79.0-101.0) 90.0 (80.0-102.0) 87.0 (78.0-100.0) 1.29E-03
Oxygen Saturation 94.0 (90.0-96.0) 94.4 (92.0-96.0) 88.5 (80.0-93.6) 3.16E-37
Temperature (F) 98.4 (97.5-99.7) 98.4 (97.5-99.6) 98.8 (97.7-100.0) 2.42E-04

Alanine Aminotransferase 27.0 (17.0-44.0) 27.8 (17.5-45.0) 25.5 (16.0-41.0) 3.77E-02
Aspartate Aminotransferase 36.0 (25.0-55.0) 34.0 (24.4-51.0) 45.0 (30.0-69.0) 1.55E-11
Blood Glucose 118.0 (105.0-141.0) 115.0 (103.4-133.0) 134.0 (113.0-171.0) 1.12E-22
Blood Urea Nitrogen 17.0 (12.6-25.2) 15.0 (11.5-20.0) 29.5 (20.3-47.2) 1.02E-65
C-Reactive Protein 74.2 (29.1-149.5) 58.6 (22.7-119.3) 141.1 (72.0-223.1) 4.76E-50
Creatinine 1.0 (0.8-1.2) 0.9 (0.7-1.1) 1.3 (1.0-1.8) 2.84E-36
Hemoglobin 13.9 (12.7-15.0) 14.0 (12.9-15.0) 13.5 (12.0-14.7) 9.11E-10
Mean Corpsular Volume 87.8 (84.9-91.0) 87.5 (84.7-90.4) 89.3 (85.8-92.7) 2.80E-08
Platelets 201.0 (156.0-263.0) 206.0 (160.0-266.5) 185.0 (141.0-246.8) 6.62E-08
Potassium 4.1 (3.7-4.4) 4.0 (3.7-4.4) 4.1 (3.7-4.6) 1.43E-04
Prothrombin Time (INR) 1.1 (1.0-1.2) 1.1 (1.0-1.2) 1.1 (1.0-1.3) 3.20E-05
Sodium 137.1 (135.0-140.0) 137.0 (135.0-139.4) 138.0 (135.0-141.0) 5.65E-08
White Blood Cell Count 6.8 (5.2-9.2) 6.5 (5.0-8.7) 8.0 (5.7-11.4) 3.00E-15

Cardiac dysrhythmias ú 200.0 (7.1%) 127.0 (6.0%) 73.0 (10.3%) 6.50E-04
Chronic kidney disease ú 65.0 (2.3%) 33.0 (1.6%) 32.0 (4.5%) 3.67E-04
Heart disease ú 125.0 (4.4%) 80.0 (3.8%) 45.0 (6.3%) 1.10E-02
Diabetes ú 345.0 (12.2%) 234.0 (11.0%) 111.0 (15.6%) 2.73E-03

Mortality ú 711 (25.1%) 0 (0%) 711 (100%) –

ú Count (proportion) is reported for binary variables.
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Table S4. Characteristics of study population for infection test prediction model.

All (N = 3, 135) No Infection (N = 1, 474) Infection (N = 1, 661) P-Value

Age 63.0 (49.0-78.0) 58.0 (42.0-78.0) 66.0 (55.0-78.5) 9.00E-28
Female ú 1444.0 (46.1%) 777.0 (52.7%) 667.0 (40.2%) 1.70E-12

Heart Rate 88.5 (78.0-100.5) 89.0 (78.0-101.2) 88.0 (78.2-100.0) 6.13E-01
Oxygen Saturation 95.4 (91.8-97.0) 96.5 (94.8-97.5) 94.2 (89.6-96.4) 1.68E-31
Respiratory Frequency 18.0 (16.0-19.0) 18.0 (16.0-18.0) 18.0 (16.0-20.0) 9.64E-21
Temperature 98.3 (97.5-99.5) 97.7 (97.2-98.7) 99.0 (97.9-100.0) 4.51E-80

Alanine Aminotransferase 22.0 (15.0-37.0) 19.0 (13.0-30.0) 27.0 (18.0-43.0) 6.59E-09
Aspartate Aminotransferase 29.0 (21.0-47.0) 23.0 (19.0-31.0) 37.0 (26.0-57.0) 1.20E-20
Blood Urea Nitrogen 17.0 (13.0-25.0) 16.0 (12.0-22.0) 18.0 (13.0-27.0) 3.78E-05
Calcium 9.3 (8.9-9.7) 9.6 (9.2-9.9) 9.0 (8.7-9.4) 1.90E-96
C-Reactive Protein 31.0 (3.4-107.6) 4.7 (1.1-35.4) 69.8 (23.2-152.3) 1.28E-83
Creatinine 0.9 (0.8-1.2) 0.9 (0.7-1.1) 1.0 (0.8-1.2) 2.19E-05
Hemoglobin 13.5 (12.3-14.7) 13.4 (12.1-14.6) 13.6 (12.5-14.8) 5.70E-05
Mean Corpsular Volume 87.2 (84.0-90.3) 87.7 (84.2-90.7) 86.8 (83.9-90.0) 1.43E-01
Platelets 223.0 (174.0-285.0) 241.0 (198.0-297.0) 202.0 (156.0-266.0) 1.41E-18
Red Cell Distrbution Width 13.2 (12.5-14.3) 13.2 (12.5-14.5) 13.1 (12.4-14.0) 1.59E-06
Sodium 139.0 (137.0-141.0) 140.0 (138.0-142.0) 139.0 (136.0-141.0) 1.12E-14
Prothrombin Time (INR) 1.0 (1.0-1.1) 1.1 (1.0-1.1) 1.0 (1.0-1.1) 8.96E-01
Total Bilirubin 0.6 (0.5-0.8) 0.6 (0.4-0.9) 0.6 (0.5-0.8) 8.83E-03
White Blood Cell Count 7.6 (5.8-10.1) 8.7 (7.0-11.1) 6.6 (5.1-8.7) 7.59E-38

COVID-19 Positive Test ú 1661 (53.0%) 0 (0%) 1661 (100%) –

ú Count (proportion) is reported for binary variables.
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Table S5. Performance evaluation summary. Average results across 40 random seeds are reported along with 95% confidence intervals. A
minimum threshold of 90% sensitivity is enforced.

Model Type Lab Values Threshold Accuracy Sensitivity Specificity Precision Negative
predictive value

False
positive rate

Mortality Present
17.45

(15.61,19.29)
79.29

(77.47,81.11)
90.38

(90.38,90.38)
75.66

(73.25,78.07)
55.86

(53.46,58.25)
95.97

(95.84,96.1)
24.34

(21.93,26.75)

Mortality Absent
12.66

(11.11,14.2)
70.85

(68.45,73.24)
90.38

(90.38,90.38)
64.53

(61.37,67.7)
46.15

(43.96,48.33)
95.3

(95.04,95.55)
35.47

(32.3,38.63)

Infection Present
28.32

(26.63,30.02)
77.58

(76.48,78.68)
90.36

(90.36,90.36)
63.24

(60.9,65.58)
73.59

(72.33,74.85)
85.26

(84.79,85.73)
36.76

(34.42,39.1)

Infection Absent
27.51

(26.55,28.47)
66.31

(65.37,67.25)
90.36

(90.36,90.36)
39.32

(37.33,41.32)
62.64

(61.85,63.44)
78.12

(77.28,78.96)
60.68

(58.68,62.67)
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Table S6. Values of normalized o�set computations to correct the estimation of “(t). Policies include: (i) No measure (“none”); (ii) Restrict
mass gatherings (“R-MG”); (iii) Restrict others (“R-O”); (iv) Authorize schools, restrict mass gatherings and others (“R-MG-O”); (v) Restrict
mass gatherings and schools (“R-MG-S”); (vi) Restrict mass gatherings, schools and others (“R-MG-S-O”); and (vii) Stay-at-home (“SAH”).

from/to none R-MG R-O R-MG-O R-MG-S R-MG-S-O SAH

none 0 -0.127 -0.332 -0.206 -0.521 -0.577 -0.761
R-MG +0.127 0 -0.206 -0.080 -0.294 -0.451 -0.634
R-O +0.332 +0.206 0 +0.126 -0.189 -0.245 -0.429
R-MG-O +0.206 +0.080 -0.126 0 -0.314 -0.371 -0.554
R-MG-S +0.521 +0.294 +0.189 +0.314 0 -0.057 -0.240
R-MG-S-O +0.577 +0.451 +0.245 +0.371 +0.057 0 -0.183
SAH +0.761 +0.634 +0.429 +0.554 +0.240 +0.183 0
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